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ABSTRACT

The performance of computer vision systems for mea-
surement, surveillance, reconstruction, gait recognition,
and many other applications, depends heavily on the
placement of cameras observing the scene. This work
addresses the question of the optimal placement of cameras
to maximize the performance of real-world vision systems
in a variety of applications. Specifically, our goal is to
optimize the aggregate observability of the tasks being
performed by the subjects in an area. We develop a general
analytical formulation of the observation problem, in terms
of the statistics of the motion in the scene and the total
resolution of the observed actions, that is applicable to
many observation tasks and multi-camera systems. An opti-
mization approach is used to find the internal and external
(mounting position and orientation) camera parameters
that optimize the observation criteria. We demonstrate the
method for multi-camera systems in real-world monitoring
applications, both indoor and outdoor.

I. INTRODUCTION

Resolution is one of the fundamental and primary
information bottlenecks for vision applications. The per-
formance of virtually all vision systems will improve
with higher-resolution input. For example, measurement,
3D reconstruction, and recognition accuracy all have a
dependence on the resolution of the subject. Therefore, it
is desirable to position cameras in order to maximize the
total resolution of the subject in all cameras (as measured
by the fraction of the subject’s area in the image). However,
how to position the cameras is not always obvious.

Fig. 1. Scene of people moving outdoors.

For example, if we desire to monitor an area effectively
with a vision system (Figure 1), the system may be

required to perform a variety of tasks such as general
surveillance (detection of loitering behavior, detection of
unusual behaviors, detection of abandoned objects, mon-
itoring of crowd movements, etc.), subject tracking [7],
activity classification ([2]), gesture recognition [5], along
with individual biometrics gathering (face recognition, gait
recognition, etc.). Each of these tasks may have different
requirements and features of interest. As a result, optimal
camera placement may vary from task to task. In addition,
task location will vary throughout the area since people
are free to move throughout the area of interest in any
direction they like.

As a result, positioning a camera to effectively observe
the area of interest is a difficult problem. Each camera
position has to take into consideration the observability of
all activities in order to optimize the system’s performance.

Our goal is to address the problem of camera place-
ment to optimize the aggregate observability of a set of
tasks. One possible application of this research is the
development of a design tool for surveillance camera
placement in areas of high traffic, where each subject
may take a different path through the area. This work
assumes the cameras are statically mounted to view an
area. Optimizing the observability of such a system means
jointly maximizing the observability of the cameras relative
to the expected path distribution for the area of interest.

II. RELATED WORK

Proper camera placement for the purpose of optimizing
the sensor’s ability to capture information about a desired
environment or task has been considerably studied. In [16],
O’Rourke provides an in-depth theoretical analysis of the
problem of maximizing camera coverage of an area, where
the camera fields of view do not overlap (the so-called
“art gallery” problem). Fleishman et al. further refined
the art gallery framework by introducing a resolution
quality metric [8]. In addition, Isler et al. extended the
formulation of the minimum guard coverage art gallery
problem to incorporate minimum-set cover. They derived
reduced upper bounds for two cases of exterior visibility
for two- and three- dimensions [9]. Our method differs
from the art gallery framework in several important ways.
We focus on task observability, and try to capture target
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motions. In addition, we do not optimize for minimum
coverage, and in fact, to observe these tasks, overlapping
camera views are often necessary.

In the field of robotics, vision sensor planning has been
studied to aid in task planning and visual servoing tasks.
In [1], Abrams et al. develop a system to perform dynamic
sensor planning for a camera mounted on a moving robotic
arm in order to compute optimal viewpoints for a pre-
planned robotic grasping task. Nelson and Khosla [12]
introduce a modified manipulability measure in order to
reduce the constraints on the tracking region of eye-in-
hand systems while avoiding singularities and joint limits.
They also studied dynamic sensor placement within this
context, and introduced the concept of the resolvability
ellipsoid to direct camera motion in real-time in order to
maintain servoing accuracy ([13] and [14]). Sharma and
Hutchinson also introduce a quantitative sensory measure,
perceptibility, in order to improve positioning and control
of manipulator systems [18].

In [19], Tarabanis et al. present a planning method to
determine optimal camera placement given task-specific
observational requirements such as field of view, visibility,
and depth of field. In addition, Yao and Allen [20], for-
mulate the problem of sensor placement to satisfy feature
detectability constraints as an unconstrained optimization
problem, and apply tree-annealing to compute optimal
camera viewpoints in the presence of noise. Olague and
Mohr [15] consider the problem of optimal camera place-
ment for 3D measurement accuracy of parts located at
the center of view of several cameras. They demonstrate
good results in simulation for known static objects. In [4],
Chen and Davis develop a resolution metric for camera
placement considering occlusions. In addition, Denzler et
al. [6] develop a Kalman filter based approach for selecting
optimal intrinsic camera parameters for tracking applica-
tions. They demonstrate results for actively adapting focal
length while tracking a rigid object.

Our method differs from these because it considers the
joint observability of a set of tasks. In addition, our method
considers task uncertainty: the locations of the tasks that
we are attempting are not known a priori, and change with
time as the subjects move through the scene.

III. PROBLEM FORUMLATION

A. General Formulation

The general problem is to optimize the aggregate
observability of a distribution of target motions, where
targets mean anything that we want to track: vehicles,
pedestrians, body parts, objects, etc. We assume target
motions can be described by the 3D motions of a set
of privileged points �x1(t), . . . , �xn(t), represented by a
state vector X(t) =

[
�x1(t)T · · · �xn(t)T

]T
. The

distribution of target motions is defined over the ensemble

of state vector trajectories Yi = {X(1), . . . , X(t)}i where
Yi denotes the ith trajectory in the ensemble. Let Y = f(�s)
denote a parametric description of the trajectories.

Finally, each camera’s state can be parameterized in
terms of an “action” that carries the camera parameters
from default values to the current values (e.g. the rotation
and translation between world and camera coordinates).
For every trajectory and set of camera parameters we
will define a gain function that encodes the quality of
the view. The problem of finding a good camera location
for the set of trajectories can be formulated as a decision
theory problem that tries to maximize the expected gain
for all cameras, where the expectation is performed across
trajectories. In general:

V (�u1, . . . , �un) =
∫

�s∈S

G (�s, �u1, . . . , �un) p (�s) d�s (1)

where G (�s, �u1, . . . , �un) represents a gain function on
trajectory states and camera parameters, �ui are the param-
eters for the ith camera and p (�s) is the prior probability
distribution on the trajectory states. Our system assumes
that p (�s) is known or can be computed. In fact, we
determine the probability distribution of paths by tracking
subjects as they move through the area.

Given a set of sample paths with parameters �sj , the
value function can be approximated:

V (�u1, . . . , �un) =
samples∑

j

G (�s, �u1, . . . , �un) . (2)

The choice of a parametrization �sj will depend on the
application. In motion studies, �sj would describe the
aspects of the motion that are relevant for the task. For
example, in activity recognition involving multi-segmented
rigid bodies connected at joints, �s could be a time-series
of joint angles. One means of recovering these from video
is decribed in [3]. The value of a particular view of
this motion will depend on how well the relevant (and
distinguishing) aspects of the motion survive projection.
For example, in [11], Mizoguchi and Sato developed
“space-time invariants” to encode arm and hand motions
taken from video. State vectors of this type would be
very appropriate for human-computer interfacing or sign
language applications. Alternatively, Parameswaran and
Chellappa present several human kinematic motion invari-
ant representations for standard locomotive motion types
[17].

In our case, we are concerned with path observability,
so �sj defines a set of linear paths taken through an area.
These are parameterized as follows:

�sj =
[

φj xj yj lj
]T

(3)

where φj is the orientation of the path j, (xj , yj) defines
the path center, and lj is the length of the path.
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Fig. 2. Effect of dij ≥ do.

(a) Increasing object-
camera distance.

(b) Increasing foreshortening.

Fig. 3. Configurations that decrease observability in pinhole projection
cameras.

In addition, �ui defines a vector of actions to be consid-
ered. In our case, actions correspond to camera positions,
thus �ui defines a vector of camera parameters to be
optimized. In general, �ui may contain any number of
variables such as camera focal length, position, orientation,
etc.

B. Specific Formulation

1) Constraints: The goal of camera placement for op-
timal path observability is to position a camera to observe
the entire path of motion while maximizing the view of the
subject in the image. The first part of that goal, observing
the entire path, requires the camera to be far enough away
from the subject that the entire motion is captured within
the camera field of view (Figure 2).

The second part of the goal, maximizing the view of the
subject, requires the camera to be as close to the subject
as possible, so that the subject is as large as possible
in the image. Figure 3 depicts the reason for this. For a
perspective projection camera with a fixed field of view,
the size of an object in an image decreases as the distance
to the object increases. In digital imaging, the area of an
object in an image corresponds to a number of pixels that
measure the object. As a result, we can define observability
metrics directly in terms of pixel resolution.

Another factor that reduces observability of an object
is foreshortening. Figure 3(b) depicts this situation. As the
angle between the camera’s view direction and the object
decreases, the projection of the object on camera’s image
plane also decreases. As a result, the number of pixels that
measure the object decreases, and the observability lessens.

We use the following first-order approximations for
these effects:

resolution ∝ 1
d2

(4)

resolution ∝ cos (θ) (5)

Thus, optimizing path observability for an individual path
corresponds to minimizing the distance between the cam-

(a) Top View (b) Side View

Fig. 4. Variables to minimize for each path.

era and the path center (dij), along with minimizing
foreshortening effects. In this case, there are two sources
of foreshortening: the angle between the path normal and
the camera position (θij , βij), and the angle between the
path center and the normal to the image plane (φij , αij)
(Figure 4).

However, the camera must maintain a minimum dis-
tance, d0, from each path to ensure that the full motion
sequence is in view (Figure 3):

d0 =
raljf

w
(6)

where ra is the aspect ratio of the image, w is the
diagonal width of the imaging sensor, lj is the length of
the path, and f is the focal length of the lens.

2) Objective Function: Based on this geometry, we can
define an objective function (7) for each path-camera pair:

Gij =
d2
0

d2
ij

cos (θij) cos (φij) cos (αij) cos (βij) . (7)

Optimizing this function over camera parameters will solve
the observability problem for the single camera, single path
case.

3) Single Camera: This single camera method may be
further extended to work with multiple paths by simply
optimizing over the aggregate observability (8) of the entire
path distribution.

V =
paths∑

j

Gj (8)

This gives equal weighting to all paths in the distribution,
and ensures that the single camera is placed to maximize
the overall path distribution, or equivalently, to optimize
the average path observability. Note that this is a unitless
metric. If V is multiplied by the height and width of the
image in pixels, it becomes a pixel resolution metric of
observability, as discussed above.

4) Multiple Camera Systems: In the case of multi-
ple camera systems, the formulation is somewhat more
complicated. In these instances, we would like to en-
sure that the camera placements are optimized jointly
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for the multiple camera system. To ensure that a single
joint optimum is found, it would be necessary to search
jointly over all camera parameters �ui at the same time.
However, this method is very computationally intensive
(O (V ) = (km)n, where m represents the number of paths,
n represents the number of cameras, and k represents the
number of camera parameters searched over per camera).
Thus, for practicality of application, we instead employ
an iterative method that closely approximates the optimal
approach.

We do this by defining a vector of path observabilities
per camera Gi, where each element, Gij , describes the
observability of path j by camera i: Gi = [Gi1, . . . , Gin].
In addition, we define constant vectors G0 = [0, . . . , 0]
and I = [1, . . . , 1]. By inverting the observability values
of the previous camera (I − Gk−1), the current camera
is directed to the regions of the path distribution that
have the lowest observability so far. This iterative process
works for any number of cameras, and has a computational
complexity that is linear (O (V ) = (kmn)).

V =
cams∑

i

⎡
⎣paths∑

j

[
i∏

k=1

(I − Gk−1j (�uk))

]
Gij (�ui)

⎤
⎦ (9)

Equation (9) gives the total observability value function
for the multi-camera system. Note that while this equation
is iterative, the order of camera selection does not change
the result.

C. Optimization

In the general case, �ui might be defined as:

�ui =
[

Xci
Yci

Zci
γxci

γyci
γzci

f
]T

(10)

where (Xci , Yci , Zci) correspond to camera position,
(γxci

, γyci
, γzci

) correspond to camera orientations (pitch,
roll, yaw) about the (X, Y, Z) axes and f is the focal length
of the camera. This formulation may be applied to many
vision problems. We chose to focus first on the problem of
camera placement to maximize general observability of a
scene. In these applications, the camera placement above
the ground is often highly constrained. Camera mounting
is limited to points such as the roofs of buildings. This
does not leave Zci

as a free parameter. In addition, we
found that pitch (γx) is highly coupled to the height above
the scene, thus we fix these parameters based on the needs
of each scene. In addition, we ignore the effect of roll (γy),
since it simply rotates the image plane about the optical
axis, and thus has an insignificant effect on observability.
Lastly, we assume fixed field of view cameras, thus f is
held constant.

Our objective function is thus reduced to:

Gij =
d2
0

d2
ij

cos (θij) cos (φij) (11)

and the action vector �ui becomes:

�u =
[

Xci
Yci

γzci

]T
. (12)

Equations (13) through (15) introduce a change of vari-
ables to convert the objective function from relative vari-
ables (dij , θij , φij) into absolute variables (Xci , Yci , γzci

)
to position and orient each camera in the world coordinate
system.

dij =
√

(xj − Xci
)2 + (yj − Yci

)2 (13)

θij = cos−1

(
T1 + T2

T3 · T4

)
(14)

where

T1 = (ysj − yj) (xj − Xci
)

T2 = (xsj − xj) (yj − Yci
)

T3 =
√

(xj − xsj)
2 + (yj − ysj)

2

T4 =
√

(xj − Xci)
2 + (yj − Yci)

2

and (xsj , ysj) is the starting point of each path.

φij = cos−1

(
P1 − P2

P3 · P4

)
(15)

where

P1 = (yj − Yci
) cos
(
γzci

)
cos
(
γxci

)
P2 = (xj − Xci) sin

(
γzci

)
cos
(
γxci

)
P3 =

√
cos2
(
γzci

)
cos2
(
γxci

)
+ sin2

(
γzci

)
cos2
(
γxci

)

P4 =
√

(xj − Xci)
2 + (yj − Yci)

2
.

We solve for the parameters (Xci
, Yci

, γzci
) through

a iterative-refinement based constrained nonlinear opti-
mization process. We evaluate the constrained function
at uniformly spaced intervals of the parameters of �ui. In
regions where the absolute slope |∂V

∂�u | is large, we refine
the search by decreasing the spacing interval and iterating.
We have found this process to work very well, and is faster
than Newton-Raphson methods in the presence of complex
sets of constraints.

IV. SIMULATION RESULTS

Figures 5 and 6 show the results of the method on
simulated path distributions to illustrate the approach. In
all cases, the objective surface shown corresponds to the
2D slice of γzci

where the objective function is optimized.
Figure 5 shows results for the case of a single camera

and single path. Note how the objective surface varies
with position. The function has two optimum: one on
either side of the path. The simulation result confirms the
intuition that the optimal camera position to observe a

555



(a) Objective Surface (b) Solution

Fig. 5. Objective surface and camera placement solution for single path,
single camera case. Labeled dots indicate camera locations. In 5(b), red
lines indicate the view frustum of the camera.

(a) Paths (b) Objective Surface

(c) Multiple Camera Solu-
tion

(d) Objective Surface
(from above)

Fig. 6. Results for a simulated traffic intersection path configuration.
Labeled dots indicate camera locations. Camera placement results are
shown for 3 cameras, along with the initial objective surface.

single path is perpendicular to that path, at a distance of
d0. For this single path case, the residual observability that
remains after the first camera is placed is near zero. This
suggests a sufficiency condition on the number of cameras
necessary to completely observe any path distribution may
be determined via this approach.

Figure 6 shows results for a more complicatd path
distribution, similar to one that might be observed at a
traffic intersection.

V. EXPERIMENTAL RESULTS

We tested this system on motion paths captured at
several indoor and outdoor locations. Video was captured
by a single fixed camera placed at each scene. In order to
estimate the paths of the subjects’ motions in the scene,
the video was processed to segment each subject from the
background, compute the position of the subject in the
frame, and track the subject’s position over time. Segmen-
tation was achieved through the use of a Gaussian mixture
model-based adaptive background segmentation algorithm.
In addition, a Kalman filter was used for tracking. Linear

(a) Scene (b) Tracked Paths

(c) Multiple Camera Solu-
tion

(d) Objective Surface
(from above)

Fig. 7. Results for an outdoor motion path configuration, including
pedestrian and vehicle traffic. Labeled dots indicate camera locations.
Camera placement results are shown for 3 cameras, along with the
objective surface for the third camera.

paths were estimated from the tracking data using a linear
least-squares fitting.

In each experiment, the camera was calibrated relative
to the ground plane using the method described in [10].
Thus, all path distributions shown are in world coordinates,
as are the camera placement solutions.

Figure 7 shows results for an outdoor pedestrian court-
yard and street scene. Here the first two cameras focus
attention on the dominant pathways, while the third camera
attends to the contribution of the less common paths.
Figure 8 shows results for a traffic intersection. Note that
the camera placement solution is very similar in nature to
that predicted by the simulated intersection.

VI. CONCLUSION

We have presented a novel analytical method for com-
puting optimal camera position and pose for task ob-
servability with multiple camera systems. The general
formulation was applied to the problem of path observation
in wide-area scenes. This approach was validated in both
simulation and real-world experiments involving multiple
camera systems observing many subjects moving through
a scene. Our findings indicate that this method may be
used to guide proper camera placement in complex and
busy scenes.

VII. FUTURE WORK

Our goal is to develop a camera placement design
tool based on this approach. We plan to extend this
work to optimize over all extrinsic camera parameters.
Furthermore, to provide for camera placement in arbitrary
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(a) Scene (b) Tracked Paths

(c) Multiple Camera Solu-
tion

(d) Objective Surface

Fig. 8. Results for a traffic intersection path configuration. Labeled
dots indicate camera locations. Camera placement results are shown for
4 cameras, along with the initial objective surface.

real-world scenes, we intend to incorporate static occlusion
constraints into the observability formulation.

In addition, we plan to investigate the possibility of fast
optimization of the objective function via basis function
approximations to the value surface.
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