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Abstract

Visual perception involves the grouping of individual elements into coherent patterns, such as object representations, that reduce the

descriptive complexity of a visual scene. The computational and physiological bases of this perceptual remain poorly understood. We discuss

recent fMRI evidence from our laboratory where we measured activity in a higher object processing area (LOC), and in primary visual cortex

(V1) in response to visual elements that were either grouped into objects or randomly arranged. We observed significant activity increases in

the LOC and concurrent reductions of activity in V1 when elements formed coherent shapes, suggesting that activity in early visual areas is

reduced as a result of grouping processes performed in higher areas. In light of these results we review related empirical findings of context-

dependent changes in activity, recent neurophysiology research related to cortical feedback, and computational models that incorporate

feedback operations. We suggest that feedback from high-level visual areas reduces activity in lower areas in order to simplify the description

of a visual image—consistent with both predictive coding models of perception and probabilistic notions of ‘explaining away.’

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the extraordinary capabilities of the human visual

system is its ability to rapidly select and group related

elements in a complex visual scene. This capability serves

to bring together information likely to belong to a common

cause, such as the same contour, surface or object. Grouping

also reflects a general function of cognitive systems in that it

greatly simplifies the description by exploiting redundancy

in the input pattern (Barlow, 1959). For example, the image

of a set of parallel lines can be succinctly described as a

single texture pattern (‘N repetitions of feature X’) without

needing to specify each element within the pattern.

These pattern-processing capabilities appear to be

reflected in the activities of neurons at various stages of

the visual system. For example, the response of a neuron in

V1 to a single bar oriented along a receptive field’s

preferred axis can be suppressed by parallel bars on the two

sides or enhanced if orientations differ and a collinear bar

can enhance the response (Kapadia, Westheimer, & Gilbert,

2000; Knierim & van Essen, 1992). Such pattern context

effects in V1 appear to be mediated by both local

connections (Das & Gilbert, 1999) and by interactions

with higher areas (Hupe et al., 1998).

Grouping local features that belong to an object is

particularly interesting from a physiological perspective

because object shape is believed to be represented in higher

stages of the visual system beyond V1, so any influence of

perceived shape on lower areas would require feedback.

Feedback is generally thought of as a process where activity

in lower areas is positively correlated with the activity

occurring in higher areas. However, recent work on

predictive coding models has suggested that feedback may

operate to reduce activity. In these models, higher-stages of

a network compete by projecting their predictions about the

stimulus to lower stages, where they are then removed from

incoming data. In these models, the activity of neurons in

lower stages will decrease when neurons in higher stages

can ‘explain’ a visual stimulus, but will increase when the

top-down explanation is poor (Mumford, 1992; Rao &

Ballard, 1999). Other mechanisms for reducing activity via

feedback are also possible and are discussed below. We

present results from our own research and those of others

suggesting that feedback from high-level visual areas
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reduces average activity in lower areas in order to simplify

the description of a visual image.

2. Feedback

Feedback projections are a prominent anatomical feature

of the primate visual system (Felleman & Van Essen, 1991)

and recent evidence suggests they play a critical role in

visual perception (Pascual-Leone & Walsh, 2001 and see

Bullier, 2001; Lamme & Roelfsema, 2000 for reviews).

Nevertheless, the functional significance of these connec-

tions has been open to interpretation. There are two basic

possibilities: feedback may act by modifying input-driven

activity in an existing active neural population by inhibition

or facilitation; or feedback may recruit or prevent activity in

a new population through processes like filling in or

discounting.

Evidence that cortical feedback modifies existing activity

is substantial and growing. For example, selectively

deactivating higher visual areas reduces context effects in

lower areas (Hupe et al., 1998). Hupe et al. (1998) show,

using reversible inactivation of a higher-order area (monkey

area V5/MT), that feedback connections serve to amplify

and focus activity of neurons in lower-order areas, and that

they are important in the differentiation of figure from

ground. In particular, they show that feedback connections

facilitate responses to objects moving within the classical

receptive field and enhance suppression evoked by back-

ground stimuli in the surrounding region. Recent obser-

vations on the ‘non-classical’ receptive field structure in V1

by electrophysiologists also argues for modified activity via

feedback (see Angelucci, Levitt, & Lund, 2002). In

addition, attention has been shown to have a profound

effect on activity in primary visual cortex (Kastner, Pinsk,

De Weerd, Desimone, & Ungerleider, 1999; Ress, Backus,

& Heeger, 2000).

Feedback models that involve recruitment have been

suggested for phenomena like filling-in and illusory contour

formation. Mechanisms for illusory contour formation have

been modeled as within-area recruitment (Peterhans & von

der Heydt, 1991). However, recruitment of neural activity in

a lower visual area may result when a higher level area

predicts data that is not present in the input (e.g. the well-

known Dalmation dog demonstration by RC James). Using

single unit recording in macaque visual cortex, Lee (2002)

found V1 responses to illusory contours 35 ms after V2

responded, suggesting that feedback from V2 to V1 recruits

V1 neurons (Lee, 2002; Lee, Yang, Romero, & Mumford,

2002). However, there has been little evidence of an explicit

neural analog of filling-in through either within or between

area processes (von der Heydt, Friedman, & Zhou, 2003).

Until recently, feedback projections were often con-

sidered to be too spatially diffuse and slow to perform

computations anything more complicated than non-specific

excitation or inhibition-making results that suggest targeted

feedback (like those in Hupe et al., 1998) difficult to explain.

However, recent anatomical and physiological evidence

now suggests that feedback from higher areas to lower areas

is anatomically and functionally specific. Feedback con-

nections from extra-striate cortex target the clusters of

neurons that provide feedforward projections to the same

extra-striate site and there is considerable convergence of

visual information to single cortical columns from extra-

striate feedback (Lund, Angelucci, & Bressloff, 2003). In

addition, feedback connections are very fast conducting

(3.5 m/s) compared to intra-areal horizontal connections

(0.1 m/s) (Girard, Hupe, & Bullier, 2001). These results are

important because they demonstrate an anatomical and

physiological architecture capable of providing rapid,

functionally specific feedback.

2.1. Inferring feedback using fMRI

Because feedback is characterized by interactions over

many areas of the brain, feedback models can be tested

using methods (like fMRI) that can monitor activity in many

areas of the brain simultaneously. The simplest approach is

to compare the measured covariation between cortical areas

to those predicted by different feedback models. However,

this approach is incomplete. Feedback theories postulate

causal interactions between neural activity in different

areas, while measured patterns of covariation between any

two areas can be non-causal—for instance both driven by a

third area or fed by a common artery. Friston, Jezzard, and

Turner (1994) call this distinction functional versus

effective connectivity, where functional connectivity spe-

cifies the interactions between areas that can occur by any

means, while effective connectivity is that subset of

interactions that are causal. This kind of effect plagues

most experimental designs, in which the functional role of

different areas is assigned on the basis of a change in

response to different kinds of stimuli. The problem is that

stimuli typically differ in many ways other than just the

dimensions of interest (like object category). In these cases,

differentiating changes in activity that result from stimulus

dimensions of interest, incidental stimulus differences, task,

and interactions between brain areas is challenging.

Though distinguishing causal from non-causal inter-

actions is notoriously difficult, causal and non-causal

interactions behave differently both in terms of their

timing predictions (e.g. ‘A causes B’ ) ‘A precedes B’)

and more fundamentally how they behave when the values

of the interacting variables are manipulated (Pearl, 2000).

Unfortunately, feedback effects probably occur on the

order of tens of milliseconds, which is well beneath the

current temporal resolution of fMRI and can even be

difficult to infer based on the timing of direct physiological

recordings.

Two basic strategies have been used to try to infer

effective connectivity. One approach uses statistical

methods like structural equation modeling to test causal
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versus non-causal models via goodness-of-fit. Buchel,

Coull, and Friston (1999) use this approach to infer effective

connectivity changes between posterior and inferior parietal

cortex during the learning of an object localization task. The

other basic strategy is to try to experimentally manipulate

the activity in one cortical area without directly affecting

others—and looking for activity changes in other areas that

result. We have used this strategy in a previous study

(Murray, Kersten, Olshausen, Schrater, & Woods, 2002)

which we describe in Section 3.

Finally, to use fMRI data to inform neural theories of

feedback requires an understanding of the relationship

between the BOLD signal and underlying neural activity.

This understanding is important for any interpretation of

fMRI results, but there are unique considerations for models

of feedback. The BOLD signal is likely to represent

changes in both non-spiking inputs to an area (dendritic

currents) and spiking output activity (Logothetis, Pauls,

Augath, Trinath, & Oeltermann, 2001; Logothetis &

Wandell, 2004). Though the BOLD signal in response to

relatively simple stimulus parameters (e.g. motion coher-

ence and contrast) appears to directly reflect spike rate

(Boynton, Demb, Glover, & Heeger, 1999; Rees, Friston, &

Koch, 2000), more complex stimulus or cognitive

manipulations that involve feedback may be more difficult

to interpret.

3. Experimental results

To examine the possible role of feedback during object

perception, we conducted a series of fMRI experiments

(Murray et al., 2002) using stimuli with features that could

either be perceived as ungrouped elements or perceived

as being grouped into a single perceptual ‘explanation’—

specifically, a single shape or object. Our first experiment

used random-dot structure-from-motion stimuli. In one

condition (‘SFM’), random dot patterns were projected onto

the surfaces of simple geometric shapes (e.g. cube, cylinder,

etc.), and the shapes rotated about a single three-dimen-

sional (3D) axis. The shapes were perceived as rigidly

rotating about a single axis. In a second condition (‘velocity-

scrambled’), each dot’s velocity from the SFM stimulus was

randomly reassigned to a different dot. The result was a

stimulus with all the same velocities but that lacked a

coherent shape percept. Instead, the dots were perceived as

moving in random directions (Fig. 1A).

We observed significant reductions in activity in V1

along with significant increases in activity in the LOC

during the SFM condition (Fig. 1B). That is, when the

motion velocities could be grouped into a single 3D shape

activity in V1 was reduced. In addition we also observed

significant reductions in activity in the motion-sensitive area

MT. The differences in MT were somewhat difficult to

interpret because of potential stimulus confounds. For

example, the SFM stimuli had higher motion opponency.

That is, in a localized region of the SFM stimulus there were

more motions in opposite directions, which generally has a

suppressive effect on MT activity. In addition, there was

higher motion coherence—the percentage of dots moving in

a single direction—in the SFM stimulus which can increase

MT activity. However, neither motion opponency nor

motion coherence has been shown to have any effect on

V1 activity. Thus, the very large reduction in activity in

V1—SFM activity was approximately half of that of the

velocity-scrambled activity—was particularly noteworthy.

In a second experiment we used simple line drawings in

three different configurations: (a) random lines, (b) lines that

Fig. 1. (A) The two types of random dot stimuli. (B) Left, average location of the cortical areas under investigation. Right, areas of increased (red/yellow) and

decreased (blue) activity comparing SFM and the velocity-scrambled control stimuli in a single subject. LOC activity increased to the SFM stimulus compared

to the velocity-scrambled stimulus whereas V1 and MT þ showed significant activity reductions.
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formed two-dimensional (2D) shapes or (c) lines that

formed 3D shapes (Fig. 2A). The 2D versus 3D comparison

was important because previous research had shown that the

LOC codes for 3D percepts (Moore & Engel, 2001). Thus,

we expected that the LOC could provide a better

explanation for the lines in a 3D configuration, possibly

leading to a greater reduction in activity in V1.

Consistent with this prediction, activity in the lateral

occipital complex (LOC) showed a step-wise increase in

response to the shape stimuli, with the 2D shapes activating

the LOC significantly more than the random lines, and the

3D shapes activating LOC more than the 2D shapes. By

contrast, activity in V1 showed an opposite pattern—

significant reductions in response to the 2D shapes

compared to the random lines and significantly less activity

for 3D than 2D shapes (Fig. 2B).

Because the line-drawings occupied a restricted area of

the visual field we were able to map the retinotopic

specificity of the activity reductions in V1. Using a

flickering checkerboard annulus that was matched to the

mean eccentricity of the line drawings, we showed that

the reductions in activity occurred in precisely the

retinotopic location of the line-drawings. This was

important because it eliminated the possibility that the

reductions were a general suppressive effect of V1 or due

to a non-specific hemodynamic artifact such as blood-

flow steal.

Though we had performed a number of control studies

showing that the results were not due to potential stimulus

differences (e.g. line terminations) we wanted to make a

strong case that the reductions in activity in V1 were due to

the perceptual interpretation of the stimuli. A final

experiment was performed that controlled for any potential

stimulus based account for the effect. We used a stimulus

similar to that shown in Fig. 3A, which forms a changing

bi-stable percept with either grouped or ungrouped line

segments. The stimulus was a line drawing of a diamond

whose four corners were occluded by three vertical bars of

the same color as the background. When the diamond is

moved back and forth in the horizontal direction the

stimulus is perceived as either a single diamond behind

occluders (‘diamond’), or as separately moving line

segments (‘non-diamond’). The two percepts alternated

after stable intervals of several to tens of seconds and

subjects indicated their perceptual state with a button press.

In a recent paper by several of the authors (Murray et al.,

2002), we reported significant reductions in activity in V1

when subjects perceived the diamond as compared to the

non-diamond (Fig. 3D). Since publication, we have

collected additional data showing that activity in the LOC

increases when the diamond is perceived—consistent with

both the idea that the LOC performs computations important

for grouping visual features into coherent shapes and that

activity in V1 is reduced as a result of activity increases in

the LOC.

Our results indicate that activity is reduced in lower areas

when a simpler explanation of a stimulus can be represented

in a higher area. These results present a strong case for a

functional role for feedback connections in the brain—it

is very difficult to account for these findings with a feed-

forward filtering model of vision. However, an unresolved

question to answer is specifically why a reduction of activity

is found. We address this question in the theoretical

implications section below.

Fig. 2. (A) Examples of the three different stimulus conditions. (B) Left, areas of increased (red/yellow) and decreased (blue) activity comparing 3D figures to

random lines for a representative subject on a flattened representation of occipital cortex. Right, the average percent signal change from the mean for the three

conditions averaged over 6 subjects. Percent signal change is from the mean activation across all three conditions.
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3.1. Relation to other findings

We observed significant reductions in activity in V1 with

three very different stimuli: structure-from-motion, line-

drawing shapes, and the translating diamond. In all three

cases the reductions in activity occurred whenever the visual

features were grouped into a single shape or object—that is,

whenever ‘many became one’. Feedback from higher areas

appears to be the primary contributor to the context effects

observed in the current experiments. In our studies, the

context—global shape—is a feature that can only be

represented in higher stages of the visual system.

There are a variety of other experimental findings that are

consistent with our results. For example, our results help to

explain differences in V1 activity obtained incidentally in

previous experiments. A recent study examining the effects

of progressive image scrambling on LOC activity also

showed significant changes in V1 activity (Lerner, Hendler,

Ben-Bashat, Harel, & Malach, 2001). Specifically, it was

observed that progressive decreases in LOC activity were

accompanied by progressive increases in V1 activity, as

images were changed from ordered to scrambled. The

interpretation offered by the authors was that V1 has greater

sensitivity to local image features. However, local image

features were identical across the different levels of

scrambling. An alternative explanation, consistent with the

results of our current study, is that the changes in V1 reflect

the level of perceived grouping—as higher visual areas are

able to group local image features into coherent objects the

need for lower areas to signal their presence is reduced.

Previous fMRI experiments that have examined depth-

related shape perception have yielded similar patterns of

results. The perception of shape from shading depends on

the orientation of the shading gradient. For example,

displays composed of elements with vertically oriented

shading gradients of opposite polarity produce a strong and

stable percept of ‘concave’ and ‘convex’ elements. If the

shading gradients are rotated 908, the depth percept is

reduced and appears much more ambiguous. Using such

stimuli, Humphrey et al. (1997) found significantly less

activation in area V1 when subjects viewed displays that led

to strong and stable depth percepts than when they viewed

displays that led to weak and unstable depth percepts,

consistent with our finding of a reduction in activity in V1

with a 3D shape percept.

If the sorts of interactions we observed between the LOC

and V1 reveal a general computational principal, they

should be found in other stages of the visual hierarchy. A

recent fMRI experiment examined the effects of occlusion

on LOC activity (Lerner, Hendler, & Malach, 2002).

Subjects were presented with three types of images:

(1) whole line drawings of animals (‘whole’); (2) the

same shapes, occluded by parallel stripes which occupied

nearly half of the surface area of the images (‘grid’); and

(3) the same stripes, ‘scrambled’ so that the relative position

of the regions between the stripes was changed while the

local feature structure remained intact. Unlike other

experiments that have used scrambled stimuli the image

fragments were relatively large and contained complex

feature combinations—feature combinations that have

been hypothesized to be represented in intermediate visual

areas such as V4. The fMRI results showed significantly

higher activity in the LOC for ‘whole’ and ‘grid’ images

relative to the ‘scrambled’ images. However, there were

significant reductions in activity in areas V4/V8 and Vp for

the ‘whole’ and ‘grid’ images relative to the ‘scrambled’

Fig. 3. (A) A red diamond was covered by three black bars that hid the four vertices. There were two stimulus conditions in which either the red diamond

moved, or the three occluding black bars moved horizontally back and forth, as shown in (B) (‘diamond moves’) and (C) (‘bars move’), respectively. The left

and right columns in (B) and (C) show the first and last movie frame. The four remaining line segments could either be perceived as a rigid diamond moving

horizontally or as individual line segments moving vertically. (D) Activity time course of voxels in V1 (thin red lines) and the superimposed simulated response

(thick gray lines) for two subjects. In all scans for both subjects, V1 activity was an accurate predictor of subjects’ perceptual state—as activity increases were

associated with the non-diamond (i.e. ‘ungrouped’) percept.
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images. There were no significant changes noted in V1. This

pattern of results suggests that the specific visual area with

reduced activity is dependent on the image structure that is

being ‘explained.’ In the case of simple, low-level stimuli

such as motion velocities or oriented line segments, the

reductions occur in V1. With more complex stimuli, such as

curved boundaries, t-junctions, and occluded surfaces, the

interactions appear to occur at a higher level of the visual

hierarchy.

The observed decreases in V1 activity in our experiments

and others may at first appear inconsistent with the results of

previous contextual modulation studies which manipulate

the information (e.g. texture differences) that distinguish

figure from background. For example, in previous studies a

change in context that signals the presence of figure against

a background resulted in increased V1 activity (Knierim &

van Essen, 1992; Lamme, 1995; Zipser, Lamme, & Schiller,

1996). These observations have led some to suggest that

context effects—in particular increases in activity in V1—

are an index of perceptual saliency (Lamme & Roelfsema,

2000). However, one could argue that in these previous

studies figure perception involved ‘ungrouping’, that

is separating a texture patch (or line) from the background

(or surrounding elements). When line segments are

grouped with the background or combined into a pattern

(i.e. have reduced saliency), V1 activity is reduced (Knierim

& van Essen, 1992) as in the current study. When viewed

from the point-of-view of ‘many becoming one’—that is,

achieving a simpler explanation—these figure-from-ground

experiments are very consistent with our findings.

Importantly, the changes in activity that have been reported

in V1 for these contextual effects have occurred relatively

late, suggesting the origin for the effect may be feedback

from higher visual areas.

3.2. Theoretical implications

Though our results and those of others strongly suggest a

role for feedback, it does not answer the question of why

feedback would necessarily reduce activity. From a compu-

tational perspective, the results are consistent with two

alternative accounts related to feedback modifying activity in

lower visual areas. First, recent computational models of

predictive coding (Mumford, 1992; Rao & Ballard, 1999)—

where higher areas are attempting to actively ‘explain’

activity patterns in lower areas—suggest that the effect of

feedback projections may be to reduce activity in lower

areas. These models posit a subtractive comparison between

hypotheses generated in higher areas and incoming sensory

input in lower areas, with the residual from the subtraction

operation passed along as ‘neural activity’. Thus, reduced

activity occurs when the predictions of higher-level areas

match incoming sensory information (Fig. 4A).

Predictive coding models have strong intuitive appeal—

why bother signaling what you already know? (Koch &

Poggio, 1999). The reduced activity that would result from

such a process would also have substantial biological

benefits. There are clear efficiency constraints placed on the

visual system—both because of inherent capacity limi-

tations in neural pathways and because spikes are

metabolically expensive (Lennie, 2003). The visual system

would do well to use a representational strategy that

maximizes biologically efficiency by utilizing a code that

minimizes spike rate. There are, however, many ways to

satisfy this efficiency constraint leading us to consider other

potential mechanisms for the reduced activity we have

observed in V1.

An alternative to predictive coding is that feedback may

serve to sharpen activity in lower areas (Fig. 4B). In this

Fig. 4. Two alternative models for ‘explaining away’ activity with feedback from a high-level area to a low-level area. In predictive coding, a high-level model

of the expected input is fed back and subtracted at the input level. What is sent forward is the difference between the expected value and the actual input. With

sharpening (or ‘sparsification’), the same high-level model is fed back but is instead used to amplify those aspects of the input that are consistent with the model

and reduce all other aspects. The result, in both cases, is a reduction in activity.

S.O. Murray et al. / Neural Networks 17 (2004) 695–705700



view, feedback is hypothesized to increase activity in those

aspects of the input that are consistent with predicted inputs

and reduce all other activity. Averaged over a population of

neurons, the result may be an overall reduction in activity.

This idea is consistent with recent neurophysiological

findings in V1. Vinje and Gallant (2002) investigated how

the non-classical receptive field affects information trans-

mission in V1 during viewing of natural movie stimuli in

awake, behaving macaques. They varied the stimulus size

from 1 to 4 times the diameter of the classical receptive field

and showed, in addition to an overall decrease in activity

with larger stimulus sizes, an increase in the information

rate, information per spike, and the efficiency of information

transmission. Though their data do not speak directly to the

effects of feedback, the data suggest that increasing the

amount of context increases the sparseness of the stimulus

representation in V1 by tuning neurons to match the input.

4. Information processing functions of feedback

In Section 3, we discussed predictive coding and

sharpening as possible explanations for the observed

decrease in V1 activity as a function of shape perception.

However, these ideas tell us little about how these

mechanisms might be involved in solving the computational

tasks of vision. Although the empirical basis for feedback

between cortical areas is becoming increasingly well-

established, understanding its role in information processing

poses a major theoretical challenge. We can get some

insight by comparing results from psychological, neural

network, and computer vision studies. Theories of visual

processing have traditionally emphasized a feedforward

hierarchical structure, with earlier areas providing feature

representations of increasing abstraction sequentially to

higher areas (e.g. Fukushima, 1980; Mel, 1997; Riesenhuber

& Poggio, 1999; Selfridge, 1958). Computational theories

for feedback between cortical areas have received less

attention. It has also been a long held assumption that feed-

forward processing is sufficient to solve the main time-

critical problems faced by perception (Marr, 1982). The

strictly feedforward assumption seems reasonable when

diagnostic global features are sufficient for rapid and

reliable categorization of abstract categories as for scene

recognition (Oliva & Schyns, 2000; Torralba & Oliva,

2003). Rapid categorization for abstract object classes has

been shown in humans (Thorpe, Fize, & Marlot, 1996;

VanRullen & Koch, 2003), but this may be under those

conditions where there is sufficient diagnostic information

in simple global features (Johnson & Olshausen, 2003).

Rapid feedforward processing could also be an efficient

strategy when the trade-offs in the costs of errors are

appropriate. For example, accuracy can be traded for speed

for the prediction of a collision.

So what may be the possible computational functions of

feedback? We briefly discuss two broad classes of theories:

(1) those in which neural activity directly represents

values of image features (e.g. luminance boundary), and

(2) probabilistic models in which neural activity represents

probability distributions on features (e.g. the likelihood of a

particular object boundary being present in the image).

4.1. Feature representation theories

A common interpretation of feedback from higher to

lower-level areas is to mediate attentional enhancement of

early signals (Ress et al., 2000). Relatively diffuse feedback

could enhance activity in neurons whose receptive fields lie

within the attentional ‘window’ (Desimone & Duncan,

1995; Itti & Koch, 2001; Lee, Itti, Koch, & Braun, 1999;

Stemmler, Usher, & Niebur, 1995; Usher & Niebur, 1996).

Attentional influences may serve to increase gain and/or

selectivity (Lee et al., 1999; Murray & Wojciulik, 2004).

Although there is an increasing body of experimental results

consistent with attentional modulation of early activity, the

information processing functions for such top-down influ-

ences are not known. One possibility is for efficient visual

search in high-dimensional spaces (Olshausen, Anderson, &

Van Essen, 1993; Tsotsos, 1997; Tsotsos et al., 1995).

Feedback could also serve to bind information across and

between cortical areas. Adaptive resonance theory (Car-

penter & Grossberg, 1987) and the interactive activation

model of McClelland and Rumelhart (1981) both use

feedback to enhance and bind low-level activity consistent

with the global percept.

As discussed earlier, predictive coding theories of

feedback provide an alternative and perhaps complementary

view to attentional theories. Predictive coding theories of

intelligent behavior have historical roots dating to the 1950s

(MacKay, 1956). In its simplest form, predictive coding

assumes a mechanism that computes the difference between

an input value and a prediction of the input value. For

example, lateral inhibition can be modeled as predictive

coding in which intensity signals at a retinal location are

compared with predictions based on the average from

nearby retinal locations (Srinivasan, Laughlin, & Dubs,

1982). However, predictions may also arise from higher-

cortical areas (Rao & Ballard, 1999). In either case,

predictive coding can be interpreted as redundancy

reduction resulting in a simplification of the image

description (Barlow, 1959).

Interpreting feedback as predictive coding is straightfor-

ward if the signal is assumed to be image intensity

information corrupted by additive noise. But the salient

visual signals critical for survival are not explicit in the

image and are better interpreted in terms of distal causes of

intensity change, such as parameters related to object

movement, shape and material. As such the retinal image is

a complex encoding of relevant scene information, such as

object shape boundary, but this encoding has ‘noise’ or

sources of variation (e.g. effects of illumination including

highlights, cast shadows) that cannot be simply modeled in
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terms of linear additive intensity noise. Predictive coding

thus could also involve more sophisticated built-in know-

ledge of image generative processes (Kersten, Mamassian,

& Yuille, 2004). For example, a more sophisticated role

for feedback is to allow for invariances that are difficult

to account for using strictly feedforward processing

(Grenander, 1996). For example, when searching for a

match of a 2D input image to a stored memory of a 3D

object, translation and scale may be compensated for on a

forward pass, but a ‘counter stream’ carries back candidate

model matches that allow for rotations in depth (Ullman,

1993, 1996).

Errors in prediction provide a measure of ‘goodness of

fit’ which has potential utility for several functions

including hypothesis refinement and learning. There are

advantages to evaluating goodness of fit using the

representation of an earlier level (Mumford, 1992). The

explicit representation of an error residual at an earlier level

may provide the means to pass information that ‘needs

explaining’ forward to other cortical areas in a common

format, resulting in hypothesis refinement. For an analogy in

machine vision, shape from shading can be computed using

a ‘lambertian’ module, leaving (non-lambertian) specula-

rities as residuals to be explained by another module (Clark

& Yuille, 1990). In another example, edges from an image

could be sufficient to classify the image as a face, and a

backward comparison with the input explains some of the

edge information as common to all faces, but reveals other

edges, that on further processing, provides shape infor-

mation diagnostic of a given face (Cavanagh, 1991; Sinha &

Poggio, 2001). Feedback between areas may also play an

important role in long-term learning, for example as has

been studied in a higher visual area, V4 (Rainer, Lee, &

Logothetis, 2004). How prediction and error signals play a

role in such learning will remain an important problem for

the future.

4.2. Hierarchical organization of expertise

and probabilistic models

For certain fundamental visual tasks, computer vision

using strictly feed-forward architectures have been largely

unsuccessful. One example is the automatic perceptual

grouping and segmentation of objects given natural image

input (Zhu, Zhang, & Tu, 2000). There are two relatively

new ideas that may signal significant progress in the near

future. The first comes from converging ideas from

neurophysiological, psychological, and computational con-

siderations, and that is to view a set of visual areas in terms

of a hierarchical organization of expertise (Hochstein &

Ahissar, 2002; Lee, Mumford, Romero, & Lamme, 1998;

Zhu et al., 2000). The causal structure of images is rich and

mechanisms for hierarchical inference may reflect aspects

of the generative structure of image input (Kersten et al.,

2004). For example, one of V1’s domains of expertise may

be the representation of fine spatial detail (Lee et al., 1998),

whereas a higher cortical area, such as V2 may be

representing longer contours and local occlusion

information.

The second promising idea comes from probabilistic

models of visual processing (Friston, 2003; Lee &

Mumford, 2003; Mumford, 1992; Rao & Ballard, 1997;

Weiss, 1997). In neural applications of these models, visual

cortex is viewed as representing beliefs or probability

distributions on feature values over levels of abstraction,

corresponding to various visual areas. In the model

proposed by Lee and Mumford (2003), the probability

distributions are represented by a given cortical area are

conditional on both the inputs and outputs. For example,

beliefs in V1 are represented by pðxV1lxLGN ; xV2;…; xLOCÞ;

given lateral geniculate input, xLGN ; and {xV1; xV2;…; xLOC}

are variables that represent sets of feature hypotheses for

various visual areas. If activity depends only on the

immediate input and output, this can be simplified to

pðxV1lxLGN ; xV2Þ: The distribution depends on a feedforward

and feedback terms derived by Bayes rule:

pðxV1lxLGN ; xV2Þ / pðxLGN lxV1ÞpðxV1lxV2Þ: This suggests a

probabilistic representation of hypotheses regarding image

causes in which information about feature values and their

uncertainty is explicitly represented and communicated

between areas so that conditional distributions can be

continually updated based on changes to conditional

distributions in both earlier and higher areas. Under this

assumption, theories of inter-cortical interaction will

begin to resemble algorithms for belief-propagation that

have been developed in several independent contexts

(Kalman filters in signal processing, forward-backward

algorithm for hidden Markov models, and Pearl’s belief-

propagation algorithm for inference, cf. Yedidia, Freeman,

& Weiss, 2002).

One important consequence of such a view is that various

areas represent and communicate their ‘beliefs’ in such a

way as to avoid premature commitment. An important

resulting idea relevant to the fMRI results presented above

and discussed below is that multiple hypotheses, rep-

resented in a given cortical area, should be ‘kept alive’ given

uncertainty. This idea corresponds to the implementation of

a ‘Bayesian principle of least commitment’ (Kersten &

Schrater, 2002). In other words, ungrouped perceptual

conditions correspond to the maintenance of multiple

hypotheses in V1. When the LOC arrives upon a single

global interpretation, these multiple hypotheses in V1 are

allowed to collapse, leading to an overall reduction in

activity.

A major problem with visual Bayesian inference is

learning, representing, and computing with probability

distributions in high-dimensional spaces characteristic of

images and their features. Here it is important to point out

that all the beliefs need not be explicitly computed. Rather it

is enough to maintain a state variable that summarizes the

distribution. Friston (2003) and Rao and Ballard (1997) both

suggest the brain need only represent a set of summary
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statistics. For certain probability distributions (those from

the exponential family, e.g. Gaussian), sufficient statistics

exist that completely characterize the distribution.

Lee and Mumford (2003) propose another solution to the

problem of computing with high-dimensional probabilities.

They borrow from a powerful non-parametric method called

particle filtering that has been very successful in computer

vision applications such as tracking an object moving in

clutter. Particle filtering approximates high-dimensional

probability distributions using only a set of sample points or

particles {x1; x2;…; xn} and an attached set of weights

{p1; p2;…; pn} that represent the probabilities attached to

each point. In their particle filtering model, a collection of

active neurons (within and over areas) represent a particle.

The probability of a particle is conjectured to be represented

by rapidly adapting synaptic strengths or synchronous

activity. Beliefs, sets of numbers that reflect the conditional

probabilities, are passed forward and back between areas to

update each area’s distribution. In this way for example, the

activity across V1 represents a conditional belief distri-

bution. Thus, it is possible to simultaneously represent many

alternative beliefs in V1 with sensory input and top-down

beliefs serving to modulate the distribution.

A concept in Bayesian networks that may have particular

importance when considering physiological models of

visual perception is ‘explaining away’. Explaining away is

a phenomenon that occurs in probabilistic belief networks in

which two (or more) variables influence a third variable

whose value can be measured. Before measurement, the two

causal variables are independent, but after measurement

they become conditionally dependent. The phrase ‘explain-

ing away’ arises because coupling of variables through

shared evidence often arises in human reasoning, when the

influences can be viewed as competing causes. ‘Explaining

away’ is also a characteristic of perceptual inferences

(Kersten & Yuille, 2003), for example when there are

alternative perceptual groupings consistent with a set of

identical or similar sets of local image features. Brain

activity associated with perceptual shifts of interpretation of

an image could be seen as a consequence of perceptual

explaining away. For example, once the missing vertices in

the translating diamond are explained by occlusion, the

probability of a diamond interpretation goes up (Fig. 5).

Resolving ambiguity regarding competing explanations

may be a general explanation for reciprocal activity pattern

of activity seen between low-and high-level areas, such as in

V1 and LOC. Suppose that V1’s expertise is in the

representation of spatially and temporally local feature

hypotheses, and LOCs is in the representation of global

shape. In contrast to the conventional view of a strict

functional hierarchy, these areas could be viewed as

providing competing representations of the retinal input.

We believe that there are sufficient unknowns in our

understanding of primate functional neuroanatomy to

prevent ruling out such a possibility. For example,

corticothalamocortical ‘re-entry’ may play an important

role in interaction seen between cortical areas (Sherman &

Guillery, 2002),

5. Remaining questions

Our empirical results demonstrate that neuronal

activity, even in V1, does not simply represent the

signaling of features in a visual scene but is strongly

influenced by high-level perceptions of object shape.

Though these results, in combinations with other studies,

offer a compelling example of the potential role for

feedback processes in vision, there are still many

unanswered questions. For example, having timing

information about the relative changes in V1 and LOC

is crucial to establishing that the reductions in V1 are

causally linked to the increases in the LOC. Specifically,

do the reductions in V1 occur after increases are

observed in the LOC? It will be difficult question to

answer using fMRI but may be addressable with other

techniques that offer greater temporal resolution.

Understanding which model-predictive coding versus

sharpening-is the correct interpretation of our findings is

also going to be fundamental to understanding the

computational role of feedback. While both accounts share

the notion of a high-level model being fed back to ‘explain

away’ data in a lower area, they essentially make opposite

predictions about which aspects of the activity are explained

(Fig. 4). In addition, because each model has clear benefits,

the possibility always remains that both processes could be

occurring.

Finally, understanding how our observations of reduced

activity can be integrated with other concepts related to

feedback (e.g. attentional competition and enhancement,

resonance, learning, etc.) will be necessary. Given the

extensive neural architecture in place for feedback, it is

likely that feedback serves many information processing

Fig. 5. Example of explaining away. Two possible object interpretations

are: four line segments or one diamond object. The hypothesis of an

occluder explains the missing vertices, and increases the probability of the

diamond hypothesis.
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objectives. Understanding the conditions under which these

computations are used, their functions, and mechanisms will

likely remain a scientific challenge for years to come.
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