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Abstract. In this chapter, we present a modern perspective and concep-
tualization of early vision in terms of computational models described
using the mathematics of filtering, probabilities and graphical models.
This mathematical framework has the advantage that it is increasingly
being used in computer vision, in the modeling of neurons and neural cir-
cuits, in models of human visual behavior, and in the analysis of neural
data by statistical and machine learning techniques. Hence it enables us
to describe vision from multiple perspectives from a unified framework.
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Introduction

This chapter has six sections. Section (1) gives an overview of early vision and
introduces the basic concepts. In section (2) we describe linear filter models of
early vision and the types of computations which they can perform. Section (3)
introduces probability models for neurons and for computational tasks. In sec-
tion (4) we describe neural network models that take into account spatial context
and can perform complex tasks. Section (5) discusses how different visual cues
can be combined taking into account their dependencies. Finally, we summarize
the chapter in section (6) and briefly sketch the relations to high-level vision.



Early Vision 3

The first five sections are linked to demonstrations which we introduce at the
start of each section.

1 Basic Concepts and Overview

We start by introducing the study of vision in section (1.1). Next we discuss
visual tasks and modules in section (1.2). Then we discuss the visual system and
the brain in section (1.3).

For this section, we suggest that the reader explore the fascinating demon-
strations of visual phenomena on website: http://michaelbach.de/ot/. This
website was created and maintained by Prof. Michael Bach who accompanies
the demos with descriptions and explanations of the phenomena. We particu-
larly draw attention to: (i) Hidden Figures, (ii) Rotating Face Masks, (iii) Ames
Window, (iii) Neon Color Spreading, (iv) Dress Code Enigma, (v) Adelsons
Checker-Shadow Illusion, and (vi) Biological Motion. In addition, we encourage
the reader to familiarize themselves with IPython Notebook in preparation for
the interactive demos in later sections by going to website: http://www.nature.
com/news/interactive-notebooks-sharing-the-code-1.16261.

1.1 What is Vision? Why is It Hard? How is it Studied?

What is Vision? Vision is the process of extracting information from retinal
input, and we will here focus on images of visual scenes (whether natural or
artificial). These images may capture a moment, or extend over time, as in a
video. A human with normal vision can rapidly glance at an image and detect
the objects in it and also decide what the object is made of, its distance and
orientation relative to other objects, how it is moving (especially but not only if
the image is dynamic), if it might collide with other objects, and whether to catch
it or avoid it. Figure (1)(A) illustrates how much information we can get from a
single image, despite the fact that images are locally highly ambiguous, as shown
in figure (1)(B). In short, humans can estimate a rough approximation to the
three-dimensional scene that has generated the image. But this is only one aspect
of vision. In addition, humans have the ability to rapidly attend to different
regions of the scene and ignore the rest. Vision is also used to enable actions,
such as grasping objects or determining where to put your feet while hiking. In
summary, vision performs a range of visual tasks which extract information from
the scene in order to achieve goals.

Vision is extremely difficult. This is perhaps surprising because humans find it
very easy. You simply open your eyes and you can understand the scene without
any apparent effort. But this is only possible because a very large part of your
brain is involved in doing vision. It is estimated that roughly forty percent of
neurons in the cortex are involved in visual processing. Despite decades of work,
current machine vision systems perform significantly worse than humans, except
for a few highly specialized tasks. But probably most other animals, except
monkeys and our other close relatives, get far less information from vision judging

http://michaelbach.de/ot/
http://www.nature.com/news/interactive-notebooks-sharing-the-code-1.16261
http://www.nature.com/news/interactive-notebooks-sharing-the-code-1.16261
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Fig. 1. (A) Humans can extract a lot of information from a single image.
E.g., “There is a young fox emerging from behind the base of a tree not
far from the view point, it is heading right, stepping through short grass,
and moving quickly. Its body fur is fluffy, reddish-brown, light in color,
but with some variation. It has darker colored front legs and a dark patch
above the mouth. Most of the body hairs flow from front to back.” B.
Images are locally ambiguous. These two patches correspond to small parts
of the fox’s back and the side of the tree, see red circles in (A), but are
highly ambiguous without context.

by the much smaller numbers of neurons they devote to vision (e.g., the visual
cortex of a mouse contains fewer neurons than a human or a monkey, by many
orders of magnitude).

Why is Vision hard? The Complexity Problem and Natural/Ecological
Constraints. To get some appreciation of the difficulty of vision, consider how
the image of the Fox, shown in Figure (1), appears to the retina. Figure (2)
shows the magnitude of the intensity of the image as a function of spatial po-
sition. These intensity magnitudes are proportional to the number of photons,
or magnitude of light rays, that are imaged at different positions in the retina.
The human visual system must somehow decode these intensity patterns and
determine that they are caused by a fox emerging from behind a tree. But based
on these intensity patterns, it is hard to perform visual tasks such as segment-
ing the image into regions corresponding to different objects, performing object
recognition to determine that a region of the image corresponds to a fox and
another region to a tree, or performing depth estimation to determine the po-
sitions of the objects in the visual scene. These tasks are particularly complex
because the intensity patterns will change significantly if we make small changes
to the visual scene. The patterns will vary greatly if we alter the pose of the fox,
the lighting conditions, the viewpoint of the observer, and how much the fox is
occluded by the tree.

Hence the main challenge of vision is due to the enormous complexity of
natural images, and their local ambiguities shown in figure (1)(B). The number
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Fig. 2. Why is vision hard? The raw input to the Fox image (left panel) is the intensity
values plotted as a function of spatial position (right panel). These intensity patterns
vary depending on the pose of the fox, the lighting conditions, and other factors. The
human visual system must decode this raw input, which is extremely difficult.

of possible images, or intensity patterns, that can be described by a small image
array with 100 × 100 positions, or image pixels, is (256)10,000 which is astro-
nomically large [77]. These images are caused by very large number of possible
objects (estimated from 20,000-200,000) which can be arranged in a scene in
an extremely large number of ways (in terms of the pose of the objects, their
positions relative to each other), and be illuminated in an enormous number
of different ways. Computer graphics studies how images can be generated if
the scene is known. But vision must be capable of performing the much harder
inverse inference task of determining the scene from the image. From this per-
spective, it is almost miraculous that humans can simply open their eyes and
recognize objects and visual scenes within a few hundred milliseconds (which is
roughly the time to blink your eyes).

In order to perform these visual tasks the visual system must be able to
detect and exploit regularities in image patterns. These regularities are due to
the structure of the world that we live in which cause the images which we ob-
serve. They include the assumption that surfaces are generally spatially smooth,
that objects tend to move rigidly, that most scenes contain a ground plane and
objects touch the ground plane at contact points. These assumptions have been
called ecological, or natural, constraints [43,109]. Many of these constraints are
“generic”, in the sense that they are independent of the specific objects and
object configurations in the scene, and so can be applied to perform some visual
tasks such as grasping an object without needing to recognize what the object
is. It is speculated that humans have learnt to exploit the structure of natural
images and the world through evolution [45], early development [76], or by learn-
ing later in life [49]. Vision science researchers can learn these image regularities
by applying machine learning methods to image datasets. Figure (3) gives an
example which illustrates both the ability of humans to exploit constraints about
the three-dimensional world to perform inverse inference and the mistakes which
can arise when the constraints are violated.
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Fig. 3. This image gives the illusion of a flying carpet where the woman on the towel
is perceived to be floating above the beach. This illusion shows that humans use con-
straints – about ground planes, shadows, and contact points – to interpret images. But
in this case, the constraints are violated because we incorrectly think that the shadow
is being caused by the towel. Instead the shadow is cast by a flag which is outside the
image.

How is Vision Studied? Broadly speaking, vision can be studied in three
related ways: (i) at the “behavioral” level by studying how well humans, and an-
imals, can perform visual tasks, (ii) at the “neural” level to understand the neural
mechanisms (by electrode recording or by non-invasive methods like fMRI), and
(iii) at the “computational” level by designing mathematical models and com-
puter vision algorithms that can perform visual tasks. We distinguish between
those mathematical models which attempt to describe how humans or animals
see by accounting for behavioral or neural data, and those, called computer vi-
sion, whose goals are to perform visual tasks without attempting to model how
humans, or animals, perform them. There is a complicated symbiosis between
these two approaches to mathematical modeling of vision (which are done by dif-
ferent research communities). What they have in common is the need to address
similar visual tasks and to deal with the complexity of image patterns. We note
that computer vision researchers, even those who have no interest in biology, can
nevertheless yield insights into human vision by developing algorithms which can
perform the same visual tasks as humans in similar environments. This leads to
a strategy of understanding the brain by reverse engineering.

The visual system is so complex that vision scientists must make simplifica-
tions to break it down into manageable pieces. These include: (i) studying visual
tasks in isolation instead of addressing the complete visual system, (ii) simplify-
ing the visual stimuli, (iii) simplifying the models of neurons and neural circuits,
and (iv) simplifying the overall structure of the visual areas of the brain and
how they interact with each other. Although these simplifications are necessary
they raise concerns which we will keep returning to in this chapter.
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Firstly, vision researchers break vision down into different visual tasks which
can be studied separately. These tasks include image segmentation, depth esti-
mation, and object recognition. They are performed by modules which output
representations. Modules, however, may not be localized to distinct parts of the
brain. These simplifications assume that modules are semi-independent, which
can be questioned (see next section). They also raise the question of how the
modules interact with each other. Marr’s influential framework for vision [109],
see figure (4)(left), gives one way to address these issues. Marr proposed that
the human visual system uses modules which compute a sequence of represen-
tations of the image which start with a primal sketch of the image, proceed to a
2− 1/2-D sketch which represents the three-dimensional structure of the scene,
and concludes with a 3-D representation of objects. Hence the modules inter-
act by outputting representations which are used as inputs to other modules.
Marr’s framework was never fully developed but it does capture some important
aspects of the visual system. It also illustrates the important classification of
visual tasks into: (i) low-level vision which processes the image (e.g., produces
the primal sketch), (ii) mid-level vision which estimate the structure and proper-
ties of geometric surfaces (e.g., produces the 21/2-D sketch), and (iii) high-level
vision which recognize objects and analyzes scenes. This classification is shown
in figure (4)(right).

Input image

2 1/2 D-sketch:
local surface  depths

and orientations

3-D model:
hiearchically organized

parts and relations

Primal sketch: local
2D tokens: 

edges, blobs, contours, etc.

Low-level
vision

Visual
input

Mid-level
vision

High-level
vision

Edge grouping Region grouping Occlusion evidence

Symmetries

Complex
features

Parts

Fig. 4. Marr’s framework for vision (left panel) consists a series of representations.
Visual tasks can be classified into low-, mid-, and high-level tasks (right panel). This
classification roughly relates to Marr’s framework.

Secondly, the set of all possible stimuli is astronomically large. Hence it is
impractical to study visual systems behaviorally by their response to all stimuli.
In addition, when studying specific visual tasks it is sensible to use stimuli which
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only contain information, or visual cues, which are specific for these tasks. Also
good experimental design requires, if possible, controlled stimuli so that the
difficulty of performing a specific task can be quantified in terms of varying a
small number of variables (e.g., by making the images darker or brighter). For
these reasons the study of vision is often simplified by using synthetic stimuli.
For example, the ability of humans to perceive depth from Julesz’s random dot
stereograms [71] demonstrate that humans can perceive depth when objects are
not present, see figure (5). Too much reliance on synthetic stimuli, however,
can be misleading and there is concern that experimental findings on synthetic
stimuli may not generalize to human, or mammalian, abilities in more natural
situations [19], [188]. After all, human and animal visual systems have evolved to
perform complex tasks on complex stimuli, and so understanding them requires
probing it with stimuli which captures this complexity.

Fig. 5. Binocular stereo of the fox for real images and for Julesz random dots stere-
ograms. The left two images are a stereo pair (the left and right images) of a fox so
that, when fused (e.g., by a stereo viewer presenting the left and right images to the
right and left eyes, respectively), they yield the three-dimensional shape of the fox.
The right two images are stereo pairs of random dot images of a fox. When fused, they
also give the three-dimensional shape of the fox.

Thirdly, simplifications must be made when modeling neurons and neural cir-
cuits. The detailed biophysical properties of single neurons are very complicated
and so simpler models are used, particularly when modeling visual tasks. The
most commonly used model is integrate-and-fire, when the neuron fires an action
potential if a weighted linear sum of its inputs is above a threshold. We will use
this model in this chapter but it should be acknowledged that real neurons are
more complicated. Their output may be a highly non-linear function of the input
and they may signal information by a sophisticated “neural code” involving the
precise timing of action potentials. Moreover, recent studies also show that there
are large varieties of neurons which differ in their anatomy and function. There
is also evidence that neural circuits can behave differently in different situations.

Fourthly, the numbers of neurons involved in visual perception is extremely
large. This means that simplifications need to be done when studying the overall
structure of visual areas of the brain and how they relate to each other. Although
the broad structure of some visual areas are known we are a long way from having
wiring diagrams describing the connections between neurons within each visual
area (although there are research programs to obtain such wiring diagrams for
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the mouse, whose visual cortex is many orders of magnitude smaller than that
of a human or monkey).

1.2 Visual Tasks and Modules in Early and High Level Vision

This section gives a brief introduction to visual tasks, modules, and the distinc-
tions between low-, mid-, and high-level vision. We discuss these tasks only at
the behavioural level and postpone discussion of the brain until the next section.
This chapter is about early vision, which we define to be low- and mid-level vi-
sion. But we also discuss how these early levels relate to high-level vision, which
is described in the chapter by Lewis and Poggio.

Low-level visual tasks involve estimating local properties of the image. They
include finding the boundary of an object (without deciding what the object
is) and also include estimating the motion flow. Mid-level visual tasks estimate
properties of geometrical surfaces, the shape and position of surfaces in the vi-
sual scene, and their depth ordering. High-level visual tasks estimate properties
of objects, scene structures, the relationships between objects, and the actions
of the objects. In addition, each level provides information which is passed on
to the next level, as illustrated by Marr’s theory. Another way to think of this
organization is in terms of the knowledge available at different levels. For ex-
ample, low-level vision can be performed by a system which knows only about
regularities of image patterns (e.g., that images typically consist of regions where
the intensity changes slowly which are separated by edges where the intensity
changes rapidly). Mid-level vision processing knows about properties of geomet-
ric surfaces (e.g., that they tend to be spatially smooth) and that they can
partially occlude each other. High-level knows about objects, the relationships
between them, and actions. Hence the flow of information from low- to high-level
vision is from generic to specific.

Low-Level Vision. Low-level vision can be roughly defined to be the visual
processing which can be done without explicit knowledge of objects and the
three-dimensional structure of the world (although this additional knowledge, if
available, will improve performance) Typical low-level vision tasks include de-
termining differences within the image, such as detecting edges and performing
segmentation, see figure (6). Low-level vision also involves extracting represen-
tations of image patterns which can be used for higher-level processing. As dis-
cussed later in the chapter, low-level vision can exploit statistical properties of
images which are true for most images (e.g., that images tend to be piecewise
smooth).

Low-level vision also includes estimating the local motion of images. This
involves finding the correspondence between points in images taken at different
times. This is done by matching regions which have similar intensity properties.
But this has problems at places where there are many, equally good, matches.
Figure (7) illustrates the aperture problem which is solved by making assumptions
that the motion is usually slow and smooth.
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Fig. 6. The edges of the fox image (left panel) detected by low-level processing (center
panel). Some edges lie on the boundary of objects, like the fox and the tree, while
others are due to properties of the textures (e.g., the grass or the bark of the tree).
It is difficult to distinguish between these different types of edges. The church steeple
(right panel), and the position of its edges, is obvious if you view the whole image. But
it is almost impossible to see locally because there is no strong local evidence for the
edges of the steeple. This shows that sometimes edge detection is impossible except
when done in conjunction with object detection. One possibility is that low-level vision
proposes many possible edges which are validated, or rejected, by object models, as
discussed in section (4).

True motion True motion

Apparent motion
Apparent motion

Fig. 7. These images show black and white bars whose true motion is leftwards viewed
through two apertures (circular and rectangular). But the motion is locally ambiguous
because we can only directly observe the motion component normal to the bars (we
cannot detect if there is any motion tangential to the bars) and so the observed stimuli
is consistent with many possible motions. The human visual system uses constraints to
resolve these ambiguities. For these stimuli, humans assume that the motion is as slow
as possible and hence is perpendicular to the bars (i.e. assuming that the unobservable
tangential component is zero), as indicated by the apparent motion. More generally, as
discussed in section (4.4) humans tend to assume that motion is slow and smooth. See
demo 4e.
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Although these low-level visual tasks can be studied in isolation there is
much evidence that they interact with other higher level tasks. For example,
it is usually impossible to detect the edges of the objects in an image without
making mistakes using low-level processing alone. Instead a better strategy is for
low-level to propose a set of possible positions for edges, which can be validated
by object models, see figure (6)(right). But there are many visual phenomena
indicating the complexity of the interactions between low-level and high-level
vision, such as the dalmatian dog illusion where the extreme ambiguity of low-
level cues for edges make it very hard to detect the dalmatian, see http://

michaelbach.de/ot/cog_dalmatian/.

Mid-Level Vision. Mid-level vision builds on low-level vision. It corresponds,
roughly speaking, to vision processing that knows about geometry, materials,
and lighting. But it does not know about specific objects or scene structures. For
example, mid-level vision knows about surfaces of red metal, but does not know
about red cars. Mid-level vision includes many visual tasks, often formulated in
terms of modules, and this section introduces some of them,

Mid-level vision includes inferences about depth ordering of surfaces and, in
particular, knowing that surfaces can partially occlude each other. The Kanizsa
figure (8) is perceived as three black disks which are partially occluded by a
triangular surface. But close inspection shows that there is no direct evidence
for the existence of the triangle, i.e. there are no intensity edges at the bound-
ary of the triangle. The Kanizsa triangle is an example of a Gestalt grouping
phenomenon, many of which can be explained in terms of a human tendency to
interpret images as simple geometric structures [73].

Fig. 8. The Kanizsa triangle (left panel) is perceived as a white triangular surface which
partially occludes three black disks, it shows the tendency of humans to interpret images
in terms of geometric structures. Another example of this (right panel) shows that
human tend to “explain away” gaps in the black band by positing a white band which
lies sometimes above and sometimes below the black band. For an interesting variant,
see http://www.michaelbach.de/ot/cog-kanizsa/, which shows how the effect can
disappear if other cues are present.

http://michaelbach.de/ot/cog_dalmatian/
http://michaelbach.de/ot/cog_dalmatian/
http://www.michaelbach.de/ot/cog-kanizsa/
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Another example of how the human visual system uses geometry was shown
earlier in figure (3). The human visual system assumes that most images contain
a ground plane with objects standing on it (e.g., a man standing on a lawn). By
the laws of perspective projection, if there are parallel lines in the image (such as
the tracks of a railway line) then the projection of these lines in the image will
converge at a vanishing point. Humans can use vanishing points to estimate the
orientation of the ground plane. The contact points of the objects with the plane
specify the positions of the object in the scene. More information about the scene
can be extracted if the image contains several vanishing points corresponding to
surfaces which are orthogonal in space.

Binocular stereo is another vision module which estimates the depth and
orientation of surfaces. Humans have the ability to get depth from two eyes –
hence the popularity of so-called 3D movies. This is illustrated in figure (5). It
requires solving a correspondence problem between features in the two eyes which
are caused/imaged by the same point in space. If correspondence can be per-
formed, then the depth can be estimated by trigonometry. The correspondence
problem is difficult, see section (4.3) and seems to assume that the geometric
surfaces being viewed as spatially smooth.. The correspondence problem is made
easier because of the epipolar line constraint, see figure (9), which means that
corresponding points requires only searching in a one dimensional direction. But
knowledge of the epipolar lines requires knowing the direction of gaze of the
cameras (maybe done by feedback from muscles controlling the eyes, or by cal-
ibration). Note, that partial occlusion can happen, where part of the scene is
only visible to one eye. Da Vinci was the first to point out that this was a useful
visual cue.

Humans can also get three-dimensional shape information of surfaces from
shading, texture, and even contours. These are often studied as separate modules.
Typically models of shape from shading assume that surfaces can be modeled
as matte (i.e. dull and un-shiny) and hence their reflectance properties (i.e.
their tendency to reflect light) given by Lambert’s law [9]. This enables us to
predict the image intensity of an object in terms of its geometry and the lighting
conditions. In some conditions this can be inverted to estimate the shape of the
object from the intensity patterns, which is called shape from shading [9]. Shape
from texture arises if a surface has a regular pattern of texture. This pattern
will be distorted due to the shape of the object, which enables the shape of the
surface to be estimated from the intensity patterns by shape from texture [83].
Finally, certain contours naturally suggest shapes, which is called shape from
contour [83].

In addition to detecting the shape of surfaces humans are also able to estimate
their material properties, see [16]. This enables us to tell whether a teapot is
metallic (e.g., by being shiny) or matte. This ability has many uses. For example,
if a surface is metallic then it could be part of an airplane but it cannot be part
of an animal. If a patch on a road is very shiny then there is a possibility that
it is ice, at least in winter, and hence it better not to step on it. In general, the
ability to detect material properties and textures is very useful when performing
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Fig. 9. Stereopsis and epipolar lines. A point x in three-dimensional space gets pro-
jected onto positions xL and xR in the left and right eyes. This uses a pinhole camera
model of each eye where the eye is specified as a plane (in grey) and OL and OR repre-
sent the centers of projection. Observe that all points on the plane defined by OL, OR

and x get projected onto straight lines eL and eR, the corresponding epipolar lines,
in the two eyes. To illustrate this we show the projections of a few points x1, x2, x3
onto the right eye. If we alter the position of the point x in space then we will get a
family of corresponding epipolar lines. The epipolar line constraint states that points
on an epipolar line in one eye can only be matched to a point in the other eye on the
corresponding epipolar line. In this picture the eyes are fixating at a point. But if the
eyes are parallel to each other the fixation point will be at infinity and the epipolar
lines will be parallel to each other in the two eyes (or images).

actions – e.g., is this object slippery? can I walk on it? will it make a sound if I
do?– and as a pre-cursor for object recognition and scene understanding.

Fig. 10. The shapes of the contours affect the perception of the shading patterns. The
intensity patterns are the same in both stimuli but the shape of the boundaries makes
the perception of shading different in the two cases [84].

These vision modules depend on specific properties of images which are called
cues, for example the shadow on the sand in figure (3). These modules, and the
visual cues they rely on, can be modeled and studied separately. But many lines
of evidence suggest that they are coupled. For example, Knill and Kersten [84]
illustrate that shape from contour can alter the perception of shading patterns
and material properties, see figure (10). In addition, careful studies of how images
are formed in terms of the surface of the scene (the objects, their geometry, how
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they reflect light, the lighting conditions, and the viewpoint) it becomes clear
that the cues are often coupled, see section (5.1). Indeed under certain lighting
conditions it is extremely difficult to tell the color of an object being viewed,
see http://michaelbach.de/ot/col-dress/. In addition, there is interaction
between these modules and high-level vision. Humans perceive an inverted (i.e.
concave) face mask to be a normal convex face even when binocular cues are
present, see http://michaelbach.de/ot/fcs_hollow-face/. In general, object
recognition trumps mid-level vision although Kanizsa shows some exceptions
[73], see also http://michaelbach.de/ot/sze-AmesBallerina/.

1.3 The Visual System and the Brain

This section briefly overviews what we know about how the brain does vision.
It reviews the areas of the brain which perform visual processing, the relation-
ships between them, the structures of these areas, and the visual tasks they
perform. Due to the complexity of the visual system our knowledge of these is-
sues, though considerable, is limited. It is based on a combination of anatomical
studies, electro-physiological recordings, and non-invasive imaging methods such
as functional Magnetic Resonance Imaging (fMRI).

Retina and Lateral Geniculate Nucleus. Visual neural processing begins
with the retina which transmits information to the visual cortex via the Lateral
Geniculate Nucleus (LGN). The anatomy and electro-physiology of the retina
and LGN have been studied in detail [116,47,15]. Although we will not discuss it
further in this chapter, another pathway from the retina leads to the superior col-
liculus in the midbrain. This plays an important role in, e.g., eye movements (see
Chapters 20, Saccades and Smooth Pursuit Eye Movements, and 23, Integrative
Functions of the Corticostriatal System).

The retina converts intensity patterns – the light rays which reach the retina
– into patterns of neural activity. This starts with photo-receptors which are
directly activated by light. The photo-receptors have been studied in detail and
it can be shown that they are extremely efficient at “capturing” photons [139].
The remaining set of neurons in the retina, in particular ganglion cells, process
the photo-receptors output and encode it for transmission via the optic nerve
to the rest of the brain (note, it is believed that this flow of visual information
only goes one way although the brain does influence the muscles which control
the eyes).

The retina is generally agreed to function as a sophisticated camera which
captures the information in the incoming images and encodes it so that it can be
transmitted to the visual cortex (although the control of eye movements means
that the retina is not a passive device like a typical camera and instead is actively
searching for information). To do this, the retina must face two challenges: (i)
the enormous variability of intensity in natural images, (ii) the ability to encode
the images so they can be transmitted efficiently and robustly. Neural models of
the retina are largely motivated by these two issues.

http://michaelbach.de/ot/col-dress/
http://michaelbach.de/ot/fcs_hollow-face/
http://michaelbach.de/ot/sze-AmesBallerina/
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Firstly, the intensity of natural light varies enormously from faint starlight to
bright sunlight dealing with intensity magnitudes ranging from 1 to 109. More-
over, the changes of intensity within specific images can also vary hugely [27].
But neurons have limited ranges of response and hence they cannot encode these
huge ranges of intensity. Hence many theories of the retina, see section (2), pro-
pose that the ganglion cells perform gain control and filter the images so that
they capture only the local contrast – the differences of intensity between nearby
parts of the retina – and hence reduce the need to represent the entire intensity
range. Observe that digital cameras must perform a similar function, since they
convert incoming light patterns into digital representations where the intensity
only takes 256 values from 0 to 255 (in each color channel).

Secondly, the retina must encode the image information so that it can be
transmitted through the optic nerve to the rest of the brain for further process-
ing. The image information is transmitted through a relatively smaller number
of fibers in the optic nerve (compared with the number of photo-receptor cells).
Information theory offers guidelines for how information can be encoded effi-
ciently based on statistical knowledge of the stimuli. Researchers have applied
this theory to predict retinal properties with some success but this work is out
of scope of this chapter and we refer to the detailed description in [190].

In addition, the human and animal visual system does not passively receive
images and process them. Instead it is active and by using eye and head move-
ments, and attentional processes, it seeks out information useful for performing
tasks. The retina only has high spatial precision at the center in the fovea and
so high-resolution images can only be gathered there. Neurons in the periphery
are more sensitive to motion and presumably alert the visual system to places
to foveate to. This work is also out of the scope of this chapter and is addressed
in [190].

The studies of the retina illustrate the “simplification issues” which will re-
occur throughout our chapter. At the computational level, the theories for de-
scribing how the retina deals with intensity are simpler than the engineering
methods used by computer vision and image processing researchers that deal
with the same challenges. At the experimental level, many of the findings about
retinal neurons are based on simplified models of neurons obtained from study-
ing their responses to synthetic stimuli. Moreover, although there is considerable
knowledge of the anatomy there has only recently been highly detailed studies of
the wiring diagrams and characterization of the fifty or more anatomical types of
neurons [111]. It is also unclear why so many neurons are required to perform the
two functions using current theories. Indeed it has been argued that the retina is
considerably “smarter” than current theories suggest [114,47]) and may require
detecting motion, expansion, extrapolation, and more generally adapting to the
complexity of image patterns.

The output from the retina is transmitted to the Lateral Geniculate Nucleus
(LGN) and then to the visual cortex where it arrives in visual area V1. LGN is
generally believed to have the limited function of serving as a way station on
the route to the visual cortex. Hence current models of LGN neurons are fairly
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simple, as discussed in section (2). But there is reason to believe that LGN is
more complex. For example, there is substantial feedback from V1 to LGN [15],
and connections between LGN and other areas than V1 [153,123].

Cortical Visual Areas and the relationships between them. The visual
cortex can be decomposed into a number of visual areas based on anatomical
and electrophysiological measurements [165]. Like all areas of the cortex, these
regions have standard six layer structure. These visual areas V1,V2,V4, Medial
Temporal (MT), Medial Superior Temporal MST, and the Inferior Temporal
Cortex (IT) are illustrated in figure (11). There are numerous interactions be-
tween these visual areas, see figure (11), but it is common to concentrate on
two hierarchical streams: (I) The ventral stream which consists of V1, V2, V4,
(the functional organization of V3 has been under some debate) and then the
infero-temporal (IT) areas of extrastriate cortex. This pathway is believed to
perform object detection and scene understanding. (II) The dorsal stream goes
from V1, MT to the parietal cortex. It is believed that this is used for analysis of
the movements and positions of objects as the relate to navigation and actions
[117]. Although the distinction between ventral and dorsal pathways is well-
established [97] it is also probable that the true situation is more complicated
[149].

Fig. 11. Left panel (top and bottom) illustrate the monkey visual cortex. The right
panel is a schematic of connections between visual cortical areas in the macaque monkey
brain. The colored rectangles represent visual areas (see [34]). The black lines show the
connections between areas, with the thickness proportional to estimates of the number
of feedforward fibers. Areas in cool and warm tones belong to the ventral and dorsal
streams, respectively. (Figure reprinted with permission from [172]; see also [98]).
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The size of the visual areas varies greatly. The first two areas, V1 and V2
are enormous and together account for roughly seventy percent of the number
of neurons in the visual cortex (hence thirty percent of the neurons in the entire
cortex). The size of V1 is much bigger, by a factor of at least two hundred, than
the number of fibers that leave the eye. Indeed it has been estimated that this
is more by a factor of several hundred than the amount needed to represent the
information conveyed by the LGN [97], consistent with the idea that the purpose
of V1 is to start interpreting the image instead of simply encoding it. Another
major feature of the hierarchy of visual areas is that their size get progressively
smaller as one rises in the hierarchy. For example, V4 is much smaller than V2,
and visual areas within IT are considerably smaller than V4.

The early visual areas have regular structural organizations. These are stud-
ied by using electrophysiology to classify the receptive fields of neurons by prob-
ing their responses to synthetic stimuli with different perceptual dimensions such
as position, orientation, color, texture, shape, sensitivity to input from both
eyes, and motion. Individual neurons often show preferences, i.e. respond more
strongly, to specific input stimuli and hence are said to be tuned to these stimuli.
In particular, the positions of stimuli on the retina which cause the neuron to
fire is called its receptive field. Neighboring neurons in early visual areas usually
respond to similar regions of the image. Hence these areas are roughly retino-
topic in the sense that their spatial organization is similar to that of the image
at the retina, but with a nonlinear (log-polar) spatial transformation [151]. This
retinotopic structure is strongest in V1 and V2 and gets weaker at high visual
areas (see following paragraphs). But although neurons often have small recep-
tive fields, at least in V1 and V2, their tuning to other “perceptual dimensions”
is often broader and neurons can responds to a range of stimuli. It is helpful
to broadly classify neurons by which specific “dimension”, if any, those neu-
rons responds to, but this can become problematic, particularly in higher areas
[143,141]. Even in V1 most neurons respond to several dimensions [97]. Mapping
has also been done using optical techniques [105,81] which also show that most
early visual areas are organized retinotopically, although this is strongest in V1
and V2. Finally, we note that until the last few years it has only been possible
to record from a neuron for a limited amount of time (e.g., from an hour to at
most a couple of days). This meant it was only possible to test the response of
a neuron to a limited number of stimuli and stimuli dimensions. Hence some
of these findings may be revised when it becomes possible to test the response
of neurons to a larger and more representative set of stimuli, see discussion in
section (2.3).

Other salient structures of V1 include hypercolumns (∼1-2 mm) consisting
of: (i) a regular array of orientation columns, perpendicular to the cortical sur-
face, in which orientation selectivity of neurons is approximately the same. The
orientation tuning varies slowly parallel to the cortical surface; (ii) ocular domi-
nance columns (where the proportion of input from both eyes is constant within
each column, but varies smoothly between columns), and (iii) a lattice of cy-
tochrome oxidase blobs – sensitive to color [64,103]. Sections (2,3,4) describes
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computational models which exploit these structural properties. From a more ab-
stract perspective, the organizational structures of hypercolumns can be partly
explained by the need to map stimulus dimensions (e.g. retinal position, ori-
entation, etc.) onto two-dimensional cortical surface while attempting to make
the map as smooth as possible (this is not possible, on topological grounds, so
discontinuities occur) [29]. Cells in V2 have larger receptive fields than in V1 but
have other properties. For example, many cells in V2 seem capable of perform-
ing binocular integration to estimate depth. In addition, they appear to include
neurons which respond to features which are linked spatially [168,132], which are
sensitive to illusory contours[169,93], and which relate to detecting occlusion and
establishing border ownership [191,33]. These issues are discussed in section (4).

A notable property of these visual areas is their hierarchical organization,
which relates to the low-,mid-, and high-levels discussed in section (1.2). Broadly
speaking, V1 and MT seem to be involved in low-level processing, V2,V4, MST in
mid-level vision, and high-level vision in IT. Hence early vision is believed to be
mostly performed in V1,V2,V4, MT, and MST. There is also a strong tendency
for receptive fields to be larger as we ascend the visual hierarchy. Compared to
those in V1, the receptive fields are 2-3 times bigger in V2, 4-5 times larger in
V3/VP, and 7-10 times larger in MT. But, conversely, the receptive fields become
increasing specific to stimuli, and stimuli of greater complexity, as we move up
the ventral stream. In summary, the receptive fields become more invariant to
position and more specific to structure as we proceed up the ventral stream from
V1 to V2 to IT [144][104].

Experimental Methods. Many of the findings discussed above are based on
electro-physiological studies of monkeys and non-invasive studies of monkeys
and humans. These visual systems are fairly similar based on studies relating
fMRI responses in humans and those in monkeys (where electro-physiology is
performed). Relationships have been found in early visual areas V1, V2, V3
[173], but are not yet fully established at higher areas [174]. But it is noteworthy
that the face area discovered in humans by fMRI studies [74] corresponds to
an analogous face area in monkeys which can be studied by fMRI and electro-
physiology [162].

The interpretations of experimental findings are limited because of the sim-
plifications discussed in earlier sections. Non-invasive studies like fMRI suffer
from limited spatial and temporal resolution and currently can only observe
coarse properties of the visual system. Electro-physiology is restricted to record-
ing from a small number of neurons in response to a limited range of stimuli. See
[19] for a detailed discussion of the problems of interpreting electro-physiological
results in the early visual cortex. In general, even in V1 it is not easy to pre-
dict the response of neurons to natural stimuli. This may, however, be partially
because neurons in the visual cortex interact with each other and may be bet-
ter predicted by the activity of other neurons than by the image itself. All the
visual areas contain lateral (i.e. sideways) structure (in addition to hierarchy)
and neural connections within V1 extend as much as 8 mm. As will be discussed
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later in this chapter, it can be shown that these lateral connections may imple-
ment non-classical receptive fields which relate to visual tasks such as linking, or
grouping, features [44]. There is considerable interest, and progress, in developing
experimental methods which can probe the properties of neural circuits in much
greater detail, such as opto-genetics, which may revolutionize our understanding
the the early visual system.

2 Linear and Complex Filters

This section covers five topics. Firstly we introduce simple linear models of neu-
rons, describe how they are used to model the receptive fields of neurons in the
retina, LGN, and simple cells in V1, and discuss the visual tasks they can be
used for. We also discuss extensions of these models to deal with complex cells
in V1. Secondly, we discuss an alternative perspective which thinks of these cells
as representing images and introduces over-complete bases and sparse encod-
ing. Thirdly, we discuss how these receptive fields can be learnt from images by
unsupervised algorithms or estimated from neural data by regression. Fourthly,
we describe how these receptive field models can be used for binocular stereo
and for motion estimation. The section also introduces background material on
linear filter theory and fourier analysis.

This section includes three interactive demos: (2a) Linear filters and convo-
lution. (2b) Gabor filters. (2c) Oja’s Rule and Principal Component Analysis.

2.1 Linear Models of Neurons

This section introduces linear models of neurons. These models are used to de-
scribe the receptive field properties in the retina, the LGN, and simple cells in
visual area V1. We introduce background material on linear filtering and fourier
analysis which helps to understand the properties of these neural models.

Linear Models of Simplified Cells. This section introduces a model of a
simplified cell, see figure (12). The cell receives inputs I = (I1, I2, ..., IN ) from
dendrites which are weighted by synaptic strengths w = (w1, w2, ..., wN ), these

are summed together at the soma (cell body) to obtain w · I =
∑N
i=1 wiIi. The

cells output a response f(w · I) along its axon, indicated by the firing rate of the
neuron. f(.) is monotonic non-linear function, which takes value 0 if the input is
small, then increases linearly in the linear regime until it saturates at a maximum
value. A typical choice of f(.) is the sigmoid function f(w · I) = σ(w · I − T ),
where T is a threshold and σ(.) is a soft-threshold as shown in figure (12), which
we will see in later sections. Interactive demo (2a) illustrates linear filters and
convolution.

In this section, we ignore f(.) (except when explicitly stated) and study
the behavior of the model in the linear regime. Cells in the retina and Lateral
Geniculate Nucleus (LGN) are often modeled without the non-linear function
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Fig. 12. Left Panel: A neuron receives input – action potentials from other neurons – at
its dendrites which generate excitatory and inhibitory postsynaptic potentials (EPSPs
and IPSPs respectively) whose voltages are integrated at the soma and converted to
outgoing action potentials. Right panel: a simplified model of a neuron. There are inputs
(I1, ..., I5) at the dendrites, with synaptic strengths w1, ..., w5, these are summed at the
soma,

∑
i wiIi, and the output S is given by a sigmoid function σ(

∑
i wiIi). The sigmoid

function σ() (top right) has a linear regime (brown line) and low- and high-thresholds.

f(.), but adding instead a constant C to the output, to account for spontaneous
firing of the cell, and yielding an output w · I + C, see [190].

Hence in this section, we model a simplified cell by:

S = w · I =

N∑
i=1

wiIi.

This model is linear in two respects. Firstly it is linear in the input I so that if
we double the input I 7→ 2I, then the output doubles also S 7→ 2S. Secondly, it is
linear in the weights w. Most importantly, it obeys the principle of superposition
so that if S1, S2 are the outputs to input I1, I2 respectively, then the output to
input λ1I

1 +λ2I
2 is λ1S1 +λ2S2. This result is important for characterizing the

response of simple neural cells, since it implies that we can determine the output
of the cell to any stimulus by observing its response to a limited set of input
stimuli I, and we will return to this issue later in this section. Note that this
property still remains if we re-introduce the non-linear function f(.), provided
the function is known.

The retinotopic organization of the early visual system has two implications
for these cells. Firstly, the weights of the cell depend on its retinotopic position
x = (x1, x2) and the positions y = (y1, y2) of its dendrites. We replace the input
Ii by I(y) and the weights wi by w(x − y). The receptive field w(x − y) will
typically be zero unless |x − y| is small (this can be mapped by determining if
image properties at position y in the image cause the cell to fire). Hence the
neuron can be modelled by:

S(x) =
∑
y

w(x− y)I(y) = w ∗ I,
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Secondly, retinotopy implies that there are cells with similar properties (e.g., the
same weights w) arranged roughly evenly in spatial position (apart from the
log-polar transformations [151]). This can be thought of as having “copies” of
the same cell at all positions in space. In terms of linear filter theory, see later
this section, these sets of cells are convolving the image I by a filter w.

I S

Fig. 13. This figure shows the input-output of a center surround cell (e.g., Laplacian of
a Gaussian) in three different ways. First in terms of the inputs and outputs of neurons
(left). Second in terms of the digitized input image, the filter, and the digitized output
(center). The output at each pixel is given by the product of the filter to the appropriate
intensity values in the input image, e.g., 4× 37− 1× 49− 1× 47− 1× 10− 1× 21 = 21.
Thirdly, in terms of the input and output images (right).

Center-Surround Cells: Retina and LGN. The receptive fields of the
ganglion cells in the retina and cells in the Lateral Geniculate Nucleus (LGN) can
be determined by measuring the firing rate of the neurons in terms of its response
to different input stimuli I and estimating a model for the response, as discussed
in the next section (we refer to [139] for a description of the photo-receptors). The
experimental findings are that many simple cells have a characteristic receptive
field called center-surround. But these findings are done using synthetic stimuli,
as we will briefly describe, and their response may be more complex if they are
studied using natural stimuli, see section (2.3).

Fig. 14. A Gaussian filter (far left). The first derivative of a Gaussian (left). The
laplacian of a Gaussian or Mexican hat (right). A sinusoid (far right).

There are two different types: on-center and off-center. The receptive field
weights w(x − y) are radially symmetric and take the form of a Mexican hat
or inverted Mexican hat, for on-center and off-center cells respectively [109],
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see figure (14)(center right). These cell responses are usually thresholded, e.g.,
by the sigmoid function, so that they usually only give positive responses. The
weights w(x − y) can be approximated by the Laplacian of a Gaussian (LOG)
or by its negative:

wLOG(x) = −{ ∂
2

∂x21
+

∂2

∂x22
}G(x : 0, σ2) (1)

where G(x : 0, σ2) = 1
2πσ exp{−(x21 + x22)/(2σ2)}, see figure (14)(far left).

These cells have two important properties: (I) They are radially symmetric in
the sense that wLOG(.) is invariant to rotation, e.g. suppose we express position x
in terms of radial components: x1 = r cos θ, x2 = r sin θ, then wLOG(r cos θ, r sin θ)
is independent of θ. (II) The receptive field weights w(.) sum up to zero. More
precisely, ∑

x

wLOG(x) = 0.

Note that center-surround cells are often modelled as the differences of two
Gaussians wDOG(x) = A1G(x : 0, σ2

1) − A2G(x : 0, σ2
2), where σ1, σ2 take

different values [190]. This gives a similar model, if |σ1 − σ2| and |A1 − A2| are
small.

The purpose of these center-surround cells is believed to help deal with the
large dynamic range of images. Suppose we can express the image locally as
I(x) = C(x) +B where C(x) is the contrast, which describes the local details of
the image, and B is the background. Then filtering an image by a center-surround
cell, whose receptive field sums to 0, removes the background term and preserves
part of the contrast. More precisely, using equation (2.1):

S(x) =
∑
y

wLOG(x−y)I(y) =
∑
y

wLOG(x−y)(C(y)+B) =
∑
y

wLOG(x−y)C(y).

Receptive fields of this type can also help efficiently encode the information
at the retina in order to transmit it efficiently to the visual cortex. This can be
studied using information theory and the statistics of natural images to predict
properties of receptive fields and how they change in different environments [6].
This theory is beyond the scope of our chapter and we refer to the detailed
exposition in [190].

These models of cells in both the retina and the LGN are well studied. Al-
though many of their properties were estimated using synthetic input data it
has been shown that in some cases the input image can be estimated from the
response of cells in either the retina or the LGN using these types of mod-
els [175,24,19]. But other authors [47] argue that the retina is more complex
and that, in particular, the neurons may act more as feature detectors, see sec-
tion (2.2), instead of as spatial-temporal filters as described in this section. In
particular, [47] describes many finding suggesting that the retina is more com-
plex that the linear filtering model described above. It is known, for example,
that if the light levels go down then the receptive field size becomes larger [190].
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Note that we are also ignoring the temporal behavior of the cells and a
more realistic model models the output as S(x, t) =

∑
y,τ w(x−y, t− τ)I(y, τ),

where w(x − y, t − τ) is a space-time filter. Broadly speaking there are two
types of cells with very different temporal characteristics. These are: (i) the M-
cells whose receptive fields are spatially large but temporally small (faster) and
which project to the dorsal stream, and (ii) the P-cells whose receptive fields are
spatially smaller but temporally larger (slower) and which project to the ventral
stream. We also do not model the dependence of the cells on the wavelength of
the input light. This would require a model S(x) =

∫
dλw(x − y)wc(λ)I(x, λ),

where λ denotes the wavelength and wc(λ) specifies the sensitivity of the cell to
color (i.e. there are three types of sensitivity to color wred(.), wgreen(.), wblue(.)).
These types of models are described in [190].

Studying tuning by response to sinusoid stimuli. How do we know the
receptive field of a neuron? One way is to study its response to a class of stimuli
while varying the stimulus parameters (like the perceptual dimensions mentioned
in the first section). In particular, we can find how well the neuron is tuned to
particular stimulus parameters (typically the neuron will prefer a specific value
of the parameter and its response will decrease as the parameter changes). This
is a classic way to study receptive field properties [64]. In this section, we analyze
tuning when the stimuli are sinusoid gratings.

We probe the receptive field of a neuron by stimulating it by a sinusoid
grating with intensity I(x) = A cos(ω · x + ρ) + I0, where A is the amplitude,
ρ is the phase, ω is the frequency and I0 is the mean light level. The frequency
is vector valued and specifies the orientation of the stimulus, by the unit vector
ω̂ = ω/|ω|, and the period of the oscillation |ω|. The phase ρ shifts the center
of the sinusoid, hence if ρ = 0 the center occurs at x = 0. We can re-express
A cos(ω · x + ρ) = A cos(ω · (x − x0)), where x0 = −ρω/|ω|2 is the shift in
position.

Then we can analyze the response of the neuron by assuming a functional
form for the receptive field. For example, suppose we guess that the neuron is a
center-surround cell and its receptive field is a laplacian-of-a-gaussian wLOG(x),
given by equation (1). Then we can probe the neuron with sinusoid stimuli to
determine if it is center-surround and, if so, to determine the parameter σ2.
In order to do this, we calculate the response of laplacian-of-a-Gaussian to a
sinusoid function. The laplacian-of-a-Gaussian is a symmetric filter, so its fourier
transform is symmetric, and its response to the sinusoid is A(cos ρ)ŵLOG(ω),
where the fourier transform of w(LOG)(.) is ŵLOG(ω) = (ω · ω) exp{−(σ2ω ·
ω)/2}. Hence the predicted response is:∫

dxwLOG(x)A cos(ω · x+ ρ) = A(cos ρ)(ω · ω) exp{−(σ2ω · ω)/2}.

From this we can deduce three properties: (i) the response is biggest if the
center of the sinusoid is aligned to the center of the cell, i.e. ρ = 0, falling to
zero at ρ = π/2, and (ii) the cell responds best to frequencies with |ω ·ω| = 2σ2
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(this is obtained by maximizing the response with respect to |ω|), (iii) the cell
is insensitive to the orientation of the stimuli. If the real neuron obeys these
properties, which we find by stimulating it with sinusoids and measuring its
firing rate, then we deduce that it is center-surround and estimate its parameter
σ2. If not, for example if the neuron is sensitive to the orientation of the sinusoid,
then we know the cell is not center-surround and needs a different model (see next
section). In short, important properties of the receptive field can be obtained by
stimulating the cell with sinusoid gratings. This determines the sensitivity of the
cell to the orientation θ, the frequency ω, and the phase ρ. As we will show in
the next section, simple cells in V1 are tuned to the orientation θ and frequency
ω of the local image patch.

Studying the tuning to stimuli parameters gives a way to characterize the
receptive field properties of a cell. But it is not sufficient to determine the recep-
tive field uniquely. To do this requires studying the response of the neuron to
many types of inputs (an advantaged of studying tuning is that it can be done
with comparatively few stimuli). Later, in section (2.3), we discuss how the more
advanced ways of estimating receptive fields by regression which require making
fewer assumptions about the receptive field.

Fig. 15. A family of Gabor receptive fields. The panels show cosine-Gabors (left
panel) and sine-Gabors (right panel) at different orientations (rows) and different scales
(columns). Observe that the cosine-Gabors have biggest responses at their centers (be-
cause cos 0 = 1) while the sine-Gabors have small responses there (because sin 0 = 0).

Visual Cortex area V1: Oriented Receptive Fields. Now we turn to
the receptive field properties of simple cells in area V1. These cells were first
systematically studied by Hubel and Wiesel [65][66] who showed that they were
tuned to the orientation of edges and size of bars of light. (Later studies used
gratings to show tuning to orientation and spatial frequency, which roughly re-
lates to bar size.) Hubel and Wiesel also showed that these cells were spatially
organized with hypercolumns and retinotopic organization. Further electrophys-
iological studies by Roner and Pollen [133] and Jones and Palmer [70] showed
that the receptive field properties of these cells could be approximately modelled
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by Gabor filters [25] which are the product of Gaussians and sinusoids, and can
be thought of as performing local fourier transforms, see figure (15). It was also
reported that the receptive fields occur in quadrature pairs [133] so that neigh-
boring cells are ninety degrees out of phase (e.g., a cosine Gabor is paired with
a sine Gabor). These are illustrated in figure (16). Good fits, however, to the re-
ceptive fields can also be obtained using the derivatives of Gaussian filters [181],
see figure (14)(center left). Interactive demo (2b) illustrates Gabor functions and
their properties.

Fig. 16. A Gabor functions aligned to the vertical axis (left). The image of a zebra
(center). The response of the vertical Gabor filter on the zebra image (right).

Gabor functions can be expressed as the product of a Gaussian G(x; 0, Σ) =
1

2π|Σ| exp{−(1/2)xTΣ−1x} (Σ is the covariance of the Gaussian) by a sinusoid

exp{iω · x} = cosω · x + i sinω · x. This gives two basic types of Gabors: (i)
cosine-Gabors Gcos(x) = G(x; 0, Σ) cosω · x and (ii) sine-Gabors Gsin(x) =
G(x; 0, Σ) sinω · x. This form a quadrature pair, because sin(.) and cos(.) are
ninety degrees out of phase, which will be discussed and used later in this chapter
(also phases can vary). The intuition for Gabor filters is they give a good trade-
off between localization in position and in frequency. The Gaussian has good
localization in position, in the sense that its response is very small if |x| > 2σ.
The sinusoid has perfect localization in frequency (due to the orthogonality of
sinusoids) but is unable to localize in position (because a sinusoid does not
tend to zero for large x). More rigorously, Gabor derived the Gabor function by
optimizing a criterion that balanced optimality in frequency with optimality in
position.

A systematic study in the late 1990’s concluded that many simple cells in
V1 could be modeled by a family of Gabor filters with specific relationships
between the parameters of the gaussian and the sinusoid, Σ and ω [94]. The
experimental data at that time suggested that only a restricted class of Gabor
filters were implemented. To understand this restriction, express the frequency
of the sinusoid as ω = ω(cos θ, sin θ), where θ specifies the orientation of the
sinusoid (and its propagating direction) and ω the magnitude of its frequency.
Then the Σ of the gaussian is proportional to (1/4)(cos θ, sin θ)(cos θ, sin θ)T +
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(− sin θ, cos θ)(− sin θ, cos θ)T (T denotes vector transform). So the aspect ratio
of the gaussian (the ratio between its major and minor axes) is fixed at 4. The
sinusoid exp(ix ·ω) has its ”propagating direction” along the shorter axis of the
Gaussian, so the gaussian smooths more in the direction perpendicular to the
propagating direction, by a factor of 1/2 =

√
1/4. This family of Gabor filters

in illustrated in figure (15).
This family is specified as follows:

ψ(x;ω, θ,K) =
ω2

4πK2
exp{−(ω2/8K2){4(x · (cos θ, sin θ))2 + (x · (− sin θ, cos θ))2}

× exp{iωx · (cos θ, sin θ)} exp{(K2/2)}}.(2)

In this family the orientation is specified by θ, the frequency by ω, and the
variance is proportional toK2. This is normalized so that

∫
dx{ψ(x;ω, θ,K)}2 =

1. K ≈ π for a frequency bandwidth of one octave, K ≈ 2.5 for a frequency
bandwidth of 1.5 octaves (“octaves” are the log ratio of the frequency – see
[190]). This family can also be scaled to give a form:

ψa(x;ω, θ,K) =
1

a
ψa(x/a;ω, θ,K)

Gabor functions have many interesting properties. They respond well to pe-
riodic structure – i.e. certain types of texture – provided the period of the Gabor
filter is similar to the period if the texture structure, see figure (16). In addition,
oriented sinusoid Gabors act like derivative filters, with their biggest responses
on edges with the same orientation, and hence may function as components of
edge detectors (see next section). More generally, filterbanks of Gabor filters of-
fer local representations of image properties which can used used for many tasks
including texture modeling, motion estimation, and binocular stereo (see later
this section).

We can also study the tuning of Gabor cells by stimulating them with a family
of stimuli of form A cos(ω ·x+ρ) and varying ω and ρ (similar to what we did for
center surround cells in the previous section). We define ωx = ω ·(cos θ, sin θ) and
ωy = ω · (− sin θ, cos θ) to be the projections of the input sinusoid in the favored
direction of the cell (i.e. ω) and in the orthogonal direction (i.e. ωy = 0 if the
input sinusoid aligns perfectly with the orientation of the cell). The responses of
the cosine-Gabor Gcos and the sine-Gabor Gsin are given by:

A

2
cos ρ exp{−2K2ω2

y/ω
2}

×{exp{−(K2/2ω2)(ω + ωx)2}+ exp{−(K2/2ω2)(ω − ωx)2}} exp{K2/2}, (3)

A

2
sin ρ exp{−2K2ω2

y/ω
2}

×{exp{−(K2/2ω2)(ω + ωx)2} − exp{−(K2/2ω2)(ω − ωx)2}} exp{K2/2}. (4)

These equations show that the cosine-Gabor cell is tuned to ρ = 0 and the
tuning falls off as cos ρ. The cell also favors sinusoid stimuli which are aligned
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to it (i.e. ωy = 0), and whose frequency ωx = ±ω. By contrast, the sine-Gabor
prefers stimuli with ρ = π/2 (naturally, since this converts the stimulus into
a sine function which aligns to the sine-Gabor), and has similar tuning to the
frequency with ωy = 0 and ωx = ±ω.

Complex Cells. Complex cells are sensitive to orientation but they are less
sensitive than simple cells to the spatial position of the stimuli. A standard
theory of the ventral stream, see chapter by Lewis and Poggio, suggests that
visual processing proceeds up this stream using receptive fields similar to simple
and complex cells, which are increasingly tuned to more complex structures and
are less sensitive to the precise positions of the stimuli. Complex cells are the
second stage after simple cells, forming a simple-complex cell module which gets
repeated up the hierarchy.

We describe here the energy model where the complex cell receives input from
two simple cells which are ninety degrees out of phase (i.e. cosine-Gabors and
sine-Gabors). This is partly motivated by quadrature cells [70] and because, see
the following paragraphs, these cells are less sensitive than simple cells to the
specific position of the stimuli. Note the word “energy” is based on analogy to
physical systems.

More precisely, the energy model of a complex cell gives response:

S(x) = {ψsin ∗ I(x)}2 + {ψcos ∗ I(x)}2. (5)

where ∗ indicates convolution (2.1).
We can study the tuning of complex cells by measuring their response to

stimuli A cos(ω ·x+ ρ) and varying ω and ρ (as before). The findings show that
these cells are, like simple cells, also tuned to orientation, frequency, and phase.
But their tuning, particularly to phase, is less precise. Hence complex cells are
less sensitive to the precise position of the stimuli. The response is given by:

A2

4
exp{K2} exp{−4K2ω2

y/ω
2}

{exp{−(K2/ω2)(ω + ωx)2}+ exp{−(K2/ω2)(ω − ωx)2}
+2 cos 2ρ exp{−(K2/ω2)(ω + ωx)2} exp{−(K2/ω2)(ω − ωx)2}}. (6)

Observe that the dependence on the phase ρ is much small (the dominant term
in the second line is independent of ρ).

Complex cells have several possible functions including stereo and motion, as
we will show in later sections. They will also respond to oriented edges and can
be used for edge detection. In addition, they can represent the local “energy” of
textures.

This complex cell model has nice theoretical properties and has been exten-
sively studied and used to construct models (see later in the lecture). But there
are other models where complex cells are built from simple cells in alternative
ways, see the chapter by Lewis and Poggio, but where the complex cells retain
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Fig. 17. A complex cell can be modelled as a quadrature pair of Gabor filters. The
stimulus is a grey circle on a white background (far left). A quadrature pair of Gabor
filters is applied to the stimulus giving the largest responses when the orientation of the
Gabors matches the orientation of the edge of the circle. The responses of the Gabors
are squared and then summed to yield the final output (far right).

their basic property of being tuned to orientation and frequency but being less
sensitive to the position of the stimuli. Some researchers question whether com-
plex cells receive input from single cells arguing that the computations could be
done by non-linear neurons which exploit the complexity of the dendridic tree
[115]. Other researchers argue [113] that there is no sharp dichotomy between
simple and complex cells but instead there is an continuum of cells with variable
sensitivity to position. Observe that the change between simple and complex cells
illustrates a general property of receptive fields in the Ventral stream – namely
that receptive fields become more tuned to complex stimuli and less sensitive
to the position of the stimulus (e.g., a cell tuned to faces is fairly insensitive to
where the face lies in the visual field).

Linear Filtering, Basis Functions, and Fourier Analysis. We now take
a step backwards and put these models into the context of the extensive math-
ematical literature on linear filtering and fourier analysis. This is an advanced
section which gives greater understanding but is not required for a basic intro-
duction. Note that in this chapter we will often switch between treating x as
a discrete variable and using summation,

∑
x, or treating it as a continuous

variable and using integration,
∫
dx. Similar notation is used in [190].

As discussed in the previous section, simple cell models apply linear filters to
images and cells at different spatial locations perform convolution ∗ by applying
the same filter w across the image:

S(x) = w ∗ I(x) =
∑
y

w(x− y)I(y).

It is also convenient to approximate this (take the continuum limit) and express
this as an integral:

S(x) =

∫
y

w(x− y)I(y)dy.
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This continuum limit is a good approximation, if the summation
∑

y is over
a dense set of positions y, and enable certain type of analysis (e.g., showing
that a center-surround cell model sums, approximately, to zero). Throughout
this chapter we will often switch from continuous to discrete filters whenever it
simplifies the analysis.

Convolving an image by a linear filter produces an output image S(x) whose
form depends on the type of filter w. For example, if w(x) is a Gaussian function
G(x;σ) = 1

2πσ2 exp{−(x21 +x22)/(2σ2)} then convolution effectively just smooths
the image by taking a linear weighted average. Ifw is a derivative of the Gaussian
in the x1 direction, w(x) = d

dx1
G(x;σ), then this filter gives a large response

to edges, positions y where the intensity I(y) changes abruptly, and has small
responses in places where the image intensity changes slowly.

We can better understand images, and linear filtering, by using functional
analysis. This states that an image, or any signal, can be expressed uniquely as
a weighted sum of basis functions:

I(x) =
∑
i

αibi(x), (7)

where the bi(x) are basis functions and the {αi} are coefficients. These basis
functions are usually chosen to be orthonormal, so that

∑
x bi(x)bj(x) = δij

(= 1 if i = j and = 0 if i 6= j). If the basis functions are orthogonal then the
coefficients α can be obtained by:

αi =
∑
x

I(x)bi(x). (8)

The principle of superposition states that we can determine the output S as
a weighted combination of the outputs of the basis functions:

S(x) =
∑
i

αiSi(x), where Si(x) =
∑
y

w(x− y)bi(y). (9)

This implies that if we know the response Si(.) to each basis function bi(.), then
we can predict the response to any input. This is an attractive property which,
if it holds, enables us to measure the receptive field of a linear neuron, or a
thresholded linear neuron, from a limited set of stimuli.

Fourier analysis deals with a special class of basis functions. These are si-
nusoids, i.e. of form sinωx, cosωx. Then the α’s are the fourier transform of
the image. If we restrict ourselves to an image defined on a lattice (i.e. so that
x1, x2 each take a finite number of values, as on a digital camera) then this is
the discrete fourier transform. But if we allow x1, x2 to take continuous values,
then we get the fourier transform:

I(x) =
1

2π

∫
Î(ω) exp{−iω · x}dω (10)

Î(ω) =
1

2π

∫
I(x) exp{iω · x}dx (11)
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Here exp{iω · x} = cos(ω · x) + i sin(ω · x). Note that if I(.) is symmetric,
I(x) = I(−x), then Î(ω) is also symmetric Î(−ω) = Î(ω). Observe that equa-
tions (10,11) correspond to equations (7,8) for special choices of the basis func-
tions (and changing from discrete to continuous x).

Fourier analysis is particularly important because it gives us a way to repre-
sent non-local structure of images in terms of frequencies ω. The high frequencies
(large |ω|) represent image patterns which change rapidly while the lower fre-
quencies (small |ω|) represent slowly changing patterns. In particular, if an image
pattern is periodic, like the stripes on a zebra, then it can be expressed in form:

I(x) =
∑
n

An cos(2πnω0 · x),

where ω0 is the basic frequency and n denote integers. Then the Fourier trans-
form is only non-zero at integer multiples of the basic frequency ω = ω0. Hence
periodic image patterns, such as textures, have very simple descriptions in Fourier
space.

If we blur the image, by convolving with a Gaussian G(x;σ), to obtain G ∗
I(x), then the high frequencies of the image I will be smoothed out. This follows
from the convolution theorem which states that fourier transform of G ∗ I(x)
equals the product of the fourier transforms of G and I, and the fact that the
fourier transform of a Gaussian is also a Gaussian exp{−|ω|2(σ2/2)}. Hence we
can express the convolved image as a weighted combination of sinusoids where
the high frequency weights are decreased by exp{−|ω|2(σ2/2)}:

I(x) =
1

2π

∫
Î(ω) exp{−iω · x} exp{−|ω|2(σ2/2)}dω.

Hence if we increase the amount of blurring, by increasing the variance σ2 of the
Gaussian, we will make the coefficients of the high frequencies increasingly small.
Blurring the image can be obtained by defocusing your eyes so that the image
is seen out of focus. The receptive fields of cells occurs at a range of different
scales, corresponding to convolving with Gaussians of different variances.

The superposition principle, combined with the use of basis functions, shows
that we can determine the receptive fields of linear neurons by stimulating them
with sinusoids. Sinusoids can be used as basis functions and superposition can
be used to predict the response to stimuli which have not been seen yet (i.e. as
superpositions of those stimuli to which the response is known). This, however,
is rarely done. We will return to studying ways to determine receptive fields from
experiments in section (2.3).

2.2 Sparsity, Matched Filters, and Natural Images

This section considers receptive field models from different perspectives. This
includes the use of sparsity to suggest receptive field properties based on the
statistics of natural images and also the idea of matched filters which revert to
an older idea of receptive fields as feature detectors [99]. Sparsity was proposed by
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Barlow [7] as a general principle for modeling the brain based on the observation
that typically only a small number of neurons are active. It was developed as
a way to predict receptive field properties by Olshausen and Field [127]. It is
natural to ask whether the receptive fields of cells encode basis functions which
somehow capture the typical structure of images and represent it in a form which
is suitable for later processing.

Our starting point is the idea that images, and particularly local regions of
images. can be represented as a linear combination of basis functions I(x) =∑
i αibi(x), see equation (7).

Over-Complete Bases and Sparsity. This section introduces the idea of
over-complete basis functions and sparsity. To motivate this idea, consider an im-
age which consists partly of regions where the intensity varies spatially smoothly
and others where the intensity is more jagged and consists of a number of bright
spots, or impulses. The smoothly varying regions of the image can be represented
by fourier analysis efficiently, in the sense that we can approximate the intensity
by only a small number of weighted sinusoids (in other words, the fourier trans-
form of the image is peaked at a limited number of frequencies). By contrast,
the impulses are not well described by fourier analysis because the fourier trans-
form is not zero for all frequencies (the fourier transform of an impulse at x0 is
exp{iω ·x0}, so the amplitude spectrum is constant at all frequencies). Instead it
would be better to represent the spikes in terms of a basis of impulse functions,
but this representation would be very inefficient for the smoothly varying parts
of the image. In short, different types of basis functions are suitable for different
regions of the image. This suggests a strategy where we seek a representation
in terms of an over-complete set of basis functions, in this case sinusoids and
impulse functions, and a criterion which selects an efficient representation so
that only a small number of basis functions are activated for each image. This
requirement is called sparsity.

More formally, we represent an image, or local image region, by:

I(x) =

N∑
i=1

αibi(x),

where the {bi} are the basis functions (which are the same for all images, and
could include sinusoids and impulse functions) and the {αi} are the coefficients
of the bases (which depend on the image). The number N of bases is much
bigger than the dimension of the image, and hence the bases are over-complete.
This differs from fourier analysis where the data (e.g., an image) is expressed in
terms of a set of basis functions which are mutually orthogonal, which enables
the coefficients α to for each image to be estimated by αi =

∑
x bi(x) · I(x).

Over-completeness implies that there are many ways to represent the image in
terms of these basis functions (by different choices of the α’s) and we need an
additional criterion to select the α’s. The sparsity criterion proposes that we
favor representations which make

∑N
i=1 |αi| small, which penalize the weights of

the basis functions and encourages most coefficients to be 0.
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More precisely, we represent an image I by the approximation
∑N
i=1 α̂ibi,

where the {α̂i} are chosen to minimize the function:

E(α) =
∑
x

(I(x)−
N∑
i=1

αibi(x))2 + λ

N∑
i=1

|αi|. (12)

The first penalizes the error of the approximation and the second term, whose
strength is weighted by a parameter λ, penalizes the coefficients {αi}. The solu-
tion α̂ = arg minαE(α) can not not be specified in closed form (unlike the case
for orthogonal basis function), but E(α) is a convex function of α and efficient
algorithms exist for minimizing it to estimate α̂. The results of these algorithms
can, for example, decompose an image into a sum of sinusoids and a sum of
impulse functions.

These ideas give an alternative way to think about the receptive fields of cells
in V1. Firstly, observe that V1 has far more cells than the retina or the LGN and
so it is has enough neural machinery to implement over-complete bases. Secondly,
over-complete bases can be designed for specific image structures of interest (e.g.,
impulse functions or edges) which enables us to start interpreting the image
instead of simply representing it. Thirdly, it relates to the observation that cells
in V1 fire sparsely, which suggests [7] that they are tuned to specific stimuli and
may relate to metabolic processes(firing a neuron takes energy which needs to
be replenished). Hence the idea that the visual cortex seeks to obtain sparse,
and hence presumably more easily interpretable representations, has intuitive
appeal.

How does this discussion of over-completeness and sparsity relate to our
previous description of V1 cells in terms of Gabor filters? Gabor filters have
some of the properties that this approach requires. Families of Gabor filters are
built by taking a basic functions and performing transformations on it which
give an over-complete basis. Hence they do not specify a unique representation
of an image (i.e. any image can be represented many different ways in terms
of Gabor functions). These issues, and the relations of Gabors to wavelets, are
discussed in more detail in [94].

Sparsity and Natural Images. Sparsity can also be used to derive the prop-
erties of receptive fields of cell in V1 if we assume that these cells are designed
to be able to represent properties of natural images [127], see figure (18)(Left).
Hence instead of hypothesizing models of receptive fields (e.g., Gabor filters)
we can try to predict these receptive fields from studying images. These predic-
tions do give some justification for Gabor functions but they also suggest other
receptive field models which have also been experimentally observed.

This requires learning the basis functions {bi} from a set of natural images
{Iµ : µ ∈ Λ}. This can be found be extending equation (12) to obtain a criteria
E(b, α) for fitting basis functions b and coefficients α to the set of images:

E(b, α) =
∑
µ∈Λ

(Iµ(x)−
N∑
i=1

αµi bi(x))2 + λ
∑
µ∈Λ

N∑
i=1

|αi|.
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Fig. 18. Left: The receptive fields learnt using sparsity [127]. Figure reprinted with
permission from [127]. Right: receptive fields learnt by matched filters, e.g., see [128].

We estimate the basis functions b̂ and the coefficients α̂ by minimizing E(b, α)
to obtain:

(b̂, α̂) = arg min
(b,α)

E(b, α).

Note that the basis functions are the same for all images but the coefficients
vary for each image (hence they are indexed by the image µ as well as the basis
coefficient i). This minimization is non-convex but there are efficient algorithms
to perform it.

This criterion has been applied to natural images (where the I represent small
image regions) and the resulting basis functions, see figure (18)(left), include
filters which look like Gabor functions but they also include other types of filters
which are also observed in experiments [127].

We note that there are other methods for predicting receptive field properties
from natural images using a similar image model, I(x) =

∑N
i=1 αibi(x), but im-

posing different assumptions on the form of the bases. In particular, independent
component analysis (ICA) gives similar receptive field models [166]. Hyvarinen
[67] explains this by showing that both types of models – L1 sparsity and ICA
– both encourage the αi to be strongly peaked at 0, but can occasionally have
large non-zero values.

What happens if we remove the sparsity requirement and instead find the
basis functions that minimize

∑
µ∈Λ(Iµ(x) −

∑N
i=1 α

µ
i bi(x))2? The basis func-

tions will be the eigenvectors of the correlation matrix of the images and can
be found by principal component analysis (PCA). Code for performing PCA is
supplied in interactive demo (2c). It can be shown that the principal compo-
nents of images will typically be sinusoids (provided the images are sufficiently
representative of natural images). We return to this issue in section (2.3) when
we describe unsupervised ways to learn receptive fields of neurons.
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Matched Filter Interpretation. This section gives an alternative way, and
earlier, model for receptive fields. The idea is the cells are feature detectors [99]
which can be modelled by a set of matched filters, so that the cells indicated the
type of image patch which is present. This can be thought of as an extreme form
of sparsity, because any image patch can be represented by a single matched
filter (instead of a linear combination of them). Examples of matched filters are
shown in figure (18)(right). We now describe the details of this approach.

Suppose we have a filter W and an input image patch Ip. We want to find
the best fit of the filter to the image by allowing us to transform the filter by
W 7→ aW + be, where e = (1/

√
N)(1, ..., 1). This corresponds to scaling the

filter by a and adding a constant vector b. If W is a derivative filter then, by
definition, W · e = 0. We normalize W and e so that W ·W = e · e = 1.

The goal is to find the best scaling/contrast a and background b to minimize
the match:

E(a, b) = |Ip − aW − be|2.

The solution â, b̂ are given by (take derivatives of E with respect to a and b,
recalling that W and e are normalized):

â = W · Ip, b̂ = e · Ip.

In this interpretation, the filter response is just the best estimate of the
contrast a. The estimate of the background b is just the mean value of the image.
Finally, the energy E(â, b̂) is a measure of how well the filter “matches” the input
image. Receptive fields learnt by matched filters are shown in figure (18)(right).

The idea of a matched filter leads naturally to the idea of having a“dictionary”
of filters {W µ : µ ∈ Λ}, where different filters W µ are tuned to different types
of image patches. In other words, the input image patch is encoded by the filter
that best matches it. The dictionary of matched filters could be implemented by
a set of cells (e.g., orientation columns). In this interpretation, the magnitude of
the dot product W · I is less important than deciding which filter best matches
the input Ip. Matched filters can be thought of an extreme case of sparsity. In
the previous sections, an image was represented by a linear combination of basis
functions whose weights were penalizes by the L1-norm,

∑
i |αi|. By comparison,

matched filters represent an image by a single basis function. This gives an ever
sparser representation of the image, but at the possible cost of a much larger
image dictionary. Matched filters can be thought of as feature detectors because
they respond only to very specific inputs.

2.3 Learning

We cover two topics in this section: (I) how can these receptive fields be learnt
using biologically plausible mechanisms? (II) How we estimate receptive fields
from experimental data.
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Unsupervised learning of the receptive fields. Where do the receptive
fields of simple cells come from? The most plausible explanation is that they
are learnt in an unsupervised self-organizing manner but it is debatable whether
this happens before birth, due to spontaneous activity in the brain, or in re-
sponse to natural stimuli observed after birth. The methods in this section
could work either way, since the main property they rely on is that images
are shift-invariant. This section is based on computational studies performed in
the 1980’s [101][100],[187], see [190] for other references. These studies are based
on modifications of the Hebb learning rule which has some experimental sup-
port. Interactive demo (2c) illustrates principal component analysis and Oja’s
rule [126].

The basic findings are that center-surround, orientation selective, quadrature
pairs, and disparity sensitive cells (precursors to cells which can estimate depth
from binocular stereo) could all be obtained by variants of the same learning
rule.

We first describe a simple unsupervised learning model of this type for a
single cells [126]. The output S(t) of the cell is a function of time t and is a
weighted sum of the inputs Ii(t), where the weights ωi(t) are functions of time
are updated by Oja’s rule [126]:

S(t) =
∑
j

wj(t)Ij(t),

dwi(t)

dt
= S(t){Ii(t)− S(t)wi(t)}. (13)

The first term of this update is the classic Hebb’s term which increases the
strength of a weight wi if its input Ii(t) is positively correlated with the output
S(t) (i.e. < S(t)Ii(t) >> 0), while the second term decreases the value of all
weights by an amount proportional to their strength.

This can be expressed as a single update equation (substituting for S(t)):

dwi(t)

dt
=

∑
j

wjIi(t)Ij(t)−
∑
jk

wiwjwkIj(t)Ik(t). (14)

Next we make the key assumption that the weights wi change at a slower
rate than the input images. This enables us to replace the terms Ii(t)Ij(t) in
equation (14) by their expectation Kij =< Ii(t)Ij(t) > which is the correlation
function of the input. This gives an update rule:

dwi(t)

dt
=

∑
j

wjKij −
∑
jk

wiwjwkKjk. (15)

The fixed points of this equation, the values of w such that dwi(t)
dt = 0, can be

shown to be eigenvectors of the correlation function Kij . A slight modification
of this update rule [187] gives a rule that is guaranteed to converge to the global
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minimum of the cost function:

E(w) = −(1/2)
∑
i,j

Kijwiwj + (k/4)(
∑
i

w2
i )

2

It can be shown that this global minimum corresponds to the biggest eigenvalue
of Kij . It follows that if the correlation function Kij decreases spatially, then
the biggest eigenvalue is at frequency 0 so the cell is not tuned to any frequency.
But if the correlation function has the shape of a Mexican hat, then the biggest
eigenvalue has a non-zero frequency which implies that the cell is orientated. In
fact, there are a set of eigenvalues with the same frequency modulus, each point-
ing in a different direction. Small change to the input, or noise in the simulation,
will determine which orientation is selected which is like symmetry breaking in
physics [187]. The correlation function of natural images does decrease spatially,
but Linsker showed that correlation functions similar to the Mexican hat arise
if this learning procedure is applied to a sequence of layers [101][100].

This analysis yields receptive fields which are sinusoids, and hence have no
spatial fall-off which is unrealistic. But receptive fields of neurons are limited by
the geometrical positions of the dendrites. If these constraints are included then
the algorithms converge to receptive fields which are similar to Gabor functions.
These methods can be expanded to other other properties of cells in the visual
system. For example, quadrature pairs can be learnt by introducing inhibition
between neighboring output neurons [187].

How to empirically estimate receptive field models by regression.
This section describes how to estimate the receptive field properties of cells from
electrical recordings of neurons by estimating the best model using regression.
This is a standard method in statistics and machine learning. In requires making
very few assumptions about the form of the receptive field (i.e. no need to assume
laplacian-of-gasussian, or Gabor, or sum of squared Gabors).

We first recall, as discussed earlier, that the receptive field properties of
neurons are traditionally found in simpler ways. For example, by choosing a set
of basic stimuli, such as oriented bars, and then observe how the response of
the cell changes as we move or rotate the bars. This approach can be extended
by probing the receptive field response to different perceptual dimensions, such
as position, orientation, color, contrast, motion, and whether it is sensitive to
stimuli from one eye or both. This gives a classification of the type of the receptive
field but does not specify its receptive field weights w unless strong assumptions
are made (e.g., that the receptive field is a Gabor function).

The regression method described in this section makes fewer assumptions
about the forms of the receptive field but it does require more data. More for-
mally, regression assumes that we have a stimulus dataset of S = {(Sµ, Iµ) :
µ = 1, ..., N} of inputs Iµ and outputs Sµ (e.g., the firing rates). We assume a
model S = g(I : w) where w specifies the parameters of the model and g(.) is a
non-linear function. For example, we could choose the non-linear function to be
a sigmoid g(I : w) = σ(w · I), where σ(.) is a sigmoid function. Alternatively
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g(.) could specify a Gabor filter where w specifies the parameters of the Gabor
(e.g., frequency and scale).

Regression requires minimizing a cost function such as:

F (w) =
1

|S|

N∑
µ∈S

E(Sµ − g(Iµ;w))

where E(.) is a penalty function such as (Sµ − g(Iµ;T ))2.

This minimization can be done by standard computer packages. It out-
puts an estimate of the model parameters ŵ and an error measure F (ŵ) =
1
|S|

∑
µ∈S E(Sµ− g(Iµ; ŵ)). Hence it not only outputs an estimate of the recep-

tive field but it also produces an error measure, which can yield the variance of
the output.

In practice, there are several complications. It is unrealistic to show the
neuron all possible stimuli because there are so many possible image stimuli.
Hence researchers have to choose a restricted set of stimuli. If neurons are linear,
or a non-linear function of a linear filter, then this should not matter because we
can exploit the superposition principle and estimate the receptive field from a
limited number of stimuli. But in reality, linearity is only an approximation, and
in practice the choice of stimuli can matter considerably. One concern is that
the stimulus set does not contain the types of stimuli that the neuron is most
sensitive to, in which case regression will output unreliable estimates. Also, if
the linear assumption is only partially correct then there is no guarantee that
the receptive field learnt on one set of stimuli will predict the behavior well on
another set of stimuli.

The complexities are illustrated by recent work by Talebi and Baker [158].
They describe in detail how receptive fields of neurons are estimated by regres-
sion techniques and also addresses the issue of how the results of regression differ
depending on the stimulus set. Their findings (for neurons in the cortex of anes-
thetized cats) show that estimates of the receptive fields of neurons can depend
heavily on the set of stimuli. They estimate receptive fields using three differ-
ent stimulus sets: (i) white noise (WN), (ii) oriented bars (B), and (iii) natural
images (NI). This gives three estimates for the receptive fields wWN ,wB ,wNI

obtained using the three stimulus sets SWN ,SB ,SNI . For each dataset, they
can compute the prediction errors FWN , FB , FNI which are the errors for that
dataset, e.g., FWN ( ˆwWN ) = 1

|SWN |
∑
µ∈SWN

E(Sµ− g(Iµ; ˆwWN )). These quan-

tities show how well the models can fit each stimulus set. But, more interest-
ingly, they can study how well the estimated receptive field from one stimulus
set can predict the other datasets. This involves computing quantities such as
FWN (ŵB), FWN ( ˆwNI), FB( ˆwWN ), FWN ( ˆwNI), FNI( ˆwWN ), FWN (ŵB). Their
results show, perhaps not surprisingly, that the receptive fields estimated on the
natural image stimulus set were much better at predicting the responses on the
other two stimulus sets.
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2.4 Local Models for Binocular Stereo and Motion

This section shows how these linear filter models of receptive fields can be used
to perform local estimates of binocular stereo and motion. These involve having
filterbanks, or populations of filters, which are tuned to different properties of
the stimuli so that estimates of depth and motion can be extracted from the
population [190].

Stereo Disparity Models. Recall that we introduced binocular stereo in sec-
tion (1.2). Depth is estimated by triangulation provided we can solve the corre-
spondence problem by finding which points in the left and right eyes correspond
to the same point in three-dimensional space. This reduces to estimating the
displacement, or disparity, between the images in the left and right eyes. This
section introduces the disparity energy model which estimates disparity based
on local properties of the image. In section (4) we will discuss how non-local
context can be used to improve disparity estimation.

The disparity energy model is formulated using Gabor filters and has some
claim to biological plausibility. We follow the presentation in Qian [135] which is
based on experimental findings on the receptive field property of cells by Ohzawa
et al. [125]. The model assumes that we have a large set of cells, receiving input
from both images, and which are tuned to different image frequencies and spatial
phases. The disparity of the image can be computed from the response of these
filters.

We give the presentation in one-dimension for simplicity. This is allowed
because of the epipolar line constraint, see figure (9). It assumes that the cell re-
ceives input from both left and right eyes with receptive fields fl(x) = exp{−x2/(2σ2)} cos(ωx+
ρl) and fr(x) = exp{−x2/(2σ2)} cos(ωx+ ρr). In other words, they are Gabors
where the Gaussian has variance σ2, tuned to frequency ω and with phases ρl, ρr.
The linear response is:

r =

∫
dx{fl(x)Il(x) + fr(x)Ir(x)}. (16)

This filter is tuned to spatial frequency ω. Recall, from earlier sections, that
we can express the image by a Fourier expansion. The filter is most sensitive
to the image component at this frequency. Hence we can represent the image
(approximately) by I(x) = ρ cos(ωx+ θ).

Now suppose that the right image is a displaced version of the left image
Ir(x) = Il(x+D(x)), where D(x) is the disparity. We assume that the disparity
varies slowly so that we can approximate it locally as a constant D (over the size
of the Gaussian, 2σ), see figure (19)(left). Then we make another approximation
by ignoring the Gaussian to calculate r (this is similar to ignoring the spatial
fall-off when we studied unsupervised learning algorithms).

This yields a response:

r1 = ρ{cos(θ − ρl) + cos(θ − ρr − ωD)}. (17)
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which can be re-expressed (using trigonometry identities) by:

r1 = 2ρ cos(θ − ρl + ρr
2

− ωD

2
) cos(

ρl − ρr
2

− ωD
2

). (18)

Hence the response of the cell depends on the disparity. In particular, when
ρl − ρr = ωD then the second cosine takes its biggest value of 1. But the cell’s
response also depends on image properties, i.e., the image phase θ which is an
argument of the first cosine. This means it is unable to detect disparity by itself.
But disparity can be estimated from a population of quadrature cells of this type
tuned to different frequencies.

To see this, suppose that we consider quadrature pairs of the two cells tuned
to the same ω. Where one cell has phases ρl, ρr and the other has phases ρ′l, ρ

′
r,

where (ρl − ρr) = (ρ′l − ρ′r) and ρ′l + ρ′r = ρl + ρr + π
2 . Then the second cell

has response r2 = 2ρ cos(θ − ρl+ρr
2 − ωD

2 ) cos(ρl−ρr2 − ωD2 ) = 2ρ sin(θ − ρl+ρr
2 −

ωD
2 ) cos(ρl−ρr2 . Hence if we square and add the responses of the two cells we

obtain:

r21 + r22 = cos2(
ρl − ρr

2
− ωD

2
). (19)

This response depends only on the disparity D and the image frequency ω.
It takes largest values when ρl − ρr = ωD. Hence we can estimate D from a
population of quadrature cells tuned to different phases ρl, ρr and frequencies ω,
see figure (19).

A neural network for estimating D consists of two steps (there are many
variants of this approach). In step (I) we define a set of disparity cells tuned to
disparities {Di : i = 1, ..., N}. The disparity cell tuned to disparity Di receives
input cos2(ρl−ρr2 − ωDi2 ) from each quadrature pair (ρl, ρr, ω) and sums these
inputs together to compute a vote v(Di):

v(Di) =
∑

ρl,ρr,ω

cos2(
ρl − ρr

2
− ωDi

2
). (20)

Step (II) uses a winner-take-all network to compute the disparity with the biggest
vote by solving D̂ = arg maxi=1,...,N v(Di), so that v(D̂) ≥ v(Di) for i = 1, ..., N .
There are many varieties of winner-take-all networks, see [107].

This theory of binocular stereo gives an example where the information of
interest, in this case the disparity, is represented by the activity of a population
of neurons. We will give another example for motion in the next section. There
is plenty of evidence that the brain represents information by neural populations
[42],[112]. There has also been much theoretical studies of how populations of
neurons could encode knowledge and perform computations [134,106].

Motion Measurement: Spatio-Temporal Filters. We now discuss how
related models can be applied to estimate motion for sequences of images. Spatio-
temporal filters are biologically plausible ways to measure motion which agree
with properties of cells in the visual cortex. The standard model suggests two
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Fig. 19. Left Panel: The disparity D between the images in the two eyes corresponds to
a change of phase if we approximate the intensities by sinusoids, see text. Right Panel:
The local disparity D is encoded by the feature response of cells tuned to frequencies
which obey ρl − ρr = ωD.

classes of cells where the first are spatio-temporal filters which are sensitive to
the directions of motion while the second combine outputs of these filters to
estimate the motion itself [3],[57], [150].

X

t

ωt

ωx

ωy

Fig. 20. Left Panel: This figure shows the space-time illustration of a signal traveling
with constant velocity I(X, t) = F (X − tv). This means that the intensity I(X, t) is
constant on the lines X − tv = constant. Right Panel: A stimuli moving with velocity
v will activate spatial-temporal filters ω, ωt which lie on the plane v ·ω+ωt = 0. Hence
the velocity can be estimated from the population of activity of the filters.

Measuring the motion velocity assumes that locally the intensity can be mod-
eled as a linear translating pattern, see figure (20)(left panel):

I(x, t) = F (x− vt). (21)

Differentiating with respect to x and t (using ∇I = ∇F and ∂I
∂t = −v ·∇F ),

gives the optical flow equation:

v ·∇I +
∂I

∂t
= 0. (22)
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This enables us to estimate one component of the motion v but suffers from the
aperture problem discussed in section (1). One way to resolve this ambiguity
is by applying a population of filters {Gµ(x, t) : µ = 1, ...,M} indexed by µ
(for example, the Gµ(.) could be Gaussian filters). These filters introduce local
context:

Gµ ∗ I(x, t) =

∫
Gµ(x− y, t− s)I(y, s)dsdy. (23)

Hence each filter gives a constraint on the velocity,

v ·∇Gµ ∗ I +
∂Gµ ∗ I
∂t

= 0. (24)

We can then get an estimate of the velocity v by minimizing the cost function:

E(v) =

M∑
µ=1

(v ·∇Gµ ∗ I +
∂Gµ ∗ I
∂t

)2.

This minimization can be done using a similar neural network to that used
for estimating disparity for stereo in the previous section. We have a set of
cells tuned to different velocities {vi : i = 1, ..., N}. The cell tuned to velocity
vi receives input (v ·∇Gµ ∗ I + ∂Gµ∗I

∂t )2 from each filter µ and sums the re-
sponses to obtain E(vi). Then we use a variant of winner-take-all to compute
v̂ = arg mini=1,...,N E(vi).

This approach assumes that there is enough local information to resolve the
motion ambiguity which may not be the case. For example, for the stimuli in
figure (7) we can only locally estimate one component of the motion because of
the aperture problem. To resolve this ambiguity we need to use more spatial or
temporal context as described in section (4.4).

An alternative way to analyze this problem is by applying fourier analysis to
equation (21).

Î(ω, ωt) =
1

2π

∫ ∫ ∫
exp{i(ω · x+ ωtt)}I(x, t)dxdt

Î(ω, ωt) =
1

2π

∫ ∫ ∫
exp{i(v · x+ ωt)t} exp{iω · (x− vt)}F (x− vt)dxdt

Î(ω, ωt) =
1

2π

∫
exp{i(v · ω + ωt)t}dt

∫ ∫
exp{iω · x}F (x)dx

Î(ω, ωt) = δ(v · ω + ωt)F̂ (ω)

Where x = x− vt is a change of variables in the integral.
This shows that if we have filters exp{i(xω+ωtt)} tuned to spatial-temporal

frequencies ω, ωt then the only filters which respond are those whose frequencies
obey the equation v · ω + ωt = 0 and hence lie on a plane in frequency space.
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Hence we can determine v from a population of filters by observing which filters
are activated and finding the best fit plane, see figure (20)(right panel).

In practice, we cannot use filters tuned to frequency because these are not
bounded in space and time. But instead we can impose bounds in space and time.
For example, converting the filters to spatio-temporal Gabors by multiplying
sinusoids by Gaussians (to impose the bounds). The analysis for this case is
more complicated because the fourier transforms of the filters are no longer
sharply localized in fourier space. But it can be shown [57] that if the filters
are spatio-temporal Gabors then the most active filters are those whose spatial-
temporal tuning is centered on the plane v · ω + ωt = 0. Hence the plane in
frequency space can be estimated from a population of spatio-temporal filters
and the velocity locally estimated.

This gives rise to a two stage model of motion estimation where the first
population of neurons where each neuron (i.e. filter) is sensitive to the spatio-
temporal frequency of the input image but not directly to the motion. The pop-
ulation, however, implicity encodes the motion as described above. The second
population of neurons extract the motion information from the first population
and hence these neurons are tuned directly to motion. This is consistent with
the experimental findings [3],[57], [150]. Similar models arise in related work on
the fly and beetle visual systems [58,14].

3 Probabilities and Decision Theory

The previous section has given examples about how we can combine the response
of many features/filters to perform tasks like stereo or motion estimation. The
filter responses were combined by specific mechanisms, e.g., looking for the set
of filters which have maximal response. This section describes a more principled
approach based on probabilities and decision theory. The section also illustrates
the importance of knowing whether filter responses, hence visual cues for the
task, are dependent or independent.

We introduce the probabilities of filter responses by describing a classical
experimental finding about natural image statistics. Intuitively the intensities of
neighboring pixels tend to be similar. This intuition can be captured by taking

derivative filters of the image, i.e., dI
dx or d2I

dx2 , and plotting their probability
distribution, or histogram. Surprisingly these probability distributions are very
similar from image to image [155]. This can be verified from interactive demo
(3a) on natural image statistics. Interactive demo (3b) explores the statistics of
edge detection and illustrates decision theory.

3.1 Edge Detectors/ Texture Detectors and Decisions.

Consider the tasks of deciding whether an image patch at position x contains an
edge by which we mean the boundary of an object or a strong texture boundary
(e.g., like the writing on a tea shirt). The previous section showed that some
Gabor filters are tuned (i.e. respond strongly) to edges at specific orientations.



Early Vision 43

But such filters will also response to other stimuli such as texture patterns, so
how can we decide if their response is due to an edge? The simplest way is to
threshold the response so that an edge, at a specific orientation, is signalled if
the filter response is larger than a certain threshold value. But what should that
threshold be? How do we do a trade-off to balance false negative errors, where
we fail to detect a true edge in the image, with false positive errors where we
incorrectly label a pixel as an edge? Also each filter in a filterbank contains some
evidence about the presence of an edge, so how can we combine their evidence
in an optimal manner? How can we formulate the intuition that the evidence
from some filters give independent evidence while others do not.

Decision theory gives a way to address these issues. The theory was devel-
oped as a way to make decisions in the presence of uncertainty. In this section we
develop the key ideas of decision theory by addressing the specific task of edge
detection. In the next section we give a more general treatment. We will only
treat the case when we are detecting edges based on local evidence in the image.
Later in this chapter we will extend to when we can use non-local, or contex-
tual information. Interactive demo (3b) on decision theory and edge detection
illustrates most of the ideas in these two sections.

To start with, we consider the evidence for the presence of an edge using
a single filter f(.) only. We assume we have a benchmarked dataset so that at
each pixel we have intensity I(x) and a variable y(x) ∈ {±1} (where y = 1
indicates an edge, and y = −1 does the opposite). We apply the filter to the
image to get a set of filter responses f(I(x)). If the filter is tuned to edges,
then the response f(I(x)) is likely to be higher if an edge is present than if not.
This requires selecting a filter f(x), such as the modulus of the gradient of the

intensity |∇I(x)| =
√

dI
dx

2
+ dI

dy

2
(since |∇I(x)| is likely to be large on edges and

small off edges).
To quantify this, we use the benchmarked dataset to learn conditional prob-

ability distributions for the filter response f(I) conditioned on whether there is
an edge or not:

P (f(I)|y = 1), P (f(I)|y = −1).

Each distribution is estimated by computing the histogram of the filter response
by counting the numbers of times the response occurs within one of N equally
spaced bins and normalizing by dividing by the total number of responses. The
histograms for P (f(I)|y = 1) and P (f(I)|y = −1) are computed from the filter
responses on the points labeled as edges {f(I(x)) : y(x) = 1} and not-edges
{f(I(x)) : y(x) = 1} respectively. Typical conditional distributions are shown in
figure (21).

We can now perform edge detection on an image, see figure (22). At each pixel
x we compute f(I(x)) and calculate the conditional distributions P (f(I(x))|y =
1) and P (f(I(x))|y = −1). These distributions give local evidence for the pres-
ence of edges at each pixel. Note, however, that local evidence for edges is often
highly ambiguous, see figure (23). Spatial context can supply additional infor-
mation to help improve edge detection, as discussed in a later section, and so
can high-level knowledge (e.g., by recognizing the objects in the image).
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Fig. 21. The probability of filter responses conditioned on whether the filter is on or off
an edge – P (f |y = 1), P (f |y = −1), where f(x) = |∇I(x)|. Left panel: the probability
distributions learnt from a dataset of images. Right panel: the smoothed distributions
after fitting the data to a parametric model.

Fig. 22. The input image and its groundtruth edges (far left and left). The derivative
dI/dx of the image in the x direction (center). The probabilities of the local filter
responses P (f(I(x))|y = 1) (right) and P (f(I(x))|y = −1) (far right) have their
biggest responses on the boundaries and off the boundaries respectively, hence the
log-likelihood ratio log P (f(I(x))|y=1)

P (f(I(x))|y=−1)
gives evidence for the presence of edges.

Fig. 23. The local ambiguity of edges. An observer has no difficulty in detecting all the
boundary of the horse if the full image is available (left). But it is much more difficult
to detect edges locally (other panels).
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The log-likelihood ratio log P (f(I(x))|y=1)
P (f(I(x))|y=−1) gives evidence for the presence

of an edge in image I at position x. This ratio takes large positive values
if P (f(I(x))|y = 1) > P (f(I(x))|y = −1) (i.e. if the probability of the fil-
ter response is higher given an edge is present) and large negative values if
P (f(I(x))|y = −1) > P (f(I(x))|y = 1). So a natural decision criterion is decide
that an edge is present if the log-likelihood ratio is greater than zero and that
otherwise there is no edge. This can be formulated as a decision rule α(x):

α(x) = 1, if log
P (f(I(x))|y = 1)

P (f(I(x))|y = −1)
> 0, α(x) = −1, if log

P (f(I(x))|y = 1)

P (f(I(x))|y = −1)
< 0.

This can expressed, more compactly, as

α(x) = arg max
y∈{±1}

y log
P (f(I(x))|y = 1)

P (f(I(x))|y = −1)
.

Note that this rule gives perfect results (i.e. is one hundred percent correct)
if the two distributions do not overlap, i.e. if P (f(I(x))|y = 1)P (f(I(x))|y =
−1) = 0 for all I. In this case it is impossible to confuse the filter responses to
the different types of stimuli. But this situation is very unlikely to happen. Now
consider a more general log-likelihood ratio test which depends on a threshold T ,
this gives a rule:

αT (x) = arg max
y∈{±1}

y{log
P (f(I(x))|y = 1)

P (f(I(x))|y = −1)
− T}.

By varying T we get different types of mistakes. We can distinguish between
the false positives which are non-edge stimuli which the decision rule mistak-
enly decides to be an edge, and false negatives which are edge stimuli which
are mistakenly classified as not being edges. Increasing the threshold T reduces
the number of false positives but at the cost of increasing the number of false
negatives, while decreasing T has the opposite effect.

Making a decision requires a trade-off between these two types of errors.
Bayes decision theory says this tradeoff should depend on two issues. Firstly,
the prior probability that the image patch is an edge. Statistically most image
patches do not contain edges, so we would get a small number of total errors
(false positives and false negatives) by simply deciding that every image patch
is non-edge. This would encourage us to increase the threshold T (to −∞ so
that every image patch would be classified as non-edge). Secondly, we need to
consider the loss if we make a mistake. If our goal is to detect edges, then we
may be willing to tolerate many false positives provided we keep the number
of false negatives small. This means we choose a decision rule, by reducing the
threshold T , so that we detect all the real edges but also output “false edges”,
which we hope to remove later by using contextual cues (see the next section).
Later we show how this approach can be justified using the framework of decision
theory. (In the next section, we see that the log-likelihood ratio is justified as
local evidence for the presence of an edge even if we are making the decision
using non-local context).
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Now we consider combining several different filters {fi(.)|i = 1, ...,M} to de-
tect an edge. Generalizing the analysis above, we must learn probability distri-
butions for the joint response of all the filters P (f1, f2, . . . |y) = P ({fi(I(x))}|y)
conditioned on whether the image patch I at x is an edge y = 1 or not an edge
y = −1. This leads to a decision rule:

αT (I(x)) = arg max
y∈{±1}

y{log
P ({fi(I(x))}|y = 1)

P ({fi(I(x))}|y = −1)
− T}.

Methods of this type have been applied to edge detection and give good re-
sults [87] but they have two related drawbacks. Firstly, the joint distributions
require a large amount of data to learn particularly if we represent the distribu-
tions by histograms. Secondly, the joint distributions are “black-boxes” and give
no insight into how the decision is made. Intuitively, filters tuned to edges at the
same orientations will all respond strongly if there is an edge. But this type of
intuition is not obvious just from studying the joint distributions. So it is better
to try to get a deeper understanding of how the different filters contribute to
making this decision, by studying whether they are statistically independent.

The response of the filters is statistically independent if:

P ({fi(I(x))}|y) =
∏
i

P (fi(I(x))|y) for each y

This implies that the distributions P (fi(I(x))|y) can be learnt separately (which
decreases the amount of data) and also implies that the log-likelihood test can
be expressed in the following form:

αT (x) = arg max
y∈{±1}

y{
∑
i

log
P (fi(I(x))|y = 1)

P (fi(I(x))|y = −1)
− T}

Hence the decision rule corresponds to summing the evidence (the log-likelihood
ratio) for all of the filters to determine whether it is above or below the threshold
T . This means that each filter gives a “vote”, which can be positive or negative,
and the decision is based on the sum of these votes. This process is very simple
so it is easy to see which filters are responsible for the decision.

Unfortunately, very few filters are statistically independent. For example, the
response of each filter will depend on the total brightness of the image patch and
so all of them will response more to a “strong” edge than to a “weak” edge. This
prevents them from being independent, but it suggests a weaker independence
condition known as conditional independence. Suppose we add an additional
filter f0(I(x)) which, for example, measures the overall brightness. Then it is
possible that the other filters are statistically independent conditioned on the
value of f0(I(x)):

P ({fi(I(x))}, f0(I(x))|y) = P (f0(I(x))|y)
∏
i

P (fi(I(x))|f0(I(x)), y)



Early Vision 47

This requires only representing(learning) the distributions P (fi(I(x))|f0(I(x)), y)
and P (f0(I(x))|y). It also leads to a simply decision rule:

αT (x) = arg max
y∈{±1}

y{log
P (f0(I(x))|y = 1)

P (f0(I(x))|y = −1)
+
∑
i

log
P (fi(I(x))|f0(I(x)), y = 1)

P (fi(I(x))|f0(I(x)), y = −1)
−T}.

It has been argued [137] that methods of this type can be implemented by
neurons and may be responsible for edge detection. Note that the arguments
here are general and do not depend on the type of filters fi(.) or whether they
are linear or non-linear. It has, for example, been suggested that edge detection
is performed using the energy model of complex cells [118].

The same approach can be applied to other visual tasks. For example, con-
sider using local filter responses to classify whether the local image patch at x is
“sky”, “vegetation”, “water”, “road”, or “other”, see figure (24). We denote these
by a variable y ∈ Y (e.g., where Y = {′′sky”,′′ vegetation”,′′ water”,′′ road”, or′′other”}.
We choose a set of filters {fi(I(x))} which are sensitive to texture and color prop-
erties of image patches. Then, as before, we learn distributions P ({fi(I(x))}|y)
for y ∈ Y. We select a decision rule of form:

α(I(x)) = arg max
y∈Y

P ({fi(I(x))}|y)Ty,

where Ty is a set of thresholds (which can be derived from decision theory).

Fig. 24. Classifying local image patches. The image shows the groundtruth, see [119].
Certain classes – sky, grass, water – can be classified approximately from small image
patches.

Experiments on images show that this method can locally estimate the lo-
cal image class with reasonable error rates for these types of classes [88] and
computer vision researchers have improved these types of results using more
sophisticated filters. It is unknown, however, whether human or monkey visual
systems do make these types of classification.

We stress that the theories described in this section model edge detection
without context. There are two types of context we will consider in this chapter.
The first, discussed in section (4), uses spatial context and is low- or mid-level
since it depends only on generic properties of images and surfaces. It exploits the
idea that edges in natural images are often geometrically regular and co-linear.
The second type of context, is high-level and is object specific. For example,
if we detect a face in an image then our knowledge about faces enables us to
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detect the boundaries of a face better than if we rely only on local edge cues.
This second type of context is out of scope of this chapter but is briefly discussed
in section (6).

3.2 Bayes Decision Theory and Ideal Observers

We now describe Bayesian analysis in more detail. This is advanced material
which can be skipped on a first reading. Bayes decision theory is a framework
for making optimal decisions in the presence of uncertainty. We represent the
input by x ∈ X and the output by y ∈ Y (e.g., for edge detection x is the filter
response f(I), and y ∈ {±1} indicates if an edge is present or not). We assume
that there is a probability distribution P (x, y) which generates the input and
output. This can be expressed in terms of a prior P (y) and a likelihood P (x|y)
by the identity P (x, y) = P (x|y)P (y). A decision rule is expressed as ŷ = α(x).
We specify a loss function L(α(x); y) which is the cost of making decision α(x)
if the real decision should be y.

The risk is specified by:

R(α) =
∑
x,y

P (x, y)L(α(x), y)

The Bayes rule α̂ = arg minαR(α). The Bayes risk is minαR(α) = R(α̂) (except
for a few highly unusual special cases).

The Bayes rule is the best decision rule you can make (subject to this cri-
terion) and the Bayes risk is the best performance. Hence Bayes Decision The-
ory can specify the optimal way to estimate y from input x. There are several
important special cases. If the loss function penalizes all errors by the same
amount, i.e., L(α(x), y) = K1 if α(x) 6= y and L(α(x), y) = K2 if α(x) = y (with
K1 > K2), then the Bayes rule corresponds to the maximal a posteriori estimator

α(x) = arg maxP (y|x), where P (y|x) = P (x|y)P (y)
P (x) is the posterior distribution

of y conditioned on y. If, in addition, the prior is a uniform distribution, i.e.
P (y) = constant, then Bayes rule reduces to the maximum likelihood estimate
α(x) = arg maxP (x|y).

For binary decision problems y ∈ {±1}, the loss function is usually chosen to
pay no penalty if the correct decision is made – i.e. α(x) = y – but has a penalty
Fp for false positives, where y = −1 but α(x) = 1, and Fn for false negatives
where y = 1 but α(x) = − (it is assumed here that the target is y = 1 and the
distracter os y = −1, so a false positive occurs if we decide that a distracter
is a target, and a false negative, if we decide that a target is a distracter). It
follows that we can express the Bayes rule in terms of a log-likelihood ratio test

log P (x|y=1)
P (x|y=−1) > T , where T depends on the prior p(y) and the loss function

L(α(x), y).
More specifically, the Bayes Risk is R(α) =

∑
x p(x)

∑
y L(α(x), y)p(Y |x).

Then we divide the data (x, y) into four sets: (i) the true positives {(x, y) :
s.t. α(x) = y = 1}. the true negatives {(x, y) : s.t. α(x) = y = −1}, (iii)
the false positives {(x, y) : s.t. α(x) = 1, y = −1}, and the false negatives
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{(x, y) : s.t. α(x) == −1, y = 1}. These four cases correspond to loss function
values L(α(x) = 1, y = 1) = Tp, L(α(x) = −1, y = −1) = Tn, L(α(x) = 1, y =
−1) = Fp, L(α(x) = −1, y = 1) = Fn respectively. Then the decision rule αT (.)
reduces to:

log
P (x|y = 1)

P (x|y = −1)
> log

Tn − Fp
Tp − Fn

+ log
P (y = −1)

P (y = 1)
.

The intuition is that the evidence in the log-likelihood must be bigger than our
prior biases while taking into account the penalties paid for different types of
mistakes.

The results in the previous section on edge detection and texture classification
can be derived from decision theory. The priors P (y) specify the probability that
an image patch contains an edge (empirically P (y = 1) ≈ 0.05 and P (y = −1) ≈
0.95). The loss function should be chosen to specify the cost of making different
types of mistakes. For texture classification, the variable y takes values in a set Y
which is called multi-class decision. The same theory applies to tasks for which
we need to make a set of related, but non-local decisions, which we will address
in the next section.

We now show that an important special case of signal detection theory [50]
– often used as a framework to model how humans make decisions when per-
forming visual, auditory, and other tasks – can be obtained as a special case of
Bayes Decision Theory. We consider the two class case, where y ∈ {±1}, and
suppose that the likelihood functions are specified by Gaussian distributions,
P (x|y) = 1√

2πσy
exp{−(x − µy)2/(2σ2

y)}, which differ by their means (µ1, µ−1)

and their variances (σ2
1 , σ

2
−1). The Bayes rule can be expressed in terms of the

log-likelihood ratio test:

α̂(x) = arg max
y

y{−(x− µ1)2/(2σ2
1)− log σ1 + (x− µ−1)2/(2σ2

−1) + log σ2 − T}.

This has requires determining whether the data x is above or below a quadratic
polynomial curve in x. In the special case when the standard deviations are
identical σ2

1 = σ2
2 (so we drop the subscripts 1,−1), this reduces to making a

decision based on whether the data point x satisfies:

2x(µ1 − µ−1) + (µ2
1 − µ2

2) < 2Tσ2

This special case, with σ2
1 = σ2

−1 is much studied in signal detection theory

[50]. It means that the decision is based on a single function d′ = µ1−µ−1

σ . This
quantity is used to quantify human performance for psychophysical tasks.

This motivates the idea of an ideal observer. An observer like this has opti-
mal performance which requires exploiting the statistical properties of the dis-
tribution P (x, y) of the data. A classic example of ideal observer theory shows
that under certain conditions photoreceptors in the retina are almost optimal
at detecting the photons which reach them [8,131]. This takes into account the
probability of the photoreceptors firing x if it receives a photon P (x|y = 1), the
probability that the photoreceptor fires spontaneously P (x|y = −1).
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Ideal observers can also be defined for other vision tasks [159,46,161,37]. The
difficulty, however, is judging whether humans are adapted to doing the task.
It is possible to define ideal observers where human performance is much worse
than the ideal observers [177]. Why can this happen? The task may provide
information for which humans are not adapted (e.g., visual inspection of circuit
boards to find deficits). Also, the ideal observers know the distributions p(x, y)
which, for synthetic stimuli, are those chosen by the scientist performing the
experiment and may have little similarity to the natural statistics of stimuli of
the world, which human vision have probably adapted to.

Another important concept is the receiver operating characteristic (ROC)
curve. This allows us to study decisions when we do not want to restrict ourselves
to specific priors and loss functions. Instead, we plot the true positive rate as
a function of the false positive rate by allowing the decision threshold T to
vary. For each value T of the threshold, we have a decision rule αT (.) which
results in a fraction of true positives

∑
x:αT (x)=1 P (x|y = 1) and false positives∑

x:αT (x)=1 P (x|y = −1). This gives a single point on the ROC curve. We plot

the curve by allowing T to vary. Observe that for very large T (as T 7→ ∞), the
true positive and false positive rates will tend to 0. While as T gets very small
(T 7→ −∞) both rates will tend to 1. Hence the ROC illustrates the trade-off
between the two rates.

Note that this section presented Bayes Decision Theory for binary classifi-
cation. But the same framework can be extended in a straightforward manner
if the output y take multiple values. In particular, it applies to cases where we
have a set of decision variables defined on each lattice site of an image (see later
sections).

3.3 Divisive Normalization

An important example is the use of probabilistic models [170] to account for
divisive normalization. Divisive normalization is a mechanism whereby cells mu-
tually inhibit one another, effectively normalizing their responses with respect
to stimulus inputs. Originally developed to explain non-linear responses to con-
trast in V1 [59], divisive normalization has been proposed as a basic cortical
computation that underlies various effects of context (see next section), as well
as higher-level processes such as attention [20].

The probabilistic approach give a theoretical justification for divisive nor-
malization in V1. The main idea is that filters with similar preferences for ori-
entation representing nearby spatial locations in a scene have striking statistical
dependencies, which can be removed by divisive normalization. Specifically, if
we plot the statistics of two linear filters fc, fs (center and surround) then the
magnitudes of fc, fs are coordinated in a straightforward way, which has a char-
acteristic shape of a Bow-Tie.

This can be modeled by assuming there are hidden variables ν which affect
both responses and hence induces correlation between the responses (as discussed
earlier for edge detection). For example, ν could represent the local average
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image intensity which could affect the response of both filters but, after the filter
response could be made independent by conditioning on the average intensity.
Suppose ν has a prior distribution P (ν) = ν exp{−ν2/2} for ν ≥ 0. We have a
pair of filters {li : i = 1, 2} which are related to gaussian models {g1 : i = 1, 2}
(the analysis can be generalized to arbitrary number of filters [152]). The claim
is that we can model the activation of the set of filter responses:

P (l1, l2) =

∫
dνP (ν)

2∏
i=1

P (li|ν, gi))P (gi), (25)

where P (li|ν, gi) = δ(li − νgi). In this model the filter responses are generated
by independent processes, g1, g2, but then are multiplied by the common factor
ν. This is illustrated in figure (25).

g1 g2

l1 l2

v
g1 g2

l1 l2

Fig. 25. Left Panel: The graphical structure of the divisive normalization model. The
filter responses l1, l2 are generated from stimuli g1, g2 respectively and by the common
factor ν. The distributions of l1, l2 are factorized if we condition on ν. Right Panel:
But if we integrate out ν then almost all the variables become dependent as reflected
by the complexity of the graph structure.

In particular, for each filter we can compute P (gi|l1, l2). After some algebra,
this is computed to be:

P (g1|l1, l2) =
g−11 exp{− g21l

2

2σ2l21
− l21

2g21
}

B(0, l/σ)
, (26)

where l =
√
l21 + l22, and B(., .) is a Bessel’s function (a well-known class of math-

ematical functions that arise in solving differential equations). To get intuition,
note that g1 = l1/ν and g1 = l1/ν. So if ν is small then |l1| and |l2| are likely
to be small together, while if ν is large, then |l1| and |l2| are both likely to be
large.



52 Yuille and Kersten

Assume that the goal of a model unit is to estimate the gi from the observed
filter responses {li : i = 1, 2}, which gives the non-linear response of the cell. It
follows, from analysis above, that

E(g1|l1, l2) ∝ sign{l1}
√
|l1|

√
|l1|√

l21 + l22 + k
. (27)

The
√
l21 + l22 + k term sets the gain and performs the divisive normalization.

The model has also been applied to explain the classic tilt illusion in per-
ception [152,136]. In the “simultaneous” tilt illusion, a set of vertically oriented
lines appears to tilt right when surrounded by an annulus of lines tilted left–an
effect called “repulsion”. However, for large differences between the center ori-
entation and surround (tilted left), the center vertical lines can appear to tilt
left–an effect called “attraction”. In their model, the population of neurons re-
sponding to the surround tilted lines contribute to divisive normalizing of the
neurons responding to the center stimulus. This results in a change of their neu-
ral tuning curves which, together with the degree of coupling between center and
surrounds, accounts for repulsion and attraction.

The suppressive effect of surround contrast on a central region is an example
of spatial context. There are many phenomena like this whose effects vary in type
and extent of their spatial interactions. The next section introduces a broader
range of contextual phenomena and a set of computational techniques to model
them.

4 Context and Spatial Interactions between Neurons

There is considerable evidence that low-level vision involves long-range spatial
interactions so that human perception of local regions of an image can be strongly
influenced by their spatial context. Psychophysicists have discovered many per-
ceptual phenomena demonstrating spatial interactions. For example, local image
regions which differ from their neighbors tend to “pop-out” and attract attention
while, conversely, similar image features which form spatially smooth structures
tend to get “grouped” together to form a coherent percept, see figure (26)(left
panel). Image properties such as color tend to spread out, or fill-in regions, until
they hit a boundary [55][148] as shown in figure (26)(right panel). In general,
there is a tendency for low-level vision to group together similar image features
and make breaks at places where the features change significantly. These per-
ceptual phenomena are not surprising from a theoretical perspective since they
correspond to low-level visual tasks such as segmentation and the detection of
salient features. Segmenting an image into different regions is one of the first
stages of object recognition (in the ventral stream) and a pre-cursor to esti-
mating the three-dimensional structure of objects, or surfaces, in order to grasp
them or avoid them (dorsal stream). Detection of salient features has many uses
including bottom-up attention [68]. It has been suggested that many of these
processes are performed in V1 [190] although possibly this involves feedback
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and interactions between V1 and V2 [154]. Note that, as discussed in the first
section, low-level vision interacts with high-level vision and it is very unlikely
that tasks like segmentation are performed entirely by low-level processes.

Fig. 26. Left Panel: association fields. The circular alignment of gabor patches (left
panel) make it easier to see the circular form in the presence of clutter (right panel).
Right Panel: The neon color illusion. A bluish color appears to fill in the white regions
between the blue lines creating the appearance of blue transparent disks.
d

These psychophysical and theoretical studies are supported by single-electrode
studies [90], [96] which show that the activities of neurons on monkey area V1
appear to involve spatial interactions with other neurons. When monkeys are
shown stimuli like figure 33 their responses over the first 60 msec are similar to
those predicted by classic models (e.g., previous sections) but their later activity
spreads in from the boundaries, roughly similar to predictions of computational
models [183]. There is also a considerable literature the related topic of non-
classical receptive fields [75].

This section discusses neural networks models which address these phenom-
ena. Although the models capture the essence of the phenomena they are sim-
plifications in three respects. Firstly, they use simple models of neurons and it
is currently not possible to compare them directly to real neural circuits. Sec-
ondly, these models are formulated in terms of lateral, or horizontal connections.
Thirdly, the performance of these models on natural images is significantly worse
than human’s. Although there are more advanced computer vision models, built
on similar principles, whose performance starts to approach human vision (unless
high level cues are present, which humans can exploit).

We formulate these models in terms of probability distributions defined over
graphs, where the nodes of the graph represent neurons. This differs from some
of the standard “neural network” models for these types of phenomena, see
[56]. but our approach has several advantages. Firstly, this enables us to use a
coherent framework which unifies the models in this section with those we will
present in later sections. Secondly, it puts the models in a form where they can be
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directly related to a class of computer vision models. Thirdly, this probabilistic
formulation is of increasing use in models of Artificial Intelligence, Cognitive
Science, and in the machine learning and statistical techniques used to analyse
experimental neuroscience data. Fourthly, it is possible to derive many of these
neural network models as approximations to the probability models.

We start by first introducing probabilistic models of neurons and showing
how our previous linear filter models can be derived as approximations. Next
we introduce neural network models and show their relationship to probability
models. Then the following section uses this material to derive some specific
models for a range of visual tasks. This section has three interactive demos:
(4a) Gibbs sampling. (4b) Mean Field Theory and Neural Models. (4c) Hopfield
Networks and Stereopsis.

Single Neurons: Probabilistic Model and Integrate and Fire. In the
previous section, we described neurons as linear filters and briefly mentioned
thresholds and non-linearities. In this section we provide a more realistic model
of a stochastic neuron where the neuron has a probability of firing an action
potential. We will show how linear filters, thresholds, and non-linearities can be
obtained as approximations to this stochastic model. This stochastic model is, in
turn, an approximation and we refer to the literature for more realistic models
such as assuming that the probability of firing is specified by a Poisson process
[139]. For simplicity, we restrict ourselves to the simpler stochastic integrate-
and-fire model which is easier to analyze and to relate to computational models.

In the integrate-and-fire model a neuron i receives input Ij at each dendrite
j. These inputs are weighted by the synaptic strengths wij and sent along the
dendrites to the soma. At the soma, these weighted inputs are summed linearly
to yield summed linearly to yield

∑
j wijIj . The probability of firing si = 1, or

not firing si = 0, is given by:

P (si|I) =
exp{si(

∑
j wijIj − Ti)}

1 + exp{
∑
j wijIj − Ti}

, (28)

where Ti is a threshold.
To relate this stochastic model to our earlier linear models, we calculate the

probability that the neuron fires. This is given by a sigmoid function:
In particular, the probability of firing (si = 1) is given by a sigmoid function:

1∑
si=0

siP (si|I) =
1

1 + exp{
∑
j wijIj − Ti}

= σ(
∑
j

wijIj − Ti). (29)

Observe that this is also the expected firing rate
∑
si=0,1 siP (si|I) because∑

si=0,1

siP (si|I) = P (si = 1|I) = σ(
∑
j

wijIj − Ti). (30)

Hence, by computing the expected firing rate, we can obtain a determinis-
tic approximation to a stochastic neuron. This is a sigmoid function of a linear
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weighted sum of the input (minus a threshold). The sigmoid function is approx-
imately linear for small inputs, saturates at value 1 for large positive inputs,
and suppresses large negative inputs to 0. Hence there is a linear regime where
the probability of firing is

∑
j wijIj − Ti. This enables us to recover the linear

models used in the previous section as an approximation.
Next we modify the model so that it deals with non-linear image features.

This allows us to relate it to the types of computational models described in the
previous section and will enable us to construct richer models of this type that
can deal with spatial context.

To make this idea concrete, we consider detecting whether there is an edge
or not at pixel x, or alternatively classifying whether a pixel is foreground or
background. In either task, we formulate the problem as Bayes estimation where
we have conditional distributions P (f(I(x))|s) and priors P (s) for s ∈ {0, 1}.
The posterior distribution P (s|f(I(x))) can be expressed in form:

P (s|f(I(x))) =
1

Z
exp{s(log

P (f(I(x))|s = 1)

P (f(I(x))|s = 0)
+ log

P (s = 1)

P (s = 0)
)},

where Z is a normalization constant (chosen so that
∑1
s=0 P (s|f(I(x))) = 1).

This shows that the posterior distribution for the presence of an edge, or a
foreground object, can be expressed in the same form. The only difference is
that the input is a nonlinear function of the image instead of the image it-
self. This claim can be justified by expressing P (f(I(x))|s) = {P (f(I(x))|s =
1)}s{P (f(I(x))|s = 0)}1−s, P (s) = {P (s = 1)}s{P (s = 0)}1−s, substituting
these into the posterior P (s|f(I(x))) = P (f(I(x))|s)P (s)/P (f(I(x))).

Probability Models with Context. Now we consider generalizing the model
for foreground/background classification so that it can include spatial context.
Intuitively neighboring pixels in the image are likely to belong to the same class,
i.e. are likely to be either all background or all foreground. This is a form of
prior knowledge, or natural statistic, which can be learnt by analyzing natural
images.

We now specify neurons by spatial position x instead of index i. As above,
we have distributions P (f(I(x))|s) for the features f(I(x)) at position x condi-
tioned on whether this is part of the foreground object s(x) = 1, or not s(x) = 0.
We use the notation S to be the set of the states of all neurons {s(x)}. We also
specify a prior distribution:

P (S) =
1

Z
exp{−γ

∑
x

∑
y∈N(x)

{s(x)− s(y)}2},

where γ is a constant. This prior uses a neighborhood N(x) which specifies those
spatial positions which directly interact with x in the model. In graphical terms,
the positions x are the nodes V of a graph G and the edges E specify which
nodes are connected. This is illustrated in figure (27)(far left panel).
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Formally, the edges of the graph define the Markov structure of the prob-
ability distribution P (S). It can be shown that the conditional distribution of
the state s(x) at one position depends only on the states of positions in its
neighborhood N(x). This is the Markov condition:

P (s(x)|S/s(x)) = P (s(x)|{s(y) : y ∈ N(x)}),

where S/s(x) denotes all states in S except s(x). In real vision applications this
type of prior, including the size of the neighborhoods, can be estimated from the
statistics of natural images.

Next, we define a probability model for the observed image features at posi-
tions x in the image. We use the same models as before, at each position x:

P (f(I(x))|s) = {P (f(I(x))|s = 1)}s{P (f(I(x))|s = 0)}1−s.

We combine these, using independence assumptions, to get a distribution:

P (f(I)|S) =
∏
x

P (f(I(x))|s) =
1

Zl
exp{

∑
x

s(x)(log
P (f(I(x))|s = 1)

P (f(I(x))|s = 0)
},

where Zl is a normalization term (which can be calculated directly).
These distributions P (f(I)|S) and P (S) can be combined to get the posterior

distribution P (S|f(I)) which is of form:

P (S|f(I)) =
1

Zp
exp{−E(S)},

where

E(S) = −
∑
x

s(x) log
P (f(I(x))|s = 1)

P (f(I(x))|s = 0)
+
∑
x

∑
y∈N(x)

γ{s(x)− s(y)}2.

The first term of E(S) gives the local cues for foreground or background (the
log-likelihood ratios of the features) while the second term adds the local context.
This context encourages neighboring positions to be either all foreground or all
background. Note that this method of specifying a distribution P (S) in terms
of a function E(S) will keep re-occurring throughout this section.

This model specifies the posterior distribution for foreground-background
classification using spatial context and, as we will show, similar methods can be
applied to other visual tasks. But there remains the issue of how to estimate the
most probable states, i.e. computing the Bayes estimator.

Ŝ = arg maxP (S|f(I)).

In the next two sections we will discussion neurally plausible algorithms which
can do this. There are two types: (i) stochastic models which are natural exten-
sions of the probabilistic neural models discussed earlier and, which the Statistics
literature, are called Gibbs samplers [102], and (ii) neural network models which
are based on simplified biophysics of neurons but which can also, in certain cases,
be related to mean field approximations to the stochastic models.
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excitation

inhibition

Fig. 27. Far Left Panel: The graphical structure of the Markov model with nearest
neighbor connections. Left Panel: a fully connected graphical model. Right Panel: A
hyper-column structure where neurons within each column are tuned to different ori-
entations and inhibit each other. Far Right Panel: Edges have excitation (green) along
the direction of the edge and inhibition (red) perpendicular to the edge.

Probabilistic models of groups of neurons. In this section we introduce a
more general probability distribution. It is also specified by a model defined over
a graph where the nodes correspond to neurons and the edges to connections
between them. But we will not make any Markov restrictions on the edges and
so this model can be fully connected, see figure (27)(left panel).

More specifically, we have set of M neurons with states S = (s1, ..., sM ) and
with input I = (I1, ..., IN ). We specify a Gibbs probability distribution over the
set of activity of all neurons S = (s1, ...., sn) as follows. First we define an energy
function:

E(S, I : W ,θ) = −
∑
ij

WijsiIj + (1/2)
∑
kl

θklsksl.

This energy contains two types of terms: (i) those of form siIj which give the
interactions between the states of the neurons S and the input I and (ii) those
which specify interactions between the neurons. This energy is used to specify a
Gibbs distribution:

P (S, I) =
1

Z
exp{−E(S, I : W ,θ)}. (31)

Here Z is a normalization constant chosen to ensure that
∑

S P (S|I) = 1. We
note that Gibbs distribution originally arose in statistical physics where they
specify the probability distribution of a physical system in thermal equilibrium.
Here the physical energy of the system is E and the distribution can be derived
using the maximum entropy principle.

The weights {wij}, {θkl} specify the strength of the interactions between the
neuron and the inputs, and between the neurons and each other. In particular,
the interaction term

∑
kl θklsksl specifies the interactions between the neurons. If

this term was not present, then the distribution simplifies and it can be expressed
as a product of independent distributions:

P (S|I) =
1

Z
exp{

∑
ij

wijsiIj} =

n∏
i=1

P (si|I). (32)
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Hence in this special case the neurons act independently and are driven purely
by the input (i.e. there is no context). As a technical point, in this case the
normalization factor can be computed directly as Z =

∏
i Zi, where Zi =∑1

si=0 exp{
∑
j wijsiIj}.

Observe that we can recover the foreground/background model in the pre-
vious section by specifying values of the weights. This requires that we identify
the nodes i with positions x.

Now we specify stochastic dynamics on this model. These dynamics have two
purposes. Firstly, to describe the activities of sets of neurons interacting with
each other. Secondly, to give algorithms for estimating properties such as the
most probable configurations of the states S, which can be used for visual tasks
and for making decisions.

To specify stochastic dynamics, we generalize the stochastic neural model,
see equation (28), to deal with a set of neurons. A neuron received input S from
other neurons in addition to direct input from the stimulus I. Consider only the
activity of this neuron, fixing the states of all the others. Then the neurons will
have total input of

∑
j wijIj plus input

∑
k θiksk from the other neurons. Then,

extending equation (28), the probability that the cell i fires is:

P (si|I,S/i) =
1

Zi
exp{si(

∑
j

wijIj +
∑
k 6=i

θiksk)}. (33)

where the notation S/i means the states {sj : j 6= i} of all the neurons except
the neuron we are considering. The term Zi is defined so that the distribution
is normalized, so it is given by Zi = 1 + exp{

∑
j wijIj +

∑
k 6=i θiksk}.

This gives the following dynamics for a group of neurons. At each time, a neu-
ron is selected at random and fires with a probability specified by equation (33).
This model assumes that no neurons ever fire at the same time and ignores the
time for a spike fired from one neuron to reach other neurons. This is illustrated
in interactive demo (4a).

How does this stochastic dynamics relate to the Gibbs distribution spec-
ified above? From the statistical perspective, this is an example of Markov
Chain Monte Carlo (MCMC) sampling [102]. MCMC refers to a class of al-
gorithms which explore the state space of S stochastically so that it will gradu-
ally move to configurations which have high probability P (S|I). More precisely,
MCMC algorithms are guaranteed to give samples from the Gibbs distribution
— S1, ...,SM P (S|I). The stochastic update rule in equation (33) is a special
type of MCMC algorithm which is known as a Gibbs sampler, because it samples
from the conditional distribution P (si|I,S/i). These samples enable us to esti-

mate the most probable state of the system Ŝ = arg maxP (S|I), hence they can
estimate the MAP estimator of S and make optimal decisions for visual tasks.

To apply these models to visual tasks, we need to specify the weights. One
strategy is purely data driven and consists of learning the weights from training
examples, this is the Boltzmann Machine [2] which is out of scope for this chapter.
Another strategy is to specify distributions for specific visual tasks, and we will
give examples in the next few sections.
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Dynamical System Models of Neurons. There is an alternative way to
model sets of neurons using dynamical systems based on simplified models of
their biophysics [139],[26]. Pioneering work on this topic was done by Wilson and
Cowan [180], Grossberg and Mingolla [53,56], Hopfield and Tank [63], Abbott
and Kepler [1], and others. There is no space to cover the richness of these models
and, in any case, our chapter concentrates on the probabilistic formulation. But
we will discuss an important subclass of dynamical models [63] which, as we will
show, have very close relations to the probabilistic approach.

Following Hopfield and Tank, these dynamical systems are described as fol-
lows. A neuron is described by two (related) variables: (i) a continuous valued
variable ui ∈ {−∞,∞}, and (i) a continuous variable qi ∈ {0, 1}. Roughly
speaking, ui represents the input to the cell body (soma), due to the direct in-
put and the input from other neurons, and qi describe the probability that the
cell will fire an action potential. These variables are related by the equations
ui = log(qi/(1 − qi)) or, equivalently, by qi = σ(ui) (where σ(.) is the sigmoid
function).

The dynamics of the neuron is given by:

dui
dt

= −ui +
∑
j

wijIj +
∑
k

θikqk. (34)

Here, as before,
∑
j wijIj +

∑
k θikqk represent the direct input and the input

from the other neurons.
It can be shown, next section, that this dynamic system continually decreases

a function F (q), so that (dF )/dt ≤ 0. The function F acts as a Lyaponov function
for the system in the sense that it decreases monotonically as time t increases
and is bounded below. The existence of a Lyaponov function for the dynamics
guarantees that the system converges to a state which minimizes F (q) (note that
F (q) will typically have many minimum, and the system may converge to any
one of them). This dynamical system is illustrated in interactive demo (4b).

Relations between probabilistic models and dynamical system mod-
els. Perhaps surprisingly, there is a very close relationship between the dy-
namic systems in equation (34) and the stochastic update in equation (28). More
specifically, the dynamic system is a mean field approximation to the stochastic
dynamics. Mean field theory (MFT) was developed by physicists as a way to
approximate stochastic systems.

To explain this relationship we first define the mean field free energy F (q):

F (q) = −
∑
ij

WijIjqi−(1/2)
∑
ij

θijqiqj+
∑
i

{qi log qi+(1−qi) log(1−qi)}. (35)

Next we specify dynamics by performing steepest descent on the free energy
(multiplies by a positive factor):

dqi
dt

= −qi(1− qi)
∂F (q)

∂qi
. (36)
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Interestingly these are identical to the dynamical system in equation (34). This
can be seen by introducing a new variable ui = log qi/(1 − qi), which implies
that qi = σ(ui). Note that ∂F/∂qi = −

∑
jWijIj −

∑
j θijqj + log qi/(1 − qi),

ui = log qi/(1− qi), and dqi/qi(1− qi) = dui.
Equation (36) implies that the dynamical system decreases the free energy

F (q) monotonically with time t. This is because dF/dt = −
∑
i(∂F/∂qi)(∂qi/∂t) =

−
∑
i qi(1−qi)(∂F/∂qi)2. Hence F (q) is a Lyaponov function for equations (34,36)

and so the dynamics converges to a fixed point.
This shows that there is a close connection between the neural dynamical

system and minimizing the mean field free energy. In turn, the mean field free
energy is related to deterministic approximations to stochastic update methods
like Gibbs sampling [4] [60]. This connection is technically advanced and is not
needed to understand the rest of this chapter. Briefly, the mean field free energy

F (q) is the Kullback-Leibler divergence F (Q) =
∑

S Q(S) log Q(S)
P (S|I) between the

distribution P (S|I) and a factorized distributionQ(S) =
∏
i q
Si
i (1−qi)1−Si (plus

an additive constant, this can be verified by substitution). Hence the dynamical
system seeks to find the factorized distribution Q̂(S) which best approximates
P (S|I) by minimizing the Kullback-Leibler divergence. In this approximation
the response qi is an approximation to the expected response

∑
S1
SiP (S|I).

The connections between mean field theory and neural models was described in
[182]). For technical discussions about mean field theory and Gibbs sampling see
[184].

4.1 The Line Process Model

Our first example is the classic line process model [40][12][122] which was de-
veloped as a way to segment images. It has explicit line process variables which
“break” images into regions where the intensity is piecewise smooth. Our pre-
sentation will follow the work of ([85]) who translated it into neural circuits.

The model takes intensity values I as input and outputs smoothed intensity
values. But this smoothness is broken at places where the intensity changes are
too high, see figure (28). The model has continuous variables J representing
the intensity and binary-valued variables l for the line processes (or edges). The
model is formulated as performing maximum a posteriori (MAP) estimation.
The algorithm for estimating MAP is a neural network model which can be
derived from the original Markov Model [40] by mean field theory [36]. Note
that in this model the variables do not have to represent intensity. Instead they
can represent texture, depth, or any other property which is spatially smooth
except at sharp discontinuities.

For simplicity we present the weak membrane model in one-dimension. The
input is I = {I(x) : x ∈ D}, the estimated, or smoothed, image is J = {J(x) :
x ∈ D}, and the line processes are denoted by l = {l(x) : x ∈ D}, where
l(x) ∈ {0, 1}.

The model is specified by a posterior probability distribution:

P (J , l|I) =
1

Z
exp{−E[J , l : I]/T},
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where

E[J , l : I] =
∑
x

(I(x)− J(x))2 +A
∑
x

(J(x+ 1)− J(x))2(1− l(x)) +B
∑
x

l(x).

The first term ensures that the estimated intensity J(x) is close to the input
intensity I(x). The second encourages the estimated intensity J(x) to be spatially
smooth (e.g., J(x) ≈ J(x+1)), unless a line process is activated by setting l(x) =
1. The third pays a penalty for activating a line process. The result encourages
the estimated intensity to be piecewise smooth unless the input I(x) changes
significantly, in which case a line process is switched on and the smoothness is
broken. The parameter T is the variance of the probability distribution and has
a default value T = 1.

Ii
Ij

li j

Fig. 28. A representation of the Line-process model (far left) compared to a real neural
network (left). On the right we show the original image (upper left), the image cor-
rupted with noise (upper right) and the image estimated using the line-process model
(bottom).

This model can be implemented by a neural circuit [85]. The connections
between these neurons is shown in figure (28). To implement this model [85]
proposed a neural net model which is equivalent to doing mean field theory on
the weak membrane MRF (as discussed earlier) by replacing the binary-valued
line process variables l(x) by continuous variables q(x) ∈ [0, 1] (corresponding
roughly to the probability that the line process is switched on).

This gives an algorithm which updates the regional variables J and the line
variables q in a coupled manner. It is helpful, as before, to introduce a new

variable u which relates by q(x) = 1
1+exp{−u(x)/T} and u(x) = T log q(x)

1−q(x) .

dJ(x)

dt
= −2(J(x)− I(x))

= −2A{(1− q(x))(J(x)− J(x+ 1)) + (1− q(x− 1))(J(x)− J(x− 1))}, (37)

dq(x)

dt
=

1

T
q(x)(1− q(x)){A(J(x+ 1)− J(x))2 −B − T log

q(x)

1− q(x)
}, (38)

du(x)

dt
= −u(x) +A(J(x+ 1)− J(x))2 −B.(39)
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The update rule for the estimated intensity J behaves like non-linear diffusion
which smooths the intensity while keeping it similar to input I. The diffusion is
modulated by the strength of the edges q. The update for the lines q is driven
by the differences between the estimated intensity, if this is small then the lines
are not activated.

This algorithm has a Lyaponov function L(J , q) (derived using mean field
theory methods) and so will converge to a fixed point, with

L(J , q) =
∑
x

(I(x)− J(x))2 +A
∑
x

(J(x+ 1)− J(x))2(1− q(x)) +B
∑
x

q(x)

+T
∑
x

{q(x) log q(x) + (1− q(x)) log(1− q(x))}.(40)

There is some evidence that a generalization of this models roughly matches
the electrophysiological findings for those types of stimuli shown in figure (33).
The generalization is performed by replacing the intensity variables I(x), J(x)
by a filterbank of Gabor filters so that the weak membrane model enforces edges
at places where the texture properties change [95]. The experiments, and their
relation to the weak membrane models are reviewed in [96]. The initial responses
of the neurons, for the first 80 msec, are consistent with the linear filter models
described in section (2). But after 80 msec the activity of the neurons change
and appear to take spatial context into account. The findings of the electro-
physiological experiments are summarized as follows: (1) There are two sets of
neurons where one set encodes regional properties (such as average brightness)
and the other set codes boundary location (in agreement with J and l variable
in the model respectively). (2) The processes for computing the region and the
boundary representations are tightly coupled, with both processes interacting
with and constraining each other (as in the dynamical equations above). (3)
During the iterative process, the regional properties diffuse within each region
and tend to become constant, but these regional properties do not cross the re-
gion (in agreement with the model). (4) The interruption of the spreading of re-
gional information by boundaries results in sharp discontinuities in the responses
across two different regions (in agreement with the model). The development of
abrupt changes in regional responses also results in a gradual sharpening of the
boundary response, reflecting increased confidence in the precise location of the
boundary. These findings are roughly consistent with neural network implemen-
tations of the weak membrane model. But other explanations are possible. For
example, the weak membrane model requires lateral (sideways) interaction and
it is possible that the computations are done hierarchically using feedback from
V2 to V1.

While the weak membrane model is broadly consistent with the perceptual
phenomena of segmentation and “filling-in”, the types of filling-in, their dy-
namics, and the neural representations of contours and surface is complicated
[167,86]. Exactly how contour and surface information is represented and pro-
cessed in cortex is an active topic of research [54,142].
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Fig. 29. The stimuli for the experiments in the experiments by TS Lee and his collab-
orators [96].

4.2 Edge Detection with Spatial Context

Our second example is to develop a model for detecting edges using spatial
context. This relates to the phenomena known as association fields, see fig-
ure (26)(left panel), where Gabor filters which are spatially aligned (in orienta-
tion and direction) get grouped into a coherent form.

For this model, we have a set of neurons at every spatial position x, each
tuned to a different angle θi : i = 1, ..., 8, and a default cell at angle θ0. The first
cells are designed to detect edges at each orientation – i.e. they can be driven
by the log-likelihood ratio of an edge detector at orientation θi at this position.
The default cell is a dummy that is intended to fire if there is no edge present
at this position. This organization forms a population of cells arrayed according
to orientation (similar to a hypercolumn in V1). See figure (27)(right panel).

We define a Gibbs distribution for the activity sx,θi of the cells. The energy

function E(s) contains four types of terms: (I) A term
∑
x

∑8
i=0 sx,iφ(f1, ..., fM ).

This term represents the local evidence for an edge at each point and for its ori-
entation. It is essentially the same term for local edge detection as discussed
in the previous section where, if we ignore orientation so sx ∈ {±1}, then

φ(f1, ..., fM ) = log P (f(I(x))|s=1)
P (f(I(x))|s=0) . (II) A term

∑
x(
∑8
i=0 sx,i − 1)2. This term

is intended to ensure that only one cell is active at any spatial position. This
corresponds to an inhibitory interaction between cells in the same hypercolumn.
The cells in the hypercolumn give alternative, and inconsistent, interpretations
of the input – hence only one of them can be correct. (III) A term that en-
courages edges to be continuous and for their directions to change smoothly. To
define this term, we let θi = (cos θi, sin θi) and θTi = (− sin θi, cos θi) denote the
tangent to the edge and the normal. This term encourages there to be edges
in the tangent direction, while the next term discourages them in the normal
direction, see figure (27)(far right panel). This term is motivated by the intuition
that curves are spatially smooth and can be justified by the statistics of natural
images [38],[30]. We write it as

∑
x,y

∑8
i,j=1W

T
(x,θi),(y,θj)

sx,isy,j , where

WT
(x,θi),(y,θj)

= − exp{−|θi − θj |/K1} exp{−|x− y|/K2} exp{−|x̂y − θi|/K3}(41)
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and (x̂y is the unit vector in direction x − y). This term encourages edges
which are in similar directions (first term), nearby in position (second term),
and where the edge orientation is similar to the difference x − y between the
two points. This term is excitatory. (IV) The final terms is inhibitory and dis-
courages edges to be parallel to each other (if they are nearby). It is written as∑
x,y

∑8
i,j=1W

N
(x,θi),(y,θj)

sx,isy,j . Here

WN
(x,θi),(y,θj)

= exp{−|x− y|/K4} exp{−|x̂y − θTi |} (42)

The first term says this interaction decreases with distance. The second term
discourages edges which are parallel to each other.

This gives an overall energy:

E(s) =
∑
x

8∑
i=0

sx,iφ(f1, ..., fM ) + K̂0

∑
x

(

8∑
i=0

sx,i − 1)2

+K̂1

∑
x,y

8∑
i,j=1

WT
(x,θi),(y,θj)

sx,isy,j + K̂2 +
∑
x,y

8∑
i,j=1

WN
(x,θi),(y,θj)

sx,isy,j . (43)

This yields a probability:

P (s|f) =
1

Z
exp{−E(s)}.

This model can be implemented in neural networks by defining either stochas-
tic or deterministic neural dynamics (i.e. either Gibbs sampling or mean field
theory). The resulting update equations are more complex that those defined for
our earlier examples but have the same basic ingredients. Models of this type
can qualitatively account for associative field phenomena.

4.3 Stereo Models

This section introduces computational models for estimating depth by binocu-
lar stereo. The key problem is to solve the correspondence problem between the
inputs in the two eyes to determine the disparity. Then the depth of the points
in space can be estimated by trigonometry. (This pre-supposes that the eyes are
calibrated, meaning that the distance between the eyes and the direction of gaze
are known, which is beyond the scope of this chapter). As discussed in section (1),
Julesz [71] showed that humans could perceive depth from stereo if the images
consisted of random dot stereograms which minimize the effect of feature simi-
larity cues, suggesting that human vision can solve this task by relying mainly
on geometric regularities (assumed about the structure of the world). Other re-
searchers [18] have studied human estimation of surface shape quantitatively and
showed, among other things, bias towards fronto-parallel surfaces.

Most stereo algorithm address the correspondence problem by assuming that:
(i) image features in the two eyes are more likely to correspond if they have simi-
lar appearance, (ii) the surface being viewed obeys prior knowledge such as being
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piecewise smooth (e.g., like the weak membrane model). The first assumption
depends on local properties of the images while the second assumption uses non-
local context. In an earlier section we discussed how a population of Gabor filters
could be used to match local image features. In this section we describe how con-
text can be used to impose prior knowledge about the geometry of the scene.
We will study classic models which assume that the surface is piecewise smooth.
This leads to a markov field model which includes excitatory connections, impos-
ing the geometric constraints, with inhibitory connections which prevent points
from one eye having more than one match in the second eye. This yields an
algorithm which involves cooperation, to implement the excitatory constraints,
and competition to deal with the inhibitory constraints. This is consistent with
findings from recent electrophysiological experiments [146],[145]. These comple-
ment earlier experiments [125] which tested the local stereo models described in
section (2).

A Cooperative Stereo Model. We now specify a computational model for
stereo which, for simplicity, we formulate in one-dimension. There is a long his-
tory of this type of model starting with the cooperative stereo algorithm [28,110]
and current computer vision stereo algorithms are mostly designed on similar
principles.

We specify the left and right images by IL, IR and denote features extracted
from them by f(IL) = {f(xL) : xL ∈ DL}, f(IR) = {f(xR) : xR ∈ DR}. We
define a discrete-valued correspondence variable V (xL, xR), so that V (xL, xR) =
1 means that the features at xL, xR in the two images correspond, and hence the
disparity is xL − xR. If the features do not match then we set V (xL, xR) = 0.
We encourage all data-points to match one, but allow some datapoints to be
unmatched and others to match more than once (by paying a penalty).

We specify a distribution P (V |f(IL),f(IR)) = 1
Z exp{−E(V ;f(IL),f(IR))/T},

where the energy E(V ;f(IL),f(IR)) is given by:

E(V ;f(IL),f(IR)) =
∑
xL,xR

V (xL, xR)M(f(xL), f(xR))

+A
∑
xL

(
∑
xR

V (xL, xR)− 1)2 +A
∑
xR

(
∑
xL

V (xL, xR)− 1)2

+C
∑
xL,xR

∑
yL∈N(xL)

∑
yR∈N(xR)

V (xL, xR)V (yL, yR){(xR − xL)− (yR − yL)}2.(44)

The first term imposes that there are matches between image points with
similar features, hereM(., .) is a measure which takes small values if f(xL), f(xR)
are similar and large values if they are different. We will discuss at the end of this
section how M(f(xL), f(xR)) relates to model for local stereo discussed earlier.
The second two terms penalize image points which are either unmatched, or are
matched more than once. The third term encourages the disparities, xL − xR,
to be similar for neighboring points (here N(.) defines a spatial neighborhood
as before). These models can be applied to two-dimensional images by solving
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the correspondence problem for each epipolar line separately (by maximizing
P (V |f(IL),f(IR))). This is shown in figure (30)(right panel). The parameter
T is the variance of the model, as for the line process model, and has default
value T = 1.

inhibition

inhibition

    
    

     
      

             excitation                                        excita

tio
n

IL

IR

inhibitio
n

Fig. 30. Stereo. The geometry of stereo (left). A point P in 3-D space is projected
onto points PL; PR in the left and right images. The projection is specified by the
focal points OL,OR and the directions of gaze of the cameras (the camera geometry).
The geometry of stereo enforces that points in the plane specified by P,OR OL, must
be projected onto corresponding lines EL;ER in the two images (the epipolar line
constraint). If we can find the correspondence between the points on epipolar lines
then we can use trigonometry to estimate their depth, which is (roughly) inversely
proportional to the disparity, which is the relative displacement of the two images. Right
Panel: binocular stereo requires solving the correspondence problem which involves
excitation (to encourage matches with similar depths/disparities) and inhibition (to
prevent points from having multiple matches).

As for previous models, we can obtain a neural circuit model by performing
mean field theory on P (V |f(IL),f(IR)). (We restrict each point to have one or
zero matches for this algorithm). This replaces V (xL, xR) ∈ {0, 1} by continuous-

valued q(xL, xR) ∈ [0, 1] and an associated variable u(xL.xR) = T log q(xL,xR)
1−q(xL,xR)

with q(xl, xR) = 1
1+exp{−u(xL,xR)} .

The update equation is:

du(xL, xR)

dt
= −u(xL, xR)−M(f(xL), f(xR))

−2A(
∑

yR 6=xR

q(xL, yR)− 1)− 2A(
∑

yL 6=xL

q(yL, xR)− 1),

−2C
∑

yL∈N(xL)

∑
yR∈N(xR)

q(yL, yR){(xR − xL)− (yR − yL)}2. (45)

This update includes the standard integration term (first term) and the sec-
ond term encourages matches where the features agree. There is also inhibi-
tion between competing matches (the third and fourth term), and excitation for
matches which are consistent with a smooth surface (last term).

There is a variant of this algorithm which is used in interactive demo (4c).
This algorithm is a discrete Hopfield network which attempts to minimize the
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energy E(V ;f(IL),f(IR)) in equation (44). The algorithm starts by assigning
initial values, 0 or 1, to each state variable V (xL, xR). The algorithm proceeds
by selecting a state variable, changing its value (e.g., changing V (xL, xR) = 1 to
V (xL, xR) = 0), calculating if this change reduces the energy E(V ;f(IL),f(IR)),
and keeping the change if it does. This process repeats until the algorithm con-
verges (i.e., all possible changes raise the value of the energy).

How does the cooperative stereo algorithm relate to our earlier algorithm
for computing stereo disparity locally? Recall that the algorithm estimated the
disparity at a single point by having a set of neurons which were tuned to different
disparities {Di : i = 1, ..., N}, summing the votes v(Di) for each disparity by
equation (20),and selecting the disparity with most votes. Using the cyclopean
coordinate system [71], we express the disparity by D(x) = 1

2 (xR − xL) where
x = 1

2 (xR+xL). At each point x we specify a population of neurons which encode
the votes v(D(x)) for the different disparities. Then, instead of using winner-take-
all to make a local decision, we feed the responses v(D(x)) back into cooperative
stereo algorithm by defining M(f(xL), f(xR)) = exp{−v( 1

2 (xR − xL))} (the
negative exponential exp{−} is required so the M(f(xL), f(xR)) is small if the
vote for disparity D(x) = 1

2 (xR − xL) is large).

Analysis of electrophysiological studies [146],[145] were in general agreement
with the predictions of this type of stereo algorithm. In particular, studies showed
that neural populations responses included excitation between cells tuned to
similar disparities at neighboring spatial positions and inhibition between cells
tuned to different disparities at the same position, see figure (31). In addition,
Samonds et al. [147] implemented a variant of the stereo algorithm described
above and showed that it could account for additional phenomena such as sharper
tuning to the disparity for larger stimuli and performance on anti-correlated
stimuli (where the left and right images have opposite polarity).

Fig. 31. Experiments for testing stereo algorithms [146],[145]. Left Panel: the experi-
mental setup. Right Panel: the experiments give evidence for excitation between similar
disparity and inhibition to prevent multiple matches.
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4.4 Motion

Similar models have been applied to a range of motion phenomena. Early com-
putational studies [163] showed that several perceptual phenomena of long-range
motion could be described by a ‘minimal mapping’ theory that uses a slowness
prior. Subsequent work showed that smoothness priors accounted for findings
on short-range motion [61], including the surprising fact that an ellipse rotat-
ing in the image plane is perceived to move non-rigidly. Yuille and Grzywacz
[186] qualitatively showed that a slow-and-smooth prior could account for a
large range of motion perceptual phenomena – including motion capture and
motion cooperation – both for short- and long-range motion. Weiss and his
collaborators showed that slow [178] and slow-and-smooth priors [179]) could
explain other short-range motion phenomena, such as how percepts can change
dramatically as we alter the balance between the likelihood and prior terms
(i.e. for some stimuli the prior dominates the likelihood and vice versa). All
these models combine local estimates of the motion, such as those described
in the previous section, with contextual cues implementing slow-and-smooth
priors. They can be formulated using the same mathematical techniques. See
http://www.michaelbach.de/ot/mot-motionBinding/ to see how spatial con-
text can be affected by other cues such as occlusion. It is also possible to perceive
three-dimensional structure by observing a motion sequence (somewhat similar
to binocular stereo) as can be seen in http://michaelbach.de/ot/mot-ske/.

The perception of motion can be strongly influenced by its past history and
not merely by the change of image from frame to frame. For example, Anstis
and Ramachandran [5] demonstrated perceptual phenomena where motion per-
ception seems to require a temporal coherence prior in addition to the slow and
smoothness priors described earlier in this section. Similarly, Watamaniuk et al.
[176] demonstrated that humans could detect a coherently moving dot despite
the presence of many incoherently moving dots. These classes of phenomena
can be addressed by models which make prior assumptions about how motion
changes over time. These can be performed [186] by adapting the Bayes-Kalman
filter [72] [62] filter which gives an optimal way to combine information over
time.

The task of the Bayes-Kalman filter is to estimate the state xt of a system at
time t dependent on a set of observations yt, ..., y1 (e.g., xt could be the position
of an airplane and yt a noisy measurement of the airplane’s position at time
t). The model assumes a probability distribution P (xt+1|xy) for how the state
changes over time and a likelihood function P (yt|xt) for the observation.

The task is to estimate the state xt of a system at time t dependent on a
set of observations yt, ..., y1 (e.g., xt could be the position of an object and yt
a noisy measurement of the object position at time t). The model assumes a
probability distribution P (xt+1|xy) for how the state changes over time and a
likelihood function P (yt|xt) for the observation. This can be formulated by a
Markov model, see figure (32)(left) where the observations yt, ..., y1 and states
xt, ..., x1 are represented by the blue and red dots respectively (the lower and
upper dots if viewed in black and white).

http://www.michaelbach.de/ot/mot-motionBinding/
http://michaelbach.de/ot/mot-ske/
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The purpose of Bayes-Kalman is to estimate the distribution P (xt|Yt) of
the state xt conditioned on the measurements Yt = {yt, ..., y1} up to time t. It
performs this by repeatedly performing the following two steps, which are called
prediction and correction. The prediction uses the prior P (xt+1|xt) to predict
distribution P (xt+1|Yt) of the state at t+ 1:

P (xt+1|Yt) =

∫
dxtP (xt+1|xt)P (xt|Yt). (46)

The correction step integrates the new observation yt+1 to estimate P (xt+1|Yt+1)
by:

P (xt+1|Yt+1) =
P (yt+1|xt+1)P (xt+1|Yt)

P (yt+1|Yt)
. (47)

Bayes-Kalman is initialized by setting P (x1|y1) = P (y1|x1)P (x1)/P (y1) where
P (x1) is the prior for the original position of the object at the start of the
sequence. Then equations (46,47) are run repeatedly. The effect of prediction is
to introduce uncertainly about the state xt, while correction reduces uncertainty
by providing a new measurement, see figure (32)(right).

Fig. 32. Left Panel: Graph illustrating the unobserved states (red) and the observed
states (blue) as a function of time. The airplanes true positions are shown in red
and their observations (biased) are shown in blue. The Bayes-Kalman filter integrates
observations to make estimate the true state using prior probabilities. Right Panel:
Bayes-Kalman updates a probability distribution for the estimated position of the
target. The variance of the distribution is illustrated by the one-dimensional figure
(on the right) and the size of the circle (red, blue, or green). In the prediction stage
(middle panel) the variance becomes large and after the measurement the variance
becomes smaller.
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4.5 Summary of Models with Context

This section illustrated how neural networks and Markov models could be used
to apply context to visual tasks. We concentrated on edge detection, segmen-
tation, and binocular stereo. We stressed how context can include excitatory
and inhibitory interactions. And how inference can be performed using stochas-
tic neurons (e.g., Gibbs sampling) or dynamic neural networks (e.g., mean field
approximations). These models have some relations to psychophysics and elec-
trophysiology. But we stress that detailed biological evidence in favor of these
models remains preliminary due to the current limitations of experimental tech-
niques. We note that current computer vision algorithms which address similar
visual tasks are more complex although based on similar principles [11].

5 Cue Coupling

The ideas in this section are logical extensions of the ideas in the earlier sections.
But we are now addressing more complex aspects of vision and so the techniques
and the tools become more complex and more abstract as we begin to reason
about surfaces, objects, and their relations. This section contains an interactive
demo (5) for combining cues by weighted average.

5.1 Vision Modules and Cue Combination

At the behavioral level, psychophysicists have studied how humans combine
different visual cues – such as shading, texture, binocular stereo, structure from
motion – to estimate depth, surface geometry, and other surface properties. For
example, quantifiable psychophysics experiments are broadly consistent with the
predictions of the types of models discussed in the previous two sections– see
[18,23] – but with some exceptions [160].

We now address how these cues can be combined. The most straightforward
manner is to use a separate module for each cue to compute different estimates
of the properties of interest, e.g., the surface geometry, and then merge these
estimates into a single representation. This was proposed by Marr [109] who
justified this strategy by invoking the principle of modular design. In particular,
Marr proposed that surfaces should be represented by a 2 1/2D sketch which
specifies the shape of a surface by the distance of the surface points from the
viewer. A related representation, intrinsic images, also represents surface shape
together with the material properties of the surface. This strategy of making
separate estimates for different cues and then combining them has also been
followed by computer vision researchers.

How to combine cues computed independently? The natural way to combine
these cues, from a probabilistic perspective, requires taking into account the
uncertainty of the cues. This will be discussed in section (5.2) where we show
that this can reduce to combining cues by taking weighted linear combinations,
where the weights depend on the uncertainty. This strategy is able to account
for some examples of cue combination [91,69,32].
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Next we consider the problem of cue combination from a deeper probabilis-
tic analysis, see section (5.3) [22]. Theoretical analysis suggests that we need to
distinguish between situations where the cues are statistically independent of
each other and the cases where they are not. We need also need to determine
whether cues are using similar, and hence redundant, prior information. These
considerations leads to a distinction between weak and strong coupling, where
weak coupling corresponds to the traditional view of modules while strong cou-
pling considers more complex interactions. To understand strong coupling it is
helpful to consider the causal factors which generate the image. In addition, it
involves the idea of model selection, called “competitive priors” in [185], which
is a selection process that arises in two types of situations. Firstly, some image
cues only apply to parts of the image and we need a process to select those parts
(e.g., shape from texture cues are only valid within certain parts of an image).
Secondly, for some images there may be several alternative ways to generate
them, yielding several possible interpretations, and we need to select the most
probable. Psychophysics experiments (e.g., [10,157]) investigate this by setting
up situations where small changes in the image are sufficient to switch from one
interpretation to another.

To describe causal models, and strong coupling, in more detail requires study-
ing how images are formed in terms of the observer’s viewpoint, the structure
and material properties of objects in the world, and the lighting conditions. Then
we proceed to two examples by Kording et al. and by Knill in section (5.4)

There is strong evidence that high-level recognition affects the estimation of
three-dimensional shape (e.g., a rigidly rotating inverted face mask is perceived
as non-rigidly deforming face, while most rigidly rotating objects are perceived
to be rigid). But most visual cues are able to function even when images contain
no objects. We briefly discuss this in section (6).

5.2 Combining Cues with Uncertainty

We first consider simple models which assume that the cues compute represen-
tations independently and then combine their outputs by taking linear weighted
combinations. In some specific cases, these weights can be derived as measures
of the uncertainly of the cues.

Combining cues by linear weighted sums. Suppose there are two cues for
depth, or some other scene property, which separately give estimates S∗1,S

∗
2.

One strategy to combine these cues is by linear weighted combination yielding
a combined estimate S∗:

S∗ = ω1S
∗
1 + ω2S

∗
2, (48)

where ω1, ω2 are positive weights such that ω1 + ω2 = 1.
Landy and Maloney [91] reviewed many early studies on cue combination

and argued that they could be qualitatively explained by this type of model.
They also discussed situations where the individual cues did not combine and
“gating mechanisms” which require one cue to be switched off.
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Special case where weights are derived from uncertainties. An impor-
tant special case of this model is when the weights are measures of the uncer-
tainty, or reliability, of the two cues. In this case, the linear weighted combina-
tion rule is optimal for the restricted case of Bayes estimation when there are
no priors (we will discuss priors in the next section). It also yields detailed ex-
perimental predictions which have been successfully tested for some types of cue
coupling, Jacobs [69], Ernst & Banks [32], although there are some interesting
exceptions [21,48].

This special case associates each cue by an uncertainty σ2
1 , σ

2
2 and sets the

weights to be w1 =
σ2
2

σ2
1+σ

2
2

and w2 =
σ2
1

σ2
1+σ

2
2)

. It follows that w1/w2 = σ2
2/σ

2
1 ,

so the cue with lowest uncertainty will have a higher weight. For example, if
σ2
2 >> σ1 then w1 >> w2. This special case give linear combination rule:

S∗ =
σ2
2

σ2
1 + σ2

2

S∗1 +
σ2
1

σ2
1 + σ2

2

S∗2. (49)

This combination rule can be shown to be optimal for the following condi-
tions. Suppose the two cues are modeled by inputs {Ci : i = 1, 2} and out-
puts S which are related by conditional distributions {P (Ci|S) : i = 1, 2}. We
assume that these cues are conditionally independent so that P (C1,C2|S) =
P (C1|S)P (C2|S) and both distributions are Gaussians:

P (C1|S) =
1

Z1
exp{−|C1 − S|2

2σ2
1

}, P (C2|S) =
1

Z2
exp{−|C2 − S|2

2σ2
2

}. (50)

In this case, the optimal estimates of the output S, for each cue independently,
are given by the maximum likelihood estimates:

S∗1 = arg max
S

P (C1|S) = C1, S∗2 = arg max
S

P (C2|S) = C2 (51)

But if both cues are available, then the optimal estimate is given by:

S∗ = arg max
S

P (C1,C2|S) = arg max
S

P (C1|S)P (C2|S) (52)

=
σ2
2

σ2
1 + σ2

2

C1 +
σ2
1

σ2
1 + σ2

2

C2, (53)

which reduces to the rule above using S∗1 = C1 and S∗2 = C2.
This shows that the optimal combination is a weighted linear sum of the

two cues where the weights can be obtained from the uncertainties σ2
1 , σ

2
2 of the

individual cues. This is the maximum likelihood estimate which, as discussed
earlier, is the optimal Bayesian way to combine cues if there is no prior P (S)
(and the loss function is the default). Interactive demo (5) illustrates how the
cues coupling result depends on the means and variances of each cue.

Extensions of combinations weighted by uncertainties. This section cov-
ers advanced material showing how the results in the previous section can be
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Fig. 33. The work of Ernst and Banks shows that cues are sometimes combined by
weighted least squares where the weights depend on the variance of the cues. Figure
reprinted with permission from [32].

extended, as approximations, to a much richer class of models. These extensions
require that conditional independence holds, P (C1,C2|S) = P (C1|S)P (C2|S),
and there is no prior. The best estimates for each cue individually are given
S∗1 = arg maxS logP (C1|S) and S∗2 = arg maxS logP (C2|S). We can locally ap-

proximate logP (C1|S) = logP (C2|S∗)+ 1
2 (S−S∗1)T ∂

2 logP (C1|S)
∂S∂S S=S∗

1
(S−S∗1)

(we use notation S=S∗
1

to indicate where we are evaluating the derivative). This is
a Taylor series approximation of logP (C1|S) about its maximum values S∗1. The

first term in the expansion,
∂ logP (C1|S)S=S∗

1

∂S is zero because S∗1 is a maximum.
The second term is the second order derivative of logP (C1|S) with respect to
S. This reduces to − 1

σ2
1

for the Gaussian case discussed above, hence the second

order derivative evaluated at the maxima S∗1 gives an estimate of the “local vari-
ance” for the likelihood function . If we make this Taylor series approximation
for both likelihood functions, then we can estimate an approximation solutions
S∗app when both cues are present:

S∗ = (Σ−11 +Σ−12 )−1{Σ−11 S1 +Σ−12 S2}, (54)

where Σ−11 is the matrix for ∂2 logP (C1|S)
∂S∂S S=S∗

1
(and similarly for Σ−12 ).

This Taylor series approximation is only valid if the results S∗ is “close” to S∗1
and S∗2. How close depends on the form of the functions logP (C1|S), logP (C2|S)
and, more specifically, how well they can be approximated near S∗1, s

∗
2 by quadratic

functions. If these distributions are both Gaussians then their log-likelihoods are
quadratic everywhere and so no approximation is required. In other situations,
the nature of the cues determines how good an approximation we can obtain by
this Taylor series expansion.
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5.3 Bayesian Analysis: Weak and Strong Coupling

This section discusses more complex models for coupling cues. It approaches the
problem from a Bayesian perspective [22][185]. This approach emphasizes that
the uncertainties of the cues are taken into account and the statistical depen-
dencies between the cue are made explicit. Simple examples of cue coupling,
where the cues and independent, are called “weak coupling” in this framework.
In some situations, if priors are not used, weak coupling reduces to the types
of models studied in the previous section. By contrast, “strong coupling” is re-
quired if the cues are dependent on each other. Determining the dependencies
between different cues requires sophisticated modeling to determine the causal
factors underlying the cues. This also includes model selection where the cues
allow several alternative interpretations of the image and small changes of the
cues can dramatically change the percept.

The priors: avoiding double counting. As discussed in earlier sections,
models of cues typically include prior probabilities about S. For example, most
cues for estimating shape or depth assume that the viewed scene is piecewise
smooth, see the section on binocular stereo. More generally, vision is ambiguous
in the sense that there are many different ways to generate the identical image
and a visual system must determine which is the most probable way. Ambiguity
is greatly reduced if the input is a sequence of images, but humans have little
difficulty interpreting single images correctly, except if unusual conditions (or
unless only small parts of the image are shown). But the bottom line, for cue
integration, is that we typically need to consider the prior probabilities of S
instead of neglecting them as we did in the previous section.

We now revisit the linear weighted sum rule from the perspective that cues
usually require priors. To get intuition, suppose we have two cues for estimating
the shape of a surface and suppose that both cues use the prior that the surface
is spatially smooth. Simply taking a linear weighted sum of the cues will not
be optimal, because the prior would be used twice. All priors introduce a bias
to perception so we want to avoid doubling this bias. Experiments by Bülthoff
and Mallot [18] suggest that priors are shared in this manner (i.e. no double
counting) and so cues are not combined by linear weighted averaging. In this
experiments, subjects were asked to estimate the orientation of surfaces using
texture and shading cues. If only one cue was available, then the subjects tended
to underestimate the surface orientation which is consistent with a prior bias
towards smooth surfaces [185]. But if both cues were present, then subjects
estimated the surface orientation more accurately, which is inconsistent with
combining the cues by a linear weighted sum.

We first model the two cues separately by likelihoods P (C1|S), P (C2|S)
and a prior P (S). For simplicity we assume that the priors are the same for
each cue, which is reasonable because they specify assumptions about the world
independent of any observations. This gives posterior distributions for each visual
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Fig. 34. Cue coupling results which are inconsistent with linear weighted average [17].
Left Panel: If depth is estimated using shading cues only then humans underestimate
the perceived orientation (i.e. they see a flatter surface). Center Panel: Humans also
underestimate the orientation if only texture cues are present. Right Panel: But if both
shading and texture cues are available then humans perceive the orientation correctly.
This is inconsistent with taking the linear weighted average of the results for each cue
separately. Figure reprinted with permission from [17].

cue:

P (S|C1) =
P (C1|S)P (S)

P (C1)
, P (S|C2) =

P (C2|S)P (S)

P (C2)
. (55)

This yields estimates of surface shape to be S∗1 = arg maxS1
P (S|C1) and S∗2 =

arg maxS2
P (S|C2). The optimal way to combine the cues is to estimate S from

the posterior probability P (S|C1,C2):

P (S|C1,C2) =
P (C1,C2|S)P (S)

P (C1,C2)
. (56)

If the cues are conditionally independent, P (C|S) = P (C1|S)P (C2)|S), then
this simplifies to:

P (S|C1,C2) =
P (C1|S)P (C2|S)P (S)

P (C1,C2)
. (57)

Coupling the cues in equation (57) cannot correspond to a linear weighted
sum (as in the previous section). This is because a linear weighted sum would
essentially be using the prior twice, once for each cue. In general, additional cues
provide extra information and interact nonlinearly. To understand this, suppose

the prior is P (S) = 1
Zp

exp{− |S−Sp|
2

2σ2
p
}. Then, setting t1 = 1/σ2

1 , t2 = 1/σ2
2 , tp =

1/σ2
p, the optimal combination is S∗ =

t1C1+t2C2+tpSp
t1+t2+tp

, hence the best estimate

is a linear weighted combination of the two cues C1,C2 and the mean Sp of
the prior. By contrast, the estimate using each cue individually are given by
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S∗1 =
t1C1+tpSp
t1+t2+tp

and S∗2 =
t2C2+tpSp
t1+t2+tp

. Hence any way to linearly combine the

individual estimates S∗1,S
∗
2 will result in double counting the bias towards the

mean Sp of the prior. (Note t = 1/σ2 to make the connection to the previous
notation).

To summarize, visual perception for some cues can be predicted by assuming
that the cues involve a prior and this biases human perception. But if more cues
are available, then perception will generally become less biased. Theories of op-
timal cue coupling should take this into account and prevent “double counting”
the priors.

Cue Dependence and Causal Structure. The previous models in this chap-
ter assumed that cues were conditionally independent, see equation (57). But,
in practice cues are rarely independent. For many situations, such as the flying
carpet example, the perception of depth is due to perspective, segmentation and
shadows cues interacting in a complex way. The perspective and segmentation
cues must determine that the beach is a flat ground plane. Segmentation cues
must isolate the person, the towel, and the shadow. Then the visual system must
decide that the shadow is cast by the towel and hence presumably must lie above
the ground plane. These complex interactions are impossible to model using the
simple conditional independent model described above.

The conditional independent model is also problematic even for the simple
stimuli used by Bülthoff and Mallot [18] for studying shape from shading and
texture. The model presupposes that it is possible to extract cuesC1,C2 directly
from the image I by a pre-processing step which computes C1(I) and C2(I).
This requires decomposing the image I into texture and shading components.
This may be possible, see figure (35), by exploiting the property that shading
tends to be spatially smooth and texture is more jagged. In general, however,
determining these cues from image is not straightforward and detailed modeling
of it lies beyond the scope of this chapter.

Fig. 35. The input image (left) is decomposed into the base, or shading component,
(center), and the detail (right).

The following set of experiments [79] suggest that visual perception does seek
to find causal relations underlying the visual cues. In Kersten’s “ball-in-a-box”
experiments an observer perceives the ball to rise off the floor of the box only
if this is consistent with a cast shadow, see figure (36). To solve this task, the
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visual system must detect the surface and the orientation of the floor of the box
(and decide it is flat), detect the ball, estimate the light source direction, and the
motion of the shadow. It seems plausible that in this case, the visual system is
unconsciously doing inverse inverse graphics to determine the most likely three-
dimensional scene that generated the image sequence. There seems to be no
way to explain how these geometric (perspective projection) and shading cues
combine to give this percept using only the linear weighted sum rule. Another
example, but for color perception, is given by [13].

First frame

Last frames

Fig. 36. In the “ball-in-a-box” experiments the motion of the shadow affects the
perceived motion of the ball. The ball is perceived to rise from the ground if the
shadow follows a horizontal trajectory in the image; but is perceived to move to-
wards the back of the box if the shadow follows a diagonal trajectory. See http:

//youtu.be/hdFCJepvJXU. Left panel shows the first frame and the last frames for
the two movies. Right panel. The explanation is that the observer resolves the ambi-
guities in the projection of a three-dimensional scene to perceive the 3D trajectory of
the ball ([79].

Directed Graphical Models. Directed, or causal, graphical models [130]
offer a mathematical language to describe these phenomena. These are similar to
the “undirected” graphical models in section (4), because the graphical structure
makes the conditional dependencies between variables explicit, but differ because
the edges between nodes are directed. See [52] for an introduction to undirected
and directed graphical models from a cognitive science perspective.

Formally directed graphical models are specified by follows. The random vari-
ables Xµ are defined at the nodes µ ∈ V of a graph. The edges E specify which
variables directly influence each other. For any node µ ∈ V, the set of parent
nodes pa(µ) are the set of all nodes ν ∈ V such that (µ, ν) ∈ E , where (µ, ν)
means that there is an edge between nodes µ and ν pointing to node µ. We de-
note the state of the parent node by Xpa(µ). This gives a local markov property
– the conditional distribution P (Xµ|X/µ) = P (Xµ|Xpa(µ)), so the state of Xµ is
only directly influenced by the state of its parents (note X/µ denotes the states
of all nodes except for node µ). Then the full distribution for all the variables

http://youtu.be/hdFCJepvJXU
http://youtu.be/hdFCJepvJXU
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can be expressed as:

P ({Xµ : µ ∈ V}) =
∏
µ∈V

P (Xµ|Xpa(µ)). (58)

We have already seen two examples of directed graphical models in this chap-
ter. Firstly when we studied divisive normalization and used them in figure (25)
to represent the dependencies between the stimuli, the filter responses, and the
common factor. Secondly when described the Bayes-Kalman filter where the
hidden state xt at time t “causes” the hidden state xt+1 at time t and the ob-
servation yt. Note that in some situations, the directions of the edges indicates
physical causation between variables but in others the arrows merely represent
statistical dependence. The relationship between graphical models and causality
is complex and is clarified in [129].

These types of diagrams are helpful because they can be used to give a
taxonomy between different ways that visual cues can be combined. For example,
figure (37) shows two cases: (i) where two factors combine to cause an image,
and (ii) where there is common cause of two cues.

S Right eye Left eye
Relative depth

Shadow
displacement

I1

Stereo
disparity

I2
Image measurements

I

S1
Bicycle

S2
View

Fig. 37. Left Panel: An example of common cause. The shadow and binocular stereo
cues are caused by the same event – two surfaces with one partially occluding the
other. Right Panel: The image of the bicycle is caused by the pose of the bicycle, the
viewpoint of the camera, and the lighting conditions. Figure reprinted with permission
from [80].

Graphical models were used by Pearl [130] to illustrate the phenomena of
explaining away. This describes how our interpretations of events can change
suddenly as new information becomes available. For example, suppose a house
alarm A can be activated by either a burglary B or by an earthquake E. This
can be modeled by P (A|B,E) and priors P (B), P (E) for a burglary and an
earthquake. In general, the prior probability of a burglary is much higher than
the prior probability of an earthquake. So if an alarm goes off then it is much
more probable to be caused by a burglary, formally P (B|A) >> P (E|A). But
suppose, after the alarm has sounded, you are worried about your house and
check the internet only to discover that there has been an earthquake. In this
case, this new information “explains away” the alarm and so you stop worrying
about a burglary.

Variants of this phenomena arise in vision. In one version the “new infor-
mation” is a more detailed analysis of the image. Suppose you see the “partly



Early Vision 79

occluded T” where a large part of the letter T is missing. In this case there is
no obviously reason why part of the T is missing, so the perception may be only
of two isolated segments. On the other hand, if there is a grey smudge over the
missing part of the T then most observers perceive the T directly. The presence
of the smudge “explains away” why part of the T is missing. This is a common
phenomena which will return to in the next section from a different perspective.

Directed Graphical Models and Visual Tasks. Recall also that the hu-
man visual system performs a range of visual tasks and that the way cues are
combined can depend on the tasks which are being performed. The language of
directed graphical models is also useful for addressing this issue. For example,
consider shape from shading whose goal is to determine the shape of a surface
from its shading. But the shading depends both on the shape of the surface and
on the light source direction. So an alternative task is to determine the light
source direction. This can be formulated by a model P (I|S,L)P (S), P (L) where
I is the observed image, S is the surface shape, and L is the light source direc-
tion. P (I|S,L) is the probability of generating an image I from shape S with
lighting L, and P (S), P (L) are prior probabilities on the surface shape and the
lighting.

Suppose we only want to estimate the surface shape S. Then we do not care
about the lighting L and the optimal procedure is to integrate it out to ob-
tain a likelihood P (I|S) =

∫
dLP (I|S,L)P (L) which is combined with a prior

P (S) to estimate S (If the loss function depends only on S then Bayesian de-
cision theory says it should be integrated out, if it is a continuous variable,
or summed out of it is discrete). Conversely, if we only want to estimate the
lighting then we should integrate out the surface shape to obtain a likelihood
P (I|L) =

∫
dSP (I|S,L)P (S) and combine it with a prior P (L). On the other

hand, if we want to estimate both the surface shape and the lighting then should
estimate them using the full model P (I|S,L) with priors P (S) and P (L).

This issue of “integrating out” nuisance, or generic, variables relates to the
generic viewpoint assumption [35]. This assumption states that the estimation
of one variable, such as the surface shape, should be insensitive to small changes
in another variable (e.g., the lighting). The intuition is that interpretations of
the image that depend on something which is very unlikely, such as observing it
from a special viewpoint, should be discouraged. It can be shown [35] that this
can assumption can be formulated in terms of integrating out nuisance variables,
but this analysis is beyond the scope of this chapter.

Model Selection. Certain types of cue coupling require model selection. While
some cues, such as binocular stereo and motion, are usually valid in most places
of the image other cues only apply to some images and often only for subparts of
each image. For example, shape from shading is a well-studied cue which relates
the intensity values to the changing geometry of a surface. But the lighting
conditions in real world image are extremely complex and it is extremely difficult,
for example, to distinguish between the image shading on a planar wall which
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is due to a nearby light source from the shading pattern of a curved object
illuminated from a light source that is further away. Another example, is shape
from texture which assumes that there are homogeneous, or isotropic, texture
painted on a three dimensional surface so that the projection of the texture onto
the image plane gives a cue for the shape of the surface. But the texture on most
surfaces rarely has this type of regular pattern, and hence shape from texture can
only be applied to a limited class of surfaces, see figure 38. Similarly perspective
cues give very strong perceptions of shape but they rely on the present straight
lines in the image (and other Manhattan structures) so they valid for images of
Manhattan but will not work in the jungle. These considerations show that cue
combination often requires model selection, in order to determine in what parts
of the image, if any, is the cue applicable.

Fig. 38. Model selection may need to be applied in order to decide is a cue can be
used. Shape from shading cues will work for case (a) because the shading pattern is
simply due to a smooth convex surface illuminated by a single source. But for case (b)
the shading pattern is complex – due to mutual reflection between the two surfaces –
and so shape from shading cues will be almost impossible to use. Similarly, shape from
texture is possible for case (c) because the surface contains a regular texture pattern
but is much harder for case (d) because the texture is irregular.
Figure reprinted with permission from [189].

Model selection also arises in situations where there are several alternatives
ways which could generate the image. In other words, there are several possi-
ble interpretations. This requires doing model selection to determine the model
which best describes the data. This was called “competitive priors” by Yuille and
Bülthoff [189]. By careful experimental design it is possible to adjust the image
so that small changes shift the balance between one interpretation and another.
Examples include the experiments where there are two rotating planes, which
can be arranged to have two competing explanations [78]. By making slight
variations to the transparency cues there are two surfaces which can be seen to
either move rigidly together or to move independently, see figure (39)(right) and
http://youtu.be/gSrUBpovQdU.

The work by Blake and Bülthoff [10] is a classic example where a sphere
has a Lambertian (diffuse) reflection function and is viewed binocularly, see
figure (38)(left). A specular component is adjusted so that it can lie in front
of, between the center and the sphere, or at the center of the sphere. If the

http://youtu.be/gSrUBpovQdU
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specularity lies at the center then it is perceived as a light bulb and the sphere
is perceived to be transparent. If the specularity is placed at the right position
between the center and the sphere, then the sphere is perceived to be glossy. If the
specularity lies in front of the sphere then it is seen as a cloud floating in front of
a matte (diffuse, Lambertian sphere). Yuille and Bülthoff [189] interpreted both
these phenomena as strong coupling with competitive priors.

PerceptionStimulus
ba

Fig. 39. Examples of strong coupling with competitive priors. A sphere is viewed binoc-
ularly (left) and small changes in the position of the specularity lead to very different
percepts (Blake and Bülthoff 1990). Similarly altering the transparency of the moving
surfaces (right) can make the two surfaces appear to rotate either rigidly together or
independently.

We can also account for the “explaining away” examples in the previous
section. We can consider two alternative models for the partial T . The first model
is of two individual segments plus a smudge region. The second is a T which is
partially hidden by a smudge. In this case the second model is more plausible
since it would be very unlikely, an accidental viewpoint (or alignment), that the
smudge happened to cover the missing part of the T , unless it really did occlude
it. We can extend this argument to the Kanisza triangle, see figure (8). Humans
perceive an illusory contour linking the three pac-men. But close inspection
shows that there is no local edge evidence for the existence of the contour (except
within the pac-men themselves). There are two possible interpretations of this
figure. The first is that there are three partial circles which are arranged in a
very special manner so that their edges are aligned (i.e. a straight line from one
edge extend to another edge). The second is that there are three circles which are
partially hidden by a triangular surface. In this second interpretation, the missing
parts of the circles are explained away by the hypothesis that they are hidden
by a triangle. Thus we have two possible models and we can assign probabilities
to each then the phenomena can be explained provided the explanation in terms
of the triangular surface is more probable.
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Finally, we can revisit the flying carpet illusion shown in figure (3). Like Ker-
sten’s ball-in-a-box experiments it requires estimating the depth and orientation
of the ground plane (i.e. the beach), segmenting and recognizing the woman, the
towel she is standing on, and detecting the shadow. Then using the shadow cues,
which requires making some assumption about the lighting, to estimate that the
towel is hovering above the ground. This is a very complex way to combine all
the cues in this image. Observe that it relies on the generic viewpoint assump-
tion, in the sense that it is unlikely for there to be a shadow of that shape in
that particular part of the image unless if was cast by some object. The real
object that cast the shadow (the flag) is outside the image and so the visual
system “attaches” the shadow to the towel which then implies that the towel
must hover off the ground.

5.4 Examples of Strong Coupling

This section gives two examples of strong coupling. The first example deals with
coupling different modalities while the second example concerns the perception
of texture.

Multisensory Cue Coupling. The second example involves multisensory in-
tegration with structural uncertainty. Human observers are sensitive to both
visual and auditory cues. Sometimes these cues have a common cause – e.g., you
see a dog moving and hear it barking. In other situations the auditory and visual
cues are due to different causes – e.g., a cat moves and a nearby dog barks (we
ignore the possibility that the dog’s barking is caused by the cat moving, or vice
versa). Ventriloquists are able to fake these interactions by making the audience
think that a puppet is speaking by associating the sound (produced by the ven-
triloquist) with the movement of the puppet. The Ventriloquism effect occurs
when visual and auditory cues have different causes – and so are in conflict –
but the audience perceive them as having the same cause.

Körding and his collaborators [89] developed an ideal observer model which
determines whether two cues have a common cause or not. They formulated this
using a meta-variable C, see figure (40). The common cause condition C = 1
means that the positions of the cues xA, xV are generated by the same pro-
cess S, see figure (40)(left), by a distribution P (xA, xV |S) = P (xA|S)P (xV |S).
Here P (xA|S) and P (xV |S) are normal distributions N(xA|S, σ2

A), N(xV |S, σ2
V )

– with the same mean S and variances σ2
A, σ

2
V . It is assume that the visual cues

are more precise than the auditory cues so that σ2
A > σ2

V . The true position S is
drawn from a probability distribution P (S) which is assumed to be a normal dis-
tribution N(0, σ2

p). By contrast, C = 2 means that the cues are generated by two
different processes SA and SB , in which case we have P (xA|SA) and P (xV |SV )
which are both Gaussian N(SA, σ

2
A) and N(SV , σ

2
V ), see figure (40)(right). We

assume that SA and SV are independent samples from the normal distribution
N(0, σ2

p). Note that this model involves model selection, between C = 1 and
C = 2, and so in vision terminology is a form of strong coupling and competitive
priors [185].
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Fig. 40. The subject is asked to estimate the position of the cues and to judge whether
the cues are from a common cause – i.e. at the same location – or not. In Bayesian
terms the task of judging whether the cause is common can be formulated as model
selection – are the auditory and visual cues more likely to generated from a single cause
(left) or by two independent causes (right). Figure reprinted with permission from [89].

This model was compared to experiments where brief auditory and visual
stimuli were presented simultaneously with varying amount of spatial disparity.
Subjects were asked to identify the spatial location of the cue and/or whether
they perceive a common cause [171]. The closer the visual stimulus was to the
audio stimulus the more likely subjects perceived a common cause. In this case
subjects’ estimate of its position is strongly biased by the visual stimulus (be-
cause it is considered more precise with σ2

V > σ2
A). But if subjects perceive

distinct causes then their estimate is pushed away from the visual stimulus and
exhibits negative bias. Körding et al. [89] argue that this bias is a selection
bias stemming from restricting to trials in which causes are perceived as being
distinct. For example, if the auditory stimulus is at the center and the visual
stimulus at 5 degrees to right of center – then sometimes the (very noisy) au-
ditory cue will be close to the visual cue and hence judged to have a common
cause while on other cases the auditory cause will be further away (more than
5 degrees). Hence the auditory cue will have a truncated Gaussian (if judged to
be distinct) and will yield negative bias.

More formally, the beliefs P (C|xA, xV ) in these two hypotheses C = 1, 2
are obtained by summing out the estimated positions sA, sB of the two cues as
follows:

P (C|xA, xV ) =
P (xA, xV |C)P (C)

P (xA, xV )

=

∫
dSP (xA|S)P (xV |S)P (S)

P (xA, xV )
, if C = 1,

=

∫ ∫
dSAdSV P (xA|SA)P (xV |SV )P (SA)P (SV )

P (xA, xV )
, if C = 2. (59)
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Fig. 41. Reports of causal inference.a) The relative frequency of subjects reporting one
cause (black) is shown (reprinted with permission from [89]) with the prediction of the
causal inference model (red). b) The bias, i.e. the influence of vision on the perceived
auditory position is shown (gray and black). The predictions of the model are shown
in red. c) A schematic illustration explaining the finding of negative biases. Blue and
black dots represent the perceived visual and auditory stimuli, respectively. In the pink
area people perceive a common cause.

There are two ways to combine the cues. The first is model selection. This
estimates the most probable model C∗ = arg maxP (C|xV , xA) from the input
xA, xV and then uses this model to estimate the most likely positions sA, sV of
the cues from the posterior distribution:

P (sV , sA) ≈ P (sV , sA|xV , xA, C∗) =
P (xV , xA|sV , sA, C∗)P (sV , sA|C∗)

P (xV , xA|C∗)
(60)

The second way to combine the cues is by model averaging. This does not
commit itself to choosing C∗ but instead averages over both models:

P (sV , sA|xV , xA) =
∑
C

P (sV , sA|xV , xA, C)P (C|xV , xA)

=
∑
C

P (xV , xA|sV , sA, C)P (sV , sA|C)P (C|xV , xA)

P (xV , xA|C)
, (61)

where P (C = 1|xV , xA) = πC (the posterior mixing proportion).
Natarajan et al. [124] investigated these issues further. In particular, they

showed that human performance on these types of experiments could be bet-
ter modeled by replacing the Gaussian distributions by alternative distributions
which are less sensitive to rare events. As people who modeled the stock mar-
ket learnt to their cost in 2008, Gaussian distributions are non-robust because
the tails of their distributions fall off rapidly which gives very low probability
to rare events. Hence in many real-world applications distributions with longer
tails are preferred. Following this reasoning Natarajan et al. assumed that the
observations xA, XxV were generated by distributions with longer tails. More
precisely, they assumed that the data is distributed by a mixture of a Gaus-
sian distribution (as in the models above) and a uniform distribution which

yields longer tails. More formally, they assume xA πN(xA : sA, σ
2
A) + (1−π)

rl
and
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xV πN(xV : sV , σ
2
V ) + (1−π)

rl
where π is a mixing proportion and U(x) = 1/r1 is

a uniform distribution defined over the range r1.

Homogeneous and Isotropic Texture. The second example is by Knill and
concerns the estimating of orientation in depth (slant) from texture cues [82].
This relates to competitive priors because there are several alternative models
for generating the image and the human observer must infer which is most
likely, see figure 42. More formally, the data is generated by a mixture of models
which enables non-linear cooperative interaction interactions between cues. In
this example the data could be generated by isotropic homogeneous texture or
by homogeneous texture only. Knill’s finding is that human vision is biased to
interpret image texture as isotropic but if enough data is available the system
turns off the isotropy assumption and interprets texture using the homogeneity
assumption only.

Texture maps

Test stimuli

Isotropic source

Fig. 42. Generating textures that violate isotropy [82]. An isotropic source image is
either stretched (top middle) or compressed (bottom middle) producing texture maps
that get applied to slanted surfaces shown on the right. A person that assumes surface
textures are isotropic would overestimate the slant of the top stimulus and underesti-
mate the slant of the bottom one. Figure adapted with permission from [82].

The posterior probability distribution for S is given by:

P (S|I) =
P (I|S)P (S)

P (I)
, P (I|S) =

n∑
i=1

φiPi(I|S), (62)
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where φi is prior probability of model i, and pi(I|S) is corresponding likelihood
function.

More specifically, texture features T can be generated by either an isotropic
surface or a homogeneous surface. The surface is parameterized by tilt and slant
σ, τ . Homogenous texture is described by two parameters α, θ and isotropic tex-
ture is a special case where α = 1. This gives two likelihood models for generating
the data:

Ph(T |(σ, τ), α, θ), Pi(T |(σ, τ), θ) (63)

Here Pi(T |(σ, τ), θ) = Ph(T |(σ, τ), α = 1, θ).
Isotropic textures are a special case of homogenous textures (also rigid motion

is a special class of non-rigid motion). The homogeneous model has more free
parameters and hence has more flexibility to fit the data which suggests that
human observers should always prefer it. But the Occam factor [108] means that
this advantage will disappear if we put priors P (α)P (θ) on the model parameters
and integrate them out. This gives:

Ph(T |(σ, τ)) =

∫ ∫
dαdθPh(T |(σ, τ), α, θ), Pi(T |(σ, τ)) =

∫
dθPh(T |(σ, τ), θ)

(64)
Integrating over the model priors smooths out the models. The more flexible
model, Ph, has only a fixed amount of probability to cover a large range of data
(e.g. all homogeneous textures) and hence has lower probability for any specific
data (e.g. isotropic textures).

Knill describes how to combine these models using model averaging. The
combined likelihood function is obtained by taking a weighted average:

P (T |(σ, τ)) = phPh(T |(σ, τ)) + piPi(T |(σ, τ)), (65)

Where (ph, pi) are prior probabilities that the texture is homogeneous or isotropic.
We use a prior P (σ, τ) on the surface and finally achieve a posterior:

P (σ, τ |I) =
P (I|(σ, τ))P (σ, τ)

P (I)
. (66)

This model has a rich interpretation. If the data is consistent with an isotropic
texture then this model dominates the likelihood and strongly influences the
perception. Alternatively, if the data is consistent only with homogeneous texture
then this model dominates. This gives a good fit to human performance [82].

6 Summary and the relations of early and high-level
vision

This chapter has given a rapid tour of early vision. In particular, we have pro-
vided a modern perspective and conceptualization of early vision in terms of
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probabilistic graphical models. In this final section we briefly mention how early
vision relates to high level vision.

Marr’s theory of vision [109] proposed that vision is done in a feedforward
manner broken down into early vision, performed largely in visual areas V1 and
V2 and high level vision performed in the Inferior Temporal (IT) lobe. In Marr’s
theory, processing is done in a feedforward manner. A second feedforward class
of theories model the ventral stream (visual areas V1, V2, IT) by a hierarchical
neural network where, as we ascend the hierarchy, the receptive fields of neurons
are tuned to increasingly complex visual structures but are increasingly less sen-
sitive to the precise positions of the input features. Models of this type, such as
Hmax, have been developed in detail by Poggio and his collaborators (cf. [140])
and shown to correspond to many of the known aspects of the neuroscience and
also shown to work well on some computer vision datasets. They concentrate on
object detection and recognition and do not address tasks such as depth esti-
mation or image parsing. They have limited representations and so it is unclear
how they can address a large range of visual tasks [39].

By contrast, Mumford [120] argued for the importance of top-down process-
ing citing the large number of backprojections in the cortex and pointing out that
this matched the “analysis by synthesis” pattern theoretic approach proposed
by Grenander [51],[156]. This class of theories has been developed by Mumford
and Lee [92]. Related ideas are also discussed by Rao and Ballard [138] who sug-
gest that top-down processing can be used to implement predictive processing
somewhat similar to the Bayes-Kalman models briefly discussed in this chapter.
Ullman and others [164],[31] have also proposed theories of vision which include
bottom-up and top-down processing.

How do the models in this chapter fit into these three frameworks? There is
clearly no problem in incorporating them into both classes of feedforward model.
They can be used to compute the representations required by Marr’s theory.
They could also be used as the first stages of a feedforward network model like
Hmax. The situation is more complicated for the third type of framework which
combines bottom-up and top-down processing. But this can also be formulated
by extending the graphical model theories in this chapter so that they are hierar-
chical. In these models the low-level nodes represent elementary features, such as
edges, and the intermediate-level nodes represent compositions of the lower-level
features, such as the grouping of edges to form longer segments, or the group-
ing of parallel line segments. These intermediate-level structures are combined
together to form larger structures such as objects and object parts. These the-
ories are sometimes called compositional [41,192] because they build objects by
composition and they are closely related to stochastic grammars ([193,121]. For
these classes of theories, the early and high levels of vision are strongly coupled
(similar to strong coupling of cues in this chapter). Inference can be performed
either bottom-up, where it is driven directly by the input image and low-level
hypotheses are combined together to make hypotheses for more complex struc-
tures, or top-down where high-level hypotheses drive the computation.
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