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Abstract

A full Bayesian approach to vision requires consideration of potential interactions be-
tween all the variables in both the scene and image. A complete model of the interactions,
however, would seem computationally intractable because of the large dimensionality of
image measurements and scene properties. As a consequence, both experimental studies
and theoretical models of human vision have relied on an assumption of modularity in
which a particular scene property, such as object depth, is estimated from a restricted
set of image measurements, such as image size. The computational problem is not hope-
less, however, and can be surmounted by restricting the task and taking advantage of
the statistical structure of the problem. In a Bayesian context, modularity falls out of
the conditional independencies in the joint distribution of scenes and images p(S, I). By
conditioning the joint distribution with respect to particular inference tasks, further mod-
ularity is possible while preserving optimal cue combination. We illustrate the problem
of modularity and cue combination for the perception of depth from two highly disparate
cues, cast shadow position and image size. While strong modularity would suggest ad hoc
or no cue combination, we find that the performance of human subjects is better predicted
by near-optimal cue combination.
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1 Introduction

Human visual perception uses well over a dozen different cues to depth, including binoc-
ular and motion parallax, pictorial cues, and the so-called physiological or proprioceptive
cues (cf.[8]). Our understanding of depth perception has largely developed through the ex-
perimental study of single cues in isolation. Although, there have been a few experimental
studies of cue combination pairs[6][19][25], testing all possible cue combinations is impos-
sible. Thus our understanding and modeling of how these cues interact in everyday vision
presents an empirical challenge: How can we test and quantitatively model the interac-
tions of multiple cues given the complexities of natural images? Our proposed solution is
to develop ideal observer models of optimal cue combination which provide the bases for
specific testable hypotheses of human perception. We, of course, expect departures from
optimality for any real system; but an ideal observer provides the baseline default model
from which new models are created. This strategy, at least in theory, makes the scientific
problem tractable. But, one could argue, that all we have done is to change the impossible
empirical problem into a theoretically intractable one. Our primary goal is to argue that
optimal Bayesian theories of depth cue integration can be developed by exploiting task
dependency and the statistical structure of the depth estimation problem. We illustrate
these ideas with an analysis of depth estimation from image size and cast shadow position
cues.

1.1 Why do Bayesian Cue Integration?

There is a long tradition of treating modularity as fundamental. Marr was “...moved
to elevate (modularity) to a principle”[22]. Most ad hoc modularity schemes begin with
several different image measurements which are related to the scene variable to be esti-
mated, and then assume that if the image measurements are functionally separable, they
should produce independent estimates. However, the statistical independence of image
measurements with respect a scene variable depends on the joint distribution, p(S, I), of
scene and image variables. We will show that modularity is determined by the statistical
independence structure of the joint distribution.

The use of ad hoc modularity creates problems for cue combination[7, 19]. Given that
we have several estimates for an unknown quantity x, what do we do with them? In order
of simplicity, we could: discard the worst estimates as outliers; take a linear combination
(often termed weak fusion); take linear combinations modified by prior knowledge or other
constraints; or, we could cook up more complicated functions of the estimates potentially
incorporating prior knowledge or other constraints.

Under particular conditions each of these fusion methods is optimal, but many situ-
ations arise in which it is sub-optimal to form separate estimates at all. An important
instance is when there are several scene variables which depend on the same image mea-
surements. In this case, optimal estimation must treat all the image measurements and
scene variables together or cooperatively. For instance, any image measurement can be
created by different combinations of surface geometry and reflectance, hence it is in prin-
ciple impossible to derive separate optimal estimators of surface geometry from different
image measurements[18].
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In contrast, Bayesian inference insures consistent inferences and combination of cues
based on the confidence in the estimates.

2 Probabilistic Approaches to Scene Estimation

2.1 Modeling p(S, I)

Probabilistic approaches to scene estimation require the specification of P (S, I), the joint
probability distribution of scene, S and image variables I. This joint distribution contains
all the required information for making optimal inferences and doing optimal encoding
of the image information. For example, marginalizing the joint distribution over S yields
p(I) =

∫
S P (S, I)dS, which specifies the distribution of images. A great deal of recent

work on image coding has involved seeking compact representations of p(I), typically
using redundancy reduction principles[2, 27, 9, 23, 33, 30, 28, 29].

For the problem of inferring scene descriptions from image measurements, we use Bayes
rule to write the posterior probability as:

P (S|I) =
P (S, I)
P (I)

=
P (I|S)P (S)∫

S P (I|S)P (S)dS
(1)

Optimal inference uses p(S|I), but the form of the estimators depends on the task.

2.2 Task Dependency

Although modeling p(S, I) is theoretically possible, the cost of doing so for the entire
ensemble of scenes and images an observer could encounter is prohibitive. However, for
most inference tasks we are only interested in a small subset of the variables contained in
the set S. Thus, for particular tasks, S can be replaced by a subset of related variables
(e.g. object motion, light source direction, etc.), and I by a small set of required image
measurements. Even considering the union of the set of tasks the visual system performs,
the number of variables required by this union will be orders of magnitude less (arguably
a different cardinality) than the variables required to describe p(S, I) completely. While it
is clear that restricting the domain of expertise of the visual system to a limited number
of tasks appreciably relaxes the computational burden, the complexity can be further
reduced if we take advantage of the statistical structure of p(S, I) restricted to the task.

We consider a task as specifying four things, the required set of scene variables Sr,
the nuisance (e.g. generic [11]) scene variables Sg, the scene variables which are presumed
known Sf , and the decision to be made. Each of the four components of a task plays a
role in determining the structure of the optimal inference computation. We show that
Sr and Sf can be used to simplify the joint distribution through independence relations,
while Sg and the decision rule can make one choice of Sr simpler than another.

2.2.1 Factoring Distributions and Conditional Independence

When the joint distribution factors due to statistical independence:

p(S, I) = p(I|S1)p(I|S2)p(S1)p(S2),
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then we can ignore the variables in S2 when making inferences on variables in the set S1.
Thus, the first simplification is to factor p(S, I) into two parts, one of which contains all
the variables which are statistically independent of Sr and the other which contains all of
the dependent variables, p(S, I) = p(Iind|Sind)p(Idep|Sdep)p(Sind)p(Sdep).

In most cases, the nature of a task fixes some of the scene variables Sf . For instance,
if an observer’s task is to identify objects on an assembly line, then a number of relevant
variables are typically fixed, such as the viewing direction and distance, and the light source
distance and direction. Restricting the task domain to rigid bodies allow the observer to
treat object sizes as time invariant. Note that most constraints used to regularize vision
problems can be expressed as fixing a set of scene variables. For instance, in a world of
polynomial surfaces, the constraint that the task only involves flat surfaces in the world,
can be rephrased as all non-linear polynomial coefficients are fixed at zero.

Since the variables in Sf are presumed known, we can condition p(Idep, Sdep) on Sf ,
p(Idep, Sdep|Sf ), which increases the statistical independence of the variables. In general,
conditioning produces independence relations which can be exploited for cue combination
and cooperative computation. We expect the conditional distribution to further decom-
pose into relevant and irrelevant scene variables.

Thus given the task, we can first factor p(S, I|Sf ) =
∏N
i=1 p(Si, I|Sf ). To do inference

we need only consider the factors in which the Si contain the variables in Sr. Let Sj
denote the minimal set of statistically dependent variables containing Sr. The variables
in Sj excluding Sr are just the nuisance variables Sg. Then, p(Sg, Sr, I|Sf ) contains all
the information we need to perform the inference task, and has automatically specified
the task relevant vs. irrelevant variables. Thus the independence structure determines
which variables should be involved in an inference computation. However, conditional
independence structure also determines which variables interact, which has consequences
for data fusion and cue combination.

The probabilistic structure of the joint probability distribution p(S, I) can be repre-
sented by a Bayes Net[24, 12], which is simply a graphical model which expresses the
conditional independences between the variables. Using labels to represent variables and
arrows to represent conditioning (with a → b indicating b is conditioned on a1), inde-
pendence can be represented by the absence of connections between variables. Using
these graphical models we can determine the interactions between variables by inspection.
For instance if two sets of variables are completely independent, then the graphs of the
variables are disjoint.

Because modularity is the ability to use different data cues to produce independent
estimates of variable x, what determines modularity in a Bayesian inference is whether or
not the data are conditionally independent given x. When this is true, we can produce
separate likelihood functions for x, which can be combined by multiplication, a property
we call Bayesian modularity. Graphically, this requirement is that the data are singly
connected to the variable of interest. Figure 1 shows examples of a singly connected net
and a non-singly connected net. The non-singly connected net corresponds to the case in
which more than one scene variable depends on the data cues, which is exactly the case
that calls for cooperative computation.

1In graph theory, a is called the parent of b
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d1 d2

d1  &   d2   singly connected

d1 d2

d1  &   d2    NOT singly connected

x x

Figure 1: Whether independent data measures are singly connected to the estimated
variable x determines whether or not estimation modules can be created for x.

2.2.2 Marginalization and Decision Rule

Bayesian decision theory provides a precise language to model the costs of errors deter-
mined by the choice of visual task[32][5]. The risk R(Σ; I) of guessing Σ when the image
measurement is I is defined as the expected loss:

R(Σ; I) =
∫
S
L(Σ, S)P (S | I)dS,

with respect to the posterior probability, P (S|I). The best interpretation of the image
can then be made by finding the Σ which minimizes the risk function. One possible loss
function is a delta function δ(Σ − S). In this case the risk becomes R(Σ; I) = −P (Σ |
I), and then the best strategy is to pick the most likely interpretation. This is called
Maximum a posteriori estimation (MAP). A second kind of loss function assumes that
costs are constant over all guesses of a variable. This is equivalent to marginalization of
the posterior with respect to that variable. For simplicity, we will assume the former or
latter of these loss functions depending on whether the variable is needed or not. Thus, we
estimate the most probable relevant scene value (MAP estimation), while marginalizing
with respect to the irrelevant generic variables. While the statistical structure of the
joint distribution determines which variables interact, the choice of decision rule and
marginalization variables determine the details of how they interact.

3 Implications for Psychophysics

Does the visual system do Bayesian inference? If we assume the visual system is optimized
for a limited number of tasks, there are two kinds of predictions: characteristic successes
and characteristic failures. Characteristic successes denote cases when the visual system
behaves optimally. One of the key predictions is confidence-driven cue combination, in
which observers use information based on its reliability. Evidence for confidence driven
use of texture information in judgements of surface orientation has been shown in sev-
eral studies[4, 16, 17, 31] by several authors. Another key prediction is that consistent
interpretations of related scene properties like surface geometry and shading are preferred
over inconsistent ones. Several lightness illusions rely on exactly this property [15, 1].
We should also be able to predict which variables interact directly from the conditional
independence relations.
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Both Bayesian and non-Bayesian visual systems will show sub-optimal performance
for tasks which they are not designed for. However, a Bayesian system will show char-
acteristic failures for a set of related tasks which require optimal inference on different
parametrizations of a set of scene variables. For instance, a visual system which is op-
timized to compute the relative depths of objects will show characteristic failures when
asked to compute absolute depth.

The set of scene variable we do our inference on matter because Bayesian inference is
not invariant to reparametrizations. Thus if we perform optimal inference on one variable,
we cannot just transform the result to get optimal inference on another variable. This is
due to the fact that transforming the variant x of probability distribution dF = p(x)dx
yields dF = p(g(y))g′(y)dy where x = g(y). Thus the transformation will not yield
the same inferences unless g(y) is linear. This causes, for instance, binomial and beta
distributed densities which are identical in x space to be substantially different in y = 1/x
space [10]. While this fact has been used to critique Bayesian inference [10], it also has the
interpretation that the kind of information contained about a variable and its transform
by one distribution is not the same as the information contained by another distribution.

In the next section we perform a detailed analysis of Bayesian inference on a simple
scene, to compare several of these predictions to psychophysical data. In particular, we
investigate whether we can predict which variables interact, whether cue combination is
confidence-driven, and how ideal performance varies given different parametrizations of
the observer’s decision variable.

4 Estimating Depths from Image Size and Shadows

We illustrate the dependence of Bayesian cue combination on task demands and condi-
tional independences with a simple scene due to Kersten et al.[13]. The scene consists of
a flat central square, a flat checkerboard background and a light source. The square floats
in front of the background, and the light source is positioned so that the square casts a
shadow onto the background. The observer judges the depth of this square vs. the depth
of another square (simulated to be physically identical in 3D) presented at a different time.
The viewing distance, and the orientation of the square and background were kept fixed.
In this simplified world the only cues to depth are the image size a of the square, and the
position of the cast shadow β (measured by the visual angle subtended by the direction
of gaze and the shadow position ). An example of the stimuli is shown in figure 2.

These cues are substantially different. The image size is determined by the depth of the
square from the observer and the physical size of the square. Image size information is most
naturally used to estimate the egocentric distance to the square. On the other hand the
shadow position is determined by variables in a different coordinate frame. Cast shadow
position is determined by the allocentric distance of the square from the background and
the position of the light source. Thus to combine the shadow and image size data, we
must convert one of the variables into a common coordinate frame.

From the standpoint of traditional estimation, a strong case can be made not to com-
bine the cues. When we know that the sizes of the two squares are identical, then we can
simply compare the likelihoods for depth given the image size. When the likelihoods are
singly peaked, the optimal decision simplifies to comparing image sizes, and judging the
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Figure 2: An illustration of the stimuli used in the experiment. Two movies depicting
a square moving in depth are sequentially shown to the observer. The image size of
the square becomes larger and the shadow moves away from the square with decreasing
depth from the checkerboard background. The image on the left illustrates the reference
condition in which the image size was maximal and the shadow displacement minimal.
The right hand side shows the test condition which has variable image size and shadow
displacements. Subjects judged whether the reference or test square appeared closer at
the end of the movie in a two-alternative forced-choice method.

larger image closer. Similarly, treating the shadow information and assuming the light
source direction is the same for both intervals, the square farther from the background
can be decided on the basis of which shadow position is farther from the square. Thus it
might seem more natural not to combine the cues,and instead make separate judgements
of depth from the cues.

In contrast, Bayesian inference requires choosing a common coordinate frame to com-
bine the cues. However, to combine the cues the size of the square and the light source
direction can no longer be neglected. We considered three possible common coordinate
frames to do the inference. Each of these leads to a different Bayes net and different
optimal inference structure. For each of the three tasks, however, the best way to judge
the depths of the two squares is to compute decision variables consisting of MAP depth
estimates for both intervals and choose the smaller (closer to the observer) value.

4.1 Task 1: Estimating Relative Distance from Background (zr)

The geometric diagram in figure 3 defines all of the relevant variables for the task. One way
of judging the depths of the two squares is to compute the distance from the background.
This leaves 4 unknowns, α, s, z,& rb with only two data variables. If the observer scales the
distance from the background z, and the object size s by the distance from the observer
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Figure 3: Diagram illustrating the problem of inferring depth from image size and cast
shadow position in 1-D for the central square in front of a checkerboard background (see
figure 2). There are three depth variables, distance to the background rb, distance to the
square rs, and the distance of the square from the background z. The cast shadow position
x depends both on the light source position α and z. We assume that the observer can
measure the angle subtended by the shadow β. The image size a (not shown) of the object
depends on the physical 3D size of the square s and the viewing distance rs.

to the background rb, then estimates of the relative distance from the background can be
made without having to deal with rb. By computing with the scaled variables, we make
our inferences more reliable because we have eliminated the uncertainty we might have in
rb.

While computing distance relative to an arbitrary background may seem contrived, the
idea is similar to computing depth relative to the fixation distance. From a psychological
standpoint, object depth is often evaluated relative to a background context. There are
situations, like sitting at one’s desk, where a fixed object (the desk) is familiar enough for
it to make sense to compute distances relative to it. In addition, many perceptual tasks do
not require metric distance information (I can see that there is a pen on my desk without
calculating the distances from myself to each of the objects).

In this task the observer needs to estimate the relative distance zr = z/rb of the
square from the background checkerboard wall. Both the image size of the square and
the shadow position are functions of zr. The shadow position measurement β (in terms
of visual angle), is a function of zr and light source position α:
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a
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Absolute Distance
from Background
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a

Depth from Observer
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Figure 4: Bayes nets for the three tasks. a) Bayes net for relative distance to the back-
ground. This task involves estimating object relations (world centered), and requires the
least prior knowledge. b) Bayes net for distance to observer. Notice that the use of the
shadow information requires integrating across two variables, hence the shadow cue should
have more uncertainty for this task. c) Bayes net for metric depth from the background.
Estimating the distance from the background, z, is complicated by the image size and
shadow position measurements also being jointly dependent on the observer’s distance to
the background.

β = tan−1(zr tan(α)) + nβ (2)

The term nβ models the noise in the measurement. For simplicity we take this to be
a Gaussian random variable, so that β is Gaussian distributed. The likelihood function is
given by:

p(β|zr, α) =
1√

2πσβ
exp(−(β − tan−1(zr tan(α))2

2σ2
β

) (3)

The image size a is given by:

a =
s

rs
+ na =

s/rb
1− z/rb

+ na =
sr

1− zr
+ na

where sr is the actual size of the square relative to the distance to the background,
and na is a term which models the noise in the measurement. Since both sr and 1−zr are
physically constrained to be positive, we modeled the size measure noise as log normal.
Then the likelihood for a is given by:

p(a|zr, sr) =
1√

2πσaa
exp(−

log( sr
1−zr )

2

2σ2
a

) (4)

To estimate zr we compute p(zr|β, a). Assuming that the measurements of the image
size a and the shadow position β are independent, p(zr|β, a) can be written:
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p(zr|{β}, {a}) =
p({β}|zr)p({a}|zr)p(zr)

p({β}, {a})
p(zr|{β}, {a}) ∝ p({β}|zr)p({a}|zr)p(zr)

=

(∫
α

N∏
i=1

p(βi|zr, α)p(α)dα

)(∫
sr

N∏
i=1

p(ai|zr, sr)p(sr)dsr
)
p(zr),

where N is the number of measurements. The Bayes net which corresponds to this
inference is shown in figure 4a. Note that this network is Bayes modular, which shows up
in the factoring of the likelihoods above.

4.2 Task 2: Estimating Depth to Square (rs)

As we interact with the world, there are instances when viewer-centered depth is required,
such as navigating and reaching to objects. Thus, it is reasonable to consider a second
task in which one estimates the distance from the observer to the squares rs. The Bayes
net for this inference is shown in figure 4b. In this case the shadow position must be
converted to an observer coordinate frame. Using rb = z + rs, we can write the shadow
position measurement as:

β = tan−1(
(

1− rs
rb

)
tan(α)) + nβ (5)

The likelihood function is given by:

p(β|rs, rb, α) =
1√

2πσβ
exp(−

(β − tan−1(
(
1− rs

rb

)
tan(α))2

2σ2
β

) (6)

The image size a is given by:

a =
s

rs
+ na

Hence the likelihood for a is given by:

p(a|rs, s) =
1√

2πσaa
exp(−

log( srs )
2

2σ2
a

) (7)

To base the decision on rs, we compute p(rs|β, a):

p(rs|{β}, {a}) ∝ p({β}|rs)p({a}|rs)p(rs)

=

(∫
rb

∫
α

N∏
i=1

p(βi|rs, rb, α)p(α)p(rb)dα drb

)(∫
s

N∏
i=1

p(ai|rs, s)p(s)ds
)
p(rs)(8)

Note that this inference is Bayes modular, and that inference with the shadow cue
requires dealing with the additional unknown rb. Thus, for this task, the uncertainty in
our shadow depth estimates increases as compared with the relative distance task (Task
1).
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4.3 Task 3: Estimating Absolute Distance to Background (z)

Finally, the observer could compute z, the absolute distance from the square to the back-
ground. This requires conversion of the image size information into object coordinates.
The computation also involves a second unknown for both cues, the distance to the back-
ground rb. The Bayes net which corresponds to this inference is shown in figure 4c. The
measurements can be written in terms of z as:

β = tan−1(z tan(α)/rb) + nβ (9)

a =
s

rb − z
+ na.

The likelihood functions are:

p(β|z, rb, α) =
1√

2πσβ
exp(−(β − tan−1(z tan(α)/rb))2

2σ2
β

) (10)

p(a|z, rb, s) =
1√

2πσaa
exp(−

log( s
rb−z )

2

2σ2
a

) (11)

To estimate z we compute p(z|β, a):

p(z|{β}, {a}) ∝ p({β}, {a}|z)p(z)

=

(∫
rb

(∫
α

n∏
i=1

p(βi|z, rb, α)p(α)dα

)(∫
s

n∏
i=1

p(ai|z, rb, s)p(s)ds
)
p(rb) drb

)
p(z)(12)

Note that the posterior no longer factors into separate likelihoods for z, due to the
joint marginalization across rb. Thus, estimating absolute z is not Bayes modular. This
has consequences for cue combination that we explore below.

4.4 MAP Estimates

To derive formula for the MAP estimates of square depth for the three models, we found
analytic approximations to the required marginalization integrals using Laplace’s method
[3, 11, 21]. In Laplace’s method integrals of the form:

F (σ2) =
∫ b

a
f(x) exp(h(x)/σ2)dx (13)

can be well approximated in the low noise limit σ2 → 0. If the maximum c of h(x) is in
(a, b) and f(c) 6= 0,2 then by expanding h(x) in a second order Taylor series about c, the
integral is asymptotically:

F (σ2) ∼
√

2πσ2√
|h′′c|

f(c) exp(h(c)/σ2) (14)

2For maxima at end points or vanishing f(c), the method yields slightly different approximations.
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4.4.1 Task 1: MAP Estimate for zr (Relative z)

When the prior on α is uniform, the marginalization step can be approximately evaluated:∫
α

n∏
i=1

p(βi|zr, α)p(α)dα '
√

2zr
π(z2

r cos(β̂)2 + sin(β̂)2)
(15)

where β̂ is the mean of the N sample βs.
The maximum zr occurs at:

maxzr (p(β|zr)) = tan(β̂). (16)

For the size change cue, some knowledge of the relative size is crucial to compute the
relative distance. In the absence of a peaked prior, it is easy to show that the optimal
estimate of zr is always zero. Thus we marginalized with respect to a log normal prior on
sr yielding:

p({a}|zr) =
1√

π(σ2
â + σ2

sr)â
exp(− log(â(1− zr)/µsr)2

2(σ2
â + σ2

sr)
) (17)

where â is the geometric mean of the N samples, and σ2
â = σ2

a/N . The maximum zr
with respect to image size occurs at

maxzr (p({a}|zr)) = 1− µsr/â (18)

if µsr < â and at zero otherwise.

4.4.2 Task 2: MAP Estimate for rs

We find the optimal estimator for the shadow cue as we did previously, with the excep-
tion that we need to marginalize over the additional unknown rb, the distance to the
background. We assumed a log normal prior on rb. This yields two asymptotic approxi-
mations, one for small uncertainty on the prior σ2

rb
and one for large σ2

rb
. The small σ2

rb
approximation was used in our data analysis and is shown below:∫

rb

p({β}|rs, rb)p(rb)drb '
2(1− rs/µrb)

π((1− rs/µrb)2 cos(β̂)2 + sin(β̂)2)
(19)

The maximum rs occurs at:

maxrs (p({β}|rs)) = µrb(1− tan(β̂)). (20)

For the size change cue, marginalizing with respect to a log normal prior on s yields:

p(â|rs) =
1√

π(σ2
â + σ2

sr)â
exp(− log(ârs/µsr)2

2(σ2
â + σ2

sr)
). (21)

The maximum rs with respect to image size occurs at

maxzr (p({a}|zr)) = rs =
µs
â
. (22)
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Task Est from Shadow Est from Size Shadow Fisher Info Size Fisher Info

Relative z zr = tan(β̂) zr = 1− µsr
â

1√
2 tan(β̂)2

2â2

µ2
sr

(σ2
sr

+σ2
â
)

Dist. from Obs. rs = µrb(1− tan(β)) rs = µs
â

1
µ2
rb

tan(β̂)2
2â2

µ2
s(σ

2
s+σ

2
â
)

Absolute z z = µs tan(β̂)

â(1−tan(β̂))

2â2(1−tan(β̂))4

(µ2
s tan(β̂)2

Table 1: Table of MAP estimates and Fisher information values for the three depth
estimate tasks. For the tasks which admit modular estimates, the estimates are shown
separately for the shadow and image size cues.

4.4.3 Task 3: MAP Estimate for z

In optimal estimation of z we cannot consider the shadow cue and image size cues sep-
arately. Instead the joint distribution must be marginalized over rb. The asymptotic
approximation to the posterior is:

p(z|{β}, {a}) ∝ µsz csc(β̂) sec(β̂)
√

2â
√
â2z2 + µ2

s(σ2
â + σ2

s) tan(β̂)2
exp

− (z − µs tan(β̂)

â(1−tan(β̂))
)2

2 â
2z2+µ2

s(σ
2
â
+σ2

s) tan(β̂)2

â2(1−tan(β̂))2

 p(z)
(23)

The exact MAP estimator for this equation is complicated, but can be approximated
by:

maxz (p(z|{β}, {a})) ' µs tan(β̂)
â(1− tan(β̂))

(24)

for the range of â and β̂ used in the experiments.

4.5 Fisher Information

A lower bound on the variance of unbiased estimators is given by the reciprocal of the
Fisher Information [26]. The Fisher Information is given by:

I(x) = −N
∫
data

p(data|x)(∂2 log p(data|x)/∂x2)d(data) (25)

Recognizing the second derivative of the log of p(data|x) as an estimate of the inverse
variance of the Gaussian approximation to the likelihood function on x, we can interpret
the Fisher Information as the expected approximate variance of the likelihood function.

When independent likelihood functions for the depth variable can be derived (Bayesian
modularity), the minimum variance estimator can be expressed in terms of the individual
MAP estimates and the Fisher Information for each of the cues [4, 26]. Let ma denote the
MAP estimate and Ia(x|ma) the Fisher information for the image size cue, and mβ the
MAP estimate and Iβ(x|mβ) the Fisher Information for the shadow cue. Then the two
cues are combined by a linear combination of the individual estimates, weighted by their
inverse variances:

mbest =
maIa(x|ma) +mβIβ(x|mβ)
Ia(x|ma) + Iβ(x|mβ)

. (26)
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which is a specific prediction of a confidence-driven decision.
The lower bound on the variance of mbest is given by:

1
Ia(x|ma) + Iβ(x|mβ)

(27)

These estimates are also the expected MAP estimates for cues which are consistent (i.e.
the likelihood functions have similar maxima). We computed Fisher information for each
of the independent depth likelihood functions. The MAP estimates and Fisher information
values are summarized in table 1.

Because rs and zr are related by a linear transformation we know the probability
distributions should transform gracefully. However, note that our MAP estimate for
z is not what we would expect from weak fusion, nor can it be produced by converting
either the zrbest or the rsbest to z. Thus, in this case strong fusion has resulted from
marginalization.

In a Bayesian context, linear combination is only appropriate for Bayes nets with
certain properties. For Bayes nets which are modular and the data are consistent, a
linear combination rule, inversely weighted by the variances of the estimates is optimal.
When the Bayes net is modular, we can compute the estimates for linear changes of
variables directly from the linear transform of the estimates, given precise knowledge of
any unknowns involved in the transform. Although the zr and rs estimates are compatible
in this way, it is important to point out that depth decisions based on these estimates can
substantially differ.

Inspecting the Fisher information functions, we can determine how the informativeness
of the cues vary as a function image size and shadow position. For all three estimation
tasks, the informativeness of the shadow cue decreases with increasing distance of the
shadow from the square, while the informativeness of the image size cue increases with
image size. Thus shadow information is useful when an object is close to the object it
casts its shadow on, while image size information is useful when an object is close to the
observer. Note that the information mirrors our expectation about the natural coordinate
frames for the two cues.

5 Human Performance

We performed a shadow and image size cue combination experiment to investigate whether
or not human observers make Bayesian-like use of both cues to estimate the depth of the
square [20].

Computer graphics animations of a 2 cm by 2 cm target square moving in depth were
created by a displacement of the shadow from an initial position and by a size change of
the square. Participants viewed two animations presented sequentially (the reference and
test images in randomized order) and were asked to judge which of the two squares moved
further in depth from the background. Responses were recorded via a mouse button click.
In the reference image, size change was maximal (128%) and shadow displacement was
minimal (0.5 cm). In the test image, size change ranged from 116% to 128% (116%, 119%,
122%, 125%, 128%) and shadow displacement from 0.5 cm to 2.5 cm (0.5 cm, 1.0 cm, 1.5
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cm, 2.0 cm, 2.5 cm). The viewing distance was 20 cm, and the simulated light source had
an average α of 22.5 deg.

Figures 5 & 6 show data for two naive subjects. The probability the observer chose
the test as appearing closer is plotted against the shadow displacement β. Each of the five
curves corresponds to a different test image size, shown in the legend box in the upper right
panel. Discounting the shadow information would result in constant curves as a function of
β with all the probabilities less than 0.5 (because the test image sizes are all less than the
reference image size), while discounting image size information would result overlapping
curves. For both subjects the curves are neither overlapping nor flat, demonstrating that
observers do use both kinds of information. To assess whether observers were weighting the
cues based on their reliability, we compared the human data to approximate performance
of the three cue combination models.

The performance of the three different estimators on the task was approximated using
the estimator and Fisher Information equations. The optimal decision rule for the task
is to choose the interval with the larger (smaller) MAP estimate of the distance from
the background (from the observer). If we approximate the MAP estimates µ as being
Gaussian, then we can use the fact that the inverse of the Fisher information is a lower
bound on the variance of an unbiased estimator to write an approximate upper bound
on performance. The decision variable is then normally distributed with mean given by
the difference in map estimates, and the variance given by the sum of the reciprocals
of the Fisher informations. This performance approximation is quite coarse. However,
simulations showed that the networks had similar qualitative behavior. The performance
of the three estimators is illustrated in the upper panels with the model free parameters
set by maximum likelihood fits of the models to the data. The relative distance observer
(Task 1) has two parameters, the sum of the image size variance and the variance of the
prior on square size, σ2

a + σ2
s , and the mean of the prior on square size µs. The distance

to square observer (Task 2) has both these free parameters and a third for the mean of
the prior on rb. The absolute distance observer (Task 3) has two free parameters µs and
µrb . Note that the behavior of the relative distance and the depth-from-observer models
are qualitatively similar to both subjects’ data, with the depth-from-observer model being
the better predictor for the data sets of both subjects.

Note that the data from the two subjects are qualitatively different3. Subject ARL
shows an initial increase in p(′closer′) followed by a decrease for the smaller image sizes.
The depth-from-observer model shows qualitatively similar behavior, when the prior ex-
pectation on the distance to the background µrb is reduced by about 20% and the estimate
of distance from image size has less uncertainty. The decreased uncertainty in the image
size cue coupled with the decreasing effectiveness of the shadow cue with β cause the flat-
tening of the curves and the downward trend. The downward trend can be briefly offset,
however, by decreasing the expected background distance, which increases the informa-
tiveness of the β cue.

Although the absolute distance approximation is poorer than the other two, the qual-
itative behavior of the model and the simulations least resembles the subjects’ data. This
suggests that the visual system may not be optimized to compute the metric distances

3Kersten et al. [14] report size change and shadow displacement results in a different experiment which
also showed statistically significant differences between subjects in cue combination strategies.
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Figure 5: Data for one observer is shown in the bottom panel. The probability the observer
chose the test as appearing closer is plotted against the shadow displacement β. Each of
the five curves corresponds to a different test image size. Each probability is an estimate
from 60 trials, and the error bars represent the standard errors of the estimate. The
reference stimulus is the same as the test stimulus with the maximal image size and the
minimal shadow displacement. The upper three panels show the probabilities predicted by
the approximate cue combination models for the three tasks. The model free parameters
were set by maximum likelihood fits to the data.
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between objects.
While the data are preliminary, the fact that the depth-from-observer model is more

similar to the subjects’ data is somewhat surprising. After all, we make perceptual de-
cisions about the relative distances between objects all the time. Further, although the
perception of depth from shadows and size is phenomenally quite strong [14], observers
can readily see the animations as simulations on a flat screen and hence unreachable. On
the other hand, the visual system is highly adapted for reach. If the visual system can
only optimize for one depth variable, then distance from the observer is a sensible one.

Given the computational cost of doing Bayes inference over traditional estimation (e.g.
need to compute whole posterior, not just estimate), why might the expense be worth it?
One reason could be that ensuring consistency is practical. Doing optimal cue combination
with consistent cues allows very good estimation of scene variables from data, even when
the number of data samples are less than the number of unknown scene variables and with
very little prior knowledge. As an example, figure 7 shows the marginal distributions for
all of the scene variables in the depth-from-observer network given only two image size
and shadow position measurements, and flat priors on all the variables. Dashed lines mark
the true values of the scene variables. Notice that the MAP estimates are nearly correct
for all four variables.

6 Summary

We have argued that a fundamental goal of the visual system is to model the joint distribu-
tion p(I, S) subject to task constraints. While modeling p(I, S) completely is intractable,
a visual system which which is only required to be optimal on a limited number of tasks
can considerably simplify the problem by exploiting conditional independence to reduce
the number of required variables and the complexity of the relations between variables.
We contrasted Bayes inference and more traditional estimation schemes which are driven
by an early, and sometimes premature, commitment to modularity. We analyze in detail
Bayesian inference for a simple depth estimation task involving two disparate cues, image
size and cast shadow position, for three different coordinate frames. From the analysis we
predict performance on a simple depth discrimination task from the optimal cue combina-
tion in each coordinate frame. We find that observers’ decisions are confidence-driven, in
that they weight the information from the two cues in accord with their informativeness.
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