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Abstract- This paper presents a computa- 
tional model for obtaining relative depth in- 
formation from image contours. Local occlu- 
sion properties such as T-junctions and con- 
cavity are used to arrive at a global percept of 
distinct surfaces at various relative depths. A 
multi-layer representation is used to classify 
each image pixel into the appropriate depth 
plane based on the local information from the 
occluding contours. A Bayesian framework is 
used to incorporate the constraints defined 
by the contours and the prior constraints. A 
solution corresponding to the maximum pos- 
teriori probability is then determined, result- 
ing in a depth assignment and surface assign- 
ment for each image site or pixel. The algo- 
rithm was tested on various contour images, 
including two classes of illusory surfaces: the 
Kanizsa and the the line termination illusory 
contours. 

I. INTRODUCTION 

Occluding contours refer to the image contours that 
correspond to object boundaries. Such contours are 
an integral part of the construction of the 2.5-D 
sketch [8] and, therefore, are important in computer 
vision research. We present an algorithm that uses 
contour information to segment an image into mean- 
ingful regions and to provide a relative depth order- 
ing of the partitioned regions. A model for obtaining 
shape from occluding contours should be able to ex- 
plain illusory (subjective) contour perception since 
these illusions arise from artificially arranged cues 
to occlusion. The primary objective of our model is 
to account for such illusions through a cooperative 
process of computing depth and its segmentation. 

Illusory contours have been used as the intuitive 
proof of several models of perceptual organization. 
On the other hand, there are several theories which 
have been proposed to account for illusory contours. 

This research was supported in part by a contract between 
the Army Research Office and the University of Minnesota 
for the Army High Performance Computing Research Cen- 
ter. Additional support was furnished by Air Force Office of 
Scientific Research grant 90-0274. 

An important question to address is whether illusory 
contours provide any insight into the computational 
mechanism of the brain. Equivalently, an interesting 
issue is if such mechanisms are needed for building 
a robust vision system. We take the position that 
illusory contours serve to strengthen edges (or even 
create edges) where other segmentation properties 
such as depth suggest their appearance. 

Kanizsa [5] provides a thorough analysis of T- 
junctions and how surfaces are perceived for vari- 
ous arrangements of T-junctions. He demonstrated 
the perception of terminating lines as a weak form 
of T-junction and many terminators as a cue for an 
occluding surface such as in figure la. Similarly, 
corners with aligned edges are viewed as degener- 
ate forms of T-junctions as in the Kanizsa Pac-man 
illusion in figure lb. Such figures offer valuable in- 
sight into the computational processes involved in 
the human visual system to complete contours given 
partial evidence. Kanizsa suggests that a non-local 
process with knowledge of surfaces and occlusion is 
involved in the image completion process; thus, ac- 
counting for such illusions. 

Grossberg and Mingola [4] (see also [3]) use a 
neural model to explain how segmentation may arise 
across image regions without any luminance differ- 
ences. Network interactions between three compo- 
nents namely, the Boundary Contour (BC) system, 
the Feature Contour (FC) system, and the Object 
Recognition (OR) system are used to explain the 
illusory contours and related phenomena. The BC 
system acts as a hypothesis generator to generate 
perceptual boundaries for the FC system. They sug- 
gest that the visible percepts are the result of the hy- 
pothesis confirmation by the FC system using input 
from the BC system. The OR system is connected 
to the BC system and provides top-down learned 
template signals for the conversion of various BC 
features into FC features. Thus, accounting for the 
perception of illusory contours. Our algorithm can 
be related to that of Grossberg and Mingola at  this 
abstraction level. 
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Figure 1: Subjective contours formed by (a) terminating 
lines and (b) corners 

11. MULTI-LAYER REPRESENTATION 
An important feature in our approach lies in the 
underlying representation for segmentation and sur- 
face ordering. Our model uses a different output 
representation from the commonly used edge or con- 
tour based methods. To illustrate our representa- 
tion for image grouping, consider the input range 
image of two overlaid surfaces such as a textured, 
transparent cylinder shown in figure 2a using inten- 
sity to code the depth. Figure 2b shows the depth 
profile of such an image. If the segmentation re- 
lied on edges, the result would be multiple spuri- 
ous edges for such an image due to the local dis- 
continuities as shown in figure 2d. Clearly, this is 
not desirable since we clearly perceive two overlaid 
surfaces for such a display. Our multi-surface rep- 
resentation produces an explicit piecewise smooth 
segmentation of the image into surfaces while also 
computing the relative depth of the surfaces. This 
representation is, in spirit, similar to the one pro- 
posed by Darrell and Pentland [l]. Our multi-layer 
representation for shape has been successfully used 
in various other low-level vision modules [6, 71. 

111. ALGORITHM 

In this section we discuss our segmentation algo- 
rithm using the depth information present in oc- 
cluding contours. Since we are interested in apply- 
ing this approach to obtain illusory contour percep- 
tion, we make an assumption that all surfaces in 
the scene are piecewise constant or fronto-parallel. 
To illustrate the modified multi-layer segmentation 
output representation used here, consider the input 
image shown in figure 3a. The output shown in part 
b of the figure consists of three intensity coded la- 
bels with layer 1 (background) shown in black, layer 
2 (closer surface) shown in gray, and layer 3 (fore- 

Figure 2: The multi-layer representation: An example 

ground surface) shown in white. The layer label 
also represents the depth value so that layer N has 
a depth of N where N=l  represents the background. 
Since each depth layer contains a constant value 
due to our assumption of piece-wise constant sur- 
faces, their values need not be shown. Stated more 
formally, given a set of depth values Dip}, the im- 
age segmentation representation is modified so that 
the produced output is Cip), Ul ip ) ,  U2ip), ..., U L { ~ )  
where C is a layer classification image, p is the im- 
age domain, and each now has a constant depth 
value of 1. Since each U1 has a constant value, we 
could drop its representation in the output and only 
look at the layer labels at each pixel given by C{,}. 
Thus, the desired depth image and the labeling im- 
age are the same: 

Our algorithm for segmenting contour images for 
illusory contour perception involves the confirma- 
tion of various local hypothesis. For example, any 
surface such as the Pac-man in figure 4a may be in- 
terpreted as either a circle partly occluded by the 
corner of a rectangle or as a simple Pac-man shaped 
object. Line terminations can either be due to an 
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Figure 3 :  
occluding contours 

The multi-layer representation for depth from 

Figure 4: Examples of the occlusion hypothesis. 

occluding surface or due to a naturally terminating 
line as shown in figure 4b. In general, the shape 
of any visible surface may be partly due to an oc- 
cluding surface or may be due to the surface having 
exactly that underlying shape to begin with. We de- 
fine a local cost based on convexity and corner prop- 
erties so that certain surfaces are preferred to others. 
For example, surfaces with convex boundaries have 
lower cost than those with concave boundaries. Sur- 
faces with a corner boundary formed by the meeting 
of contours at less than 180 degrees angle are pre- 
ferred. Thus, illusory surfaces are formed by the 
grouping of hypothesized local evidences of occlu- 
sion constraints to form a set of salient surfaces each 
with a cost. 

For a single Pac-man the square region may be 
hypothesized as an occluding surface. This occlud- 
ing surface would trigger a grouping in the frontal 
depth plane by extending the corner of the rectan- 
gle. Thus, the four corners may successfully be 
grouped into a rectangle. Note that the Pac-man 

T-junctions, corners, convex contours, and line ter- 
minations. 
2. Layer and depth assignment t o  each pixel. In this 
step each pixel is assigned an appropriate layer label 
and, thus, a depth value to minimize a cost defined 
by the local constraints. 
3 .  Layer and depth assignment t o  grouped regions. 
Here, the pixels are assumed grouped by the previ- 
ous step and are moved as regions to minimize the 
same cost function as in the previous step. 
4. Object completion i n  the visible depth plane. Here, 
extrinsic edges in the visible depth plane are ex- 
tended to group objects. This is primarily respon- 
sible for the grouping of illusory contours. 

In our model steps 2,3, and 4 are performed simul- 
taneously, with steps 3 and 4 occurring after longer 
time intervals than step 2. 

A .  Bayesian Approach 
We use a Bayesian approach to compute the scene 
attribute, namely the layer assignment 1 which also 
has an associated relative depth of I :  

where I is the intensity input image data. Each con- 
straint is expressed as a local cost function using the 
Markov Random Field assumption [2], that pixels 
values are conditional only on their nearest neigh- 
bors. Using the Gibbs-MRF equivalence, the energy 
function can be written as a probability function: 

where 2 is the normalizing constant, T is the tem- 
perature, E is the energy cost function, and x is a 
random variable. 

B. The Cost  Function 
We start with a L layer system each layer represent- 
ing a different fronto-parallel depth plane. Initially, 
each pixel is assigned a random layer value and, 
therefore, a corresponding depth value. After the 
computations are completed, each pixel is assigned 
to the layer consistent with the 3-D occlusion cues 
in the input image. - -  - - 

image is interpreted as comprised of an illusory, salient Using a small 3x3 window we obtain a feature 
rectangle occluding 4 surfaces (discs), instead of 4 
high-cost , non-salient Pac-man shapes. Our treat- 
ment of the perception of illusory contours involves 
the minimization of a cost function that involves this 
type of saliency measure. 

Our model for illusory contour perception can be 
outlined by the following steps: 
1.  Image feature extraction. In this step the edges 
are obtained and grouped to find features such as 

measure. Using the window we obtain two con- 
straints on the depth of nearest 8 neighboring pixels 
with respect to the center pixel: Above (A) ,  Below 
( B )  and Same (S). For the T-junction, if the center 
pixel is at the the occluding part of the junction, all 
the neighboring pixels with different intensity are 
constrained to be below. Thus, a cost is assigned 
to it if the constraint is not met. Neighboring pix- 
els with different contrasts are constrained to be in 
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where the A’s are the weighting factors, and VA, VB, 
_______aD( Vs, Vc, and VJ are the energy associated with the 

above, below, same, no-edge, and illusory junction 
constraints, respectively. This energy function is de- 
fined locally for each pixel as in the example above. 

The VA constraint is given by: 

Figure 5: Examples of  regions with occlusion constraints. 
The circled constraints from left to right include T-junction, 
line termination, convex contour, corner, illusory L junction 
and illusory T junction. 

different layers. In addition, we have a constant 
intensity constraint C that forces neighbors with 
the same intensity value to have the same depth. 
Note that this constraint discourages the formation 
of illusory contours. Another very important cost 
is what we call the illusory junction cost J. This 
cost is high if the T-junction or corner is partly (or 
completely) formed by illusory contours and does 
not a consistent depth assignment. For example, if 
a single Pac-man creates an illusory boundary that 
meets its borders, the T-junction formed would re- 
quire that the border be above the illusory surface. 
Since the background is below the illusory surface in 
this case, the illusory junction is assigned a rather 
high cost. This cost ensures that a single Pac-man 
does not form illusory boundaries with the border 
of the image. 

The local occlusion constraints used in our simu- 
lations are T-junctions, surround occlusion, and line 
terminations with examples shown in figure 5. The 
surround occlusion example includes convex con- 
tours and corners that are constrained to be above 
the background. This is because closed contours are 
frequently perceived as the inner region of a surface 
that, therefore, occludes the background. These 
constraints can be thought of as mere hypothesis 
which could be rejected to minimize the total sys- 
tem energy. For example, for the single Pac-man 
shown in figures 4, the hypothesis that an edge of a 
square occludes the disk both of which are low cost 
surfaces (i.e. two convex surfaces) may be rejected 
since it produces illusory junctions and the system 
may settle at  perceiving a high cost surface (i.e. a 
non-convex surface shaped like a Pacman). 

The data constraints A ,  B,  S, C, J costs at each 
pixel can be converted into an energy function rep- 
resentation as: 

VD = AAVA + ABVB + AsVs + AcVc + AJVJ 

where i is the index for each image pixel, j is the 
nearest neighbor of i ,  di is the input luminance value 
at pixel i ,  Ai j is the local Above constraint A deter- 
mined initially by the various 3x3  window configura- 
tions. The various functions defined above are given 
by : 

1 i f a - b > 0  
0 otherwise 

In plain English, the above constraints ensures that 
if the local intensity defines an Above relationship, 
the layer assignment should enforce the same. 

The VB constraint is analogous to the VA con- 
straint with some of the signs reversed: 

M 

6(di , d j ) B i . i ( u ( l j  , li) + ~ ~ ( l i  l j  )) 
i j E N ;  

where Bi j is the local Below constraint B. 
The Vs constraint ensures that if there is an in- 

tensity edge, the layer and depth assignments must 
also be discontinuous, 

M 

i j E N ;  

where Si j is the local Same constraint set to a value 
of 1 in our experiments. 

The Vc constraint penalizes the formation of il- 
lusory contours by ensuring that if neighboring in- 
tensity is the same, then the layer and depth assign- 
ments should also be the same: 

M 

(1 - b ( d i , d j ) ) b ( l i ,  l j ) d i  * b ( d j ,  di) 
i j E N ;  

where is a feature measure at each pixel. This con- 
straint is active only when the neighboring feature 
measure q5j is greater than the current q5i. Since 4 
is proportional to the distance to an occluding fea- 
ture, the regions with constant intensity rely more 
on their neighbor’s values than on their own. The 
VJ constraint penalizes illusory junctions that have 
incorrect depth relations. 
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the 4 dark objects eventually get assigned to a sin- 
gle layer. The VL cost is primarily responsible for 
bringing the regions down to the same depth plane. 
The pixel-based depth assignment allows for new 
surfaces to be generated while the region-based as- 
signment is responsible for merging these regions or 
moving the regions to the appropriate depth plane 
to minimize the global cost. Thus, the corners of the 
occluding rectangle places the pixel above its back- 
ground. This depth value is propagated to the vari- 
ous neighbors due to the confidence weighting q5 and 
eventually meets in the middle region. The parts are 
then grouped by the region-based depth assignment 
process. Note that the boundary saliency term VE 

Figure 7: (a) Input: Kanizsa type of  Illusory contours. (b-i) 
Results from selected iterations. eventually plays a role in assigning the labels to bias 

the formation of straight line boundaries. 
A second class of illusory contours is formed by 

the termination of lines. Figure 8 shows the input JV. EXPERIMENTAL RESULTS 

Various test images were used in our simulations in- 
cluding those with and without illusory contours. In 
figure 6 is the cartoon-like image of various objects 
with depth relations. Note that to use the mini- 
mum number of layers, the tires and the pole are 
placed in the same depth plane. Since other cues 
to depth such as familiarity are not available to the 
system, the objects are placed in the depth plane 
based purely on their information from occluding 
contours. 

Images with illusory contours were also used in 
our simulations. Figure 7 shows the segmentation 
result for a Kanizsa type illusory contour. Note that 

to our segmentation algorithm. The result is the 
formation of a square illusory surface shown in the 
figure. The background eventually gets assigned to  
layer 0, the lines get assigned to layer 1, and the 
center illusory surface to layer 2. 

V. CONCLUSION 

We have shown that the depth planes, multi-layer 
representation which is based on surface completion 
instead of contour extension is appropriate for the 
segmentation of illusory contours. The study of illu- 
sory contours provides insight into the cooperative 
mechanisms involved in shape perception and object 
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grouping. Our model can account for the various 
known classes of illusory contours and the represen- 
tation is appropriate for the modeling of each. 
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