3D symmetric shapes are discriminated more efficiently than asymmetric ones

Zili Liu

Dept. of Psychology, UCLA, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095;

Fax: (310) 206-5895, Email: zili@psych.ucla.edu

Daniel Kersten

Dept. of Psychology, University of Minnesota, 75 E River Rd, Elliott Hall,

Minneapolis, MN 55455; Fax: (612) 626-2079, Email: kersten@umn.edu
Objects with bilateral symmetry, such as faces, animal shapes, and many man-made objects, play an important role in everyday vision. Because they occur frequently, it is reasonable to conjecture that the brain may be specialized for symmetric objects. We investigated whether the human visual system processes 3D symmetric objects more efficiently than asymmetric ones. Human subjects, having learned a symmetric wire object, discriminated which of two distorted copies of the learned object was more similar to the learned one. The distortion was achieved by adding 3D Gaussian positional perturbations at the vertices of the wire object. In the asymmetric condition, the perturbation was independent from one vertex to the next. In the symmetric condition, independent perturbations were added to only half of the object, perturbations on the other half retained the symmetry of the object. We found that subjects’ thresholds were higher in the symmetric condition. However, since the perturbation in the symmetric condition was correlated, a stimulus image provided less information in the symmetric condition. Taking this into consideration, an ideal observer analysis revealed that subjects were actually more efficient at discriminating symmetric objects. This reversal in interpretation underscores the importance of ideal observer analysis. A completely opposite, and wrong, conclusion would have been drawn from only analyzing human discrimination thresholds. Given the same amount of information, the visual system is actually better able to discriminate symmetric objects than asymmetric ones. © 2003 Optical Society of America
1. Introduction

How is the shape of a three-dimensional (3D) object represented in the visual system and how does its representation in the brain differ from the physical shape in the world? One way of formalizing the question of representation is to ask how the physical shape space is mapped to the perceptual shape space.1,2 The visually perceived world is not a replica of the physical world, but rather reflects ecological and functional requirements. We would not expect such a mapping to be uniform, but rather that certain physical details may be exaggerated and others reduced. We can experimentally address the nature of this mapping by testing whether two similar objects can be discriminated, and what determines such perceptual discrimination.

Because of their biological, adaptive, and social significance, objects with bilateral symmetry have been considered an important subclass of objects3–15 (see16 for a review). This raises the possibility that the human visual system is specialized in some way for the processing of bilaterally symmetric objects. If true, such specialization could be manifest in two different ways (Fig. 1). First, the visual system may be particularly good at detecting departures from symmetry. In fact, most studies have shown that human observers are sensitive to small deviations from perfect symmetry, with the interpretation that vision has mechanisms specialized for symmetry. Upon a closer look, however, it appears that this “good” sensitivity is not appropriately compared.17–20 That is to say, the evidence so far has shown that a small deviation from perfect symmetry can be detected; but whether or not the same amount of deviation can be better detected from an asymmetric object is unknown.
This paper addresses the second sense in which symmetry may be special. That is, special in the sense that deformations of a symmetric object may be detected more easily than deformations of an asymmetric object. In other words, if the same amount of deviation is applied to a symmetric object in such a way that the object remains symmetric after the deviation, can this deviation be better detected? For reasons that will become clear below, the question will be addressed in the context of discrimination. Two objects, both deformed from the same 3D symmetric object, one with more deformation than the other, are presented to a human subject. The subject decides which of the two is more similar to the original symmetric object that has been learned. There are two ways to accomplish the deformation. (1) Symmetric condition: the deformation is applied in such a way that the deformed objects remain symmetric. (2) Asymmetric condition: the two objects become asymmetric after the deformation. The question is: which condition is easier?

In order to answer this question, we must ensure that the deformations in the two conditions are equal, or more precisely, the signal-to-noise ratio (SNR) of the stimulus in the two conditions are identical. At issue is the correlated nature of the deformation applied to the symmetric condition. In order for a symmetric object to remain symmetric after deformation, the deformation itself has to be symmetric. In contrast, in order for a symmetric object to become asymmetric after deformation, the deformation itself has to be asymmetric. For this reason, we use the ideal observer to equalize the stimulus SNR in both conditions.21-24

Calculating the performance of ideal observers is often theoretically difficult; however, by choosing an appropriate task and object representation, ideal observer anal-
analysis can be made tractable. In the next section, we will elaborate the ideal observer approach.

The second question we ask is the following. If perceiving a symmetric object is different from perceiving an asymmetric one, then to what extent does the assumption that an object is symmetric \textit{per se}, facilitate ascertaining the 3D structure of the object? We know that a shaded thick wire object, as compared to its silhouette or a thin wire-frame counterpart, offers the following additional information about its 3D shape: shading, self-occlusion that provides relative depth ordering between the occluding cylinder and the occluded, and the shape of the creases between two neighboring cylinders. Our question is: if we replace the shaded objects with their silhouettes, does an assumption of bilateral symmetry provide sufficient information to make discriminations of comparable accuracy to the shaded case? In other words, can human subjects achieve similar discrimination performance if the only 3D shape information is the knowledge that the object has bilateral symmetry?

Previously, we have found that human subjects can take advantage of the information from shading, self-occlusion, and the shape of creases between two neighboring cylinders.25 This is evident from their better discrimination performance for asymmetric thick wire objects than for the thin wire-frame counterparts, which lack the aforementioned shape information. We have also found that when an image of a wire object can be interpreted as either projected from a symmetric or an asymmetric object, human subjects prefer the symmetric interpretation.26 In other words, when a 3D object can be interpreted as symmetric, it will be. However, it remains an open question whether such preference for a symmetric object interpretation translates
into a more precise specification of the symmetric object’s shape, just as shading, self-occlusion, and crease shapes do. The last of the three experiments in this paper will address this question.

A. The ideal observer approach

For clarity, we use the same example of symmetry discrimination above to motivate the ideal observer approach. To answer which of the conditions is easier, it is straightforward to set up a psychophysical task to measure the thresholds of a subject’s performance in the two conditions. However, the threshold difference cannot tell us whether better performance in one condition is due to “richer” information in the stimulus, or to superior specialization in the brain, or to both. More specifically, in Condition (1) when both objects remain symmetric, this implies that stimulus information is redundant. When one half of an object is deformed, the other half has to be deformed accordingly to retain the symmetry. In theory, therefore, one half of the object and the plane of symmetry completely specifies the entire object. In Condition (2), on the other hand, since the deformation to one half of the object is completely independent of the other half, deformation at all vertices of an object is informative for the discrimination task.

In order to make a fair comparison, the stimulus information in the two conditions has to be equalized. The first step to achieve this is to quantify the input stimulus information in the following way. Given a specific task, an ideal observer is defined to have unlimited computational capacity and achieve the best possible performance.21,27,28 The only limitation of the ideal observer’s performance is the amount
of stimulus input information, so the ideal observer can achieve as best as the input information allows. Consequently, the ideal observer’s performance is a measure of the input stimulus information. The more input information, the better it performs.

Now if we give the same task to human subjects, they will also achieve a certain performance level, typically measured by the threshold at fixed proportion correct. If we combine the thresholds of the ideal observer and human observers appropriately (see Appendix), we have “normalized” the stimulus information and obtained a measure called statistical efficiency. It means the proportion of stimulus information that a human observer has effectively used in the given task. A simple example is detecting which of two patterns of a large number of random dots was drawn from a distribution with a higher mean number. The ideal observer could count all the dots; whereas a human subject could not, and performance would be less than the ideal observer’s. We can interpret the result as if the human subject can only “see” a fraction of the dots but otherwise use them optimally in the decision.

Coming back to the symmetry discrimination task, we measure the threshold and statistical efficiency in the following way. The 3D symmetric object consists of a chain of four cylinders that have five vertices total. The deformation is done by adding 3D positional Gaussian perturbations at each vertex. In the symmetric condition, vertices 1–3 have independent perturbations, whereas vertices 4 and 5 are perturbed such that the resultant shape remains symmetric. In the asymmetric condition, perturbations at all five vertices are independent of each other. In any one trial, there will be two deformed objects, one drawn from a Gaussian distribution in which the variance is constant, whereas the other is drawn from a distribution with a larger variance that
is adjustable in order to find the discrimination threshold. We call the first object the \textit{target}, and the second object the \textit{distractor}. The experiment is to find out, with a staircase procedure, how much larger the second variance has to be in order for an observer to be 75\% correct, and the resultant standard deviation will be the measure of the threshold. Defining the task in this way ensures the existence of a simple and provably optimal ideal observer in the signal detection sense, which we will elaborate in the following.

The ideal observer is assumed to have knowledge of the 3D structure of each object, namely the \((x, y, z) \) coordinates of the five vertices and their ordering. From each input object image, the ideal observer is assumed to know the 2D \((x, y)\) coordinates of the vertices and their ordering except that it does not know which end of the cylinder chain is the head and which is the tail. The ideal observer also knows the value of the constant variance of the Gaussian added to the target. Consequently, the ideal observer’s job is to consider all possible 2D images of the learned 3D object, calculate the probability that an input image is generated from each of the 2D images, and integrate the probability (as a function of viewing angle) over all 2D images to obtain the likelihood of an input image being generated from the learned object. Since there are two input images in any trial, the ideal observer obtains two likelihood measures and selects the more likely one as being more similar to the learned object. We have thus summarized the operations of the ideal observer, interested readers are referred to Liu, Kersten, & Knill (1999)25 for more technical details. As outlined in
the Appendix of this paper, the statistical efficiency E can be expressed as:

$$E = \frac{(\sigma_d^I)^2 - \sigma_t^2}{(\sigma_d^H)^2 - \sigma_t^2},$$

(1)

where σ_t is the standard deviation for the target; σ_d^I is the ideal observer’s threshold, namely the standard deviation for the distractor at 75% correct; and σ_d^H is the threshold of human subjects.

For clarity, we will specify in more detail the computations of the ideal observer after specifying the experimental task in the next section.

B. Rationale of the experiments

We describe three experiments. (1) Experiment 1 addresses the question of whether it is easier to discriminate one asymmetric object from another, or one symmetric object from another. In the asymmetric condition, independent positional perturbations are added to all vertices of a symmetric wire object, so that the resultant object becomes asymmetric. In contrast, in the symmetric condition, independent perturbations are added to only half of an object, whereas the other half are adjusted to retain symmetry. Discrimination thresholds for human and ideal observers are measured and statistical efficiencies are calculated.

(2) Experiment 2 addresses the question of whether any effect in Experiment 1 is due to the difference in the number of independent noise sources. That is to say, in the asymmetric condition in Experiment 1, five vertices are added with independent perturbations; whereas in the symmetric condition, only three vertices are. So it might be that any difference in Experiment 1 is due to subjects’ limited ability in dealing with more noise sources in the asymmetric condition. Therefore, in this
experiment, independent noise is added to only three vertices to make a symmetric object asymmetric. The prediction is that if the difference in Experiment 1 is only due to this difference of the number of noise sources, then no difference should be found between the new condition and the symmetric condition in Experiment 1.

(3) Experiment 3 addresses the putative specialness of bilateral symmetry from a different perspective. We ask whether the information that an object is symmetric (or nearly so, with asymmetric perturbations) can also provide 3D shape information in the following sense. When a silhouette image is presented, since there is no depth information, the 3D pose of the corresponding 3D object, or, in other words, the object’s 3D shape, is ambiguous. However, if the object is known or assumed to be symmetric, then the uncertainty of the 3D pose of the object and the object’s 3D shape is reduced. In this experiment, we compare symmetric wire objects that are either silhouettes or shaded. Our hypothesis is that if we remove from a symmetric object the following shape information: shading, self-occlusion, and the shape of the creases between two neighboring cylinders, and if human subjects’ performance does not deteriorate, it will be evidence that the knowledge of symmetry alone is sufficient to reduce the uncertainty of the object’s pose and shape, just as the removed information did for asymmetric objects.

2. Experiment 1

A. Stimuli

Each symmetric object consisted of five spheres linked by four cylinders in a chain in 3D. The diameter of each sphere and that of each cylinder were identical (0.22 cm).
The length of each cylinder was 2.54 cm. Fig. 2 shows one example object from multiple views. The objects were rendered with Lambertian shading, with a point light source at infinity. The illumination was directed toward the camera from upper-front, with an angle of 26.6° relative to the vertical direction. Ambient light with an intensity of 3% relative to the directed light was also present.

The images were rendered with parallel projection on a Silicon Graphics computer with the Open Inventor software, Silicon Graphics Inc. The viewing distance was 57 cm. An object was about 5 cm in size, which was about 5° in visual angle. Subjects viewed the stimuli binocularly in a darkened room.

B. Method

Each subject was tested with six symmetric objects, three became asymmetric after structural distortion was added, the other three remained symmetric after structural distortion. Each object was tested in a single block. The order of the test and which objects were symmetric and which asymmetric were counter-balanced among the subjects. Within each block, the experimental procedure was as follows.

1. Learning

A symmetric image of the object was shown with the $x = 0$ being the symmetric plane. The subject rotated the object by pressing the middle button of the computer mouse. Each rotational step was 60°. The object was rotated first around the y-axis, and then around the x-axis (when all the images were symmetric). Hence the object was shown from 11 different viewing angles. Fig. 2 shows the sequence of these images
for one example object. A subject looked through this image sequence twice.

2. Practice

Two images were presented side by side to the subject, who decided which was the learned object. Feedback was provided by a computer beep for correct responses. One image was chosen randomly from one of the 11 learned views. The other image was generated either from a different symmetric object, or from the same learned object by adding distortions. The distortion was created by adding Gaussian positional noise \(N(0, 0.254 \, \text{cm}) \) in 3D to one symmetric half of the object, the other half of the object was distorted in such a way that symmetry was preserved.

At any time during the practice, the subject could press the middle mouse button to review the learned object. The image of the learned object would change into the first image of the object, and rotate around the \(y \)-axis and then around the \(x \)-axis under the subject’s mouse button control. Meanwhile, the image of the distractor object remained unchanged.

The subject needed 100 trials to finish this practice, in addition to the review trials. This practice was the same no matter if the object would be distorted symmetrically or asymmetrically during the next, test stage, so that the subject was trained to learn both the symmetry and the geometric details of the object. Fig. 3 shows an example of the object when the subject was tested under the symmetric and asymmetric conditions, respectively.
3. Test

Two object images were presented side by side to the subject, who decided which was more similar to the learned object. No feedback was provided. Both objects were distorted versions of the same learned symmetric object, and rendered from the same viewing angle. Both objects were generated by adding Gaussian positional distortions in 3D to the vertices. For one object, the standard deviation was always 0.254 cm. For the other, the standard deviation was larger and could be adjusted to find a threshold. We used a staircase procedure to find the threshold value of the larger standard deviation that gave rise to 75% correct performance. At any time during the test, the subject could press the middle mouse button and review through the learned object from the 11 viewpoints. Discounting these review trials, there were 500 test trials.

The total number of 500 test trials were divided into three conditions, which were randomly interleaved. In 200 of the trials, the viewing position was from one of the 11 learned positions. We call this the learned view condition. In another 200 trials, the viewing position was randomly chosen from the viewing sphere, plus a random rotation around the viewing direction. We call this the novel view condition. The remaining 100 trials served as “refresh” trials that were identical to those in the practice stage, and feedback was provided.

C. Subjects

Twelve subjects, naive to the purpose of the experiment, participated; each with six prototype objects, three for the symmetric condition, and three for the asymmetric
one, in a counter-balanced manner.

D. Results

1. Thresholds

Within-subjects ANOVA revealed a significant main effect of learned vs. novel viewing angles \(F(1,11) = 7.92, p < 0.02\). As expected, the threshold for the learned views was smaller than for the novel views (0.71 cm vs. 0.84 cm). ANOVA also revealed a significant main effect of symmetric vs. asymmetric conditions \(F(1,11) = 4.72, p = 0.05\). The threshold for the asymmetric condition was smaller than for the symmetric condition (0.71 cm vs. 0.85 cm), this means that the performance was better for the asymmetric than for the symmetric objects. The interaction was not significant \((F < 1)\). Fig. 4 shows the threshold performance when the subjects were correct 75% of the time.

2. The ideal observer computation

We start by describing the computation for the asymmetric condition first (see Liu, Kersten, & Knill (1999) for more details). The question is: given two input images (i.e., for each image, the \((x, y)\) coordinates of each of the five vertices and their order) of two deformed objects, which is more likely to come from the learned object? The 3D structure of the learned object (i.e., the \((x, y, z)\) coordinates of each of the five vertices and their order) is known. What is unknown is the projection angle from which both images are obtained, and which end vertex is the head and which the tail.

The ideal observer tries out all possible projection angles, and for each angle,
tries all possible angles of rotation (in 360°). For each particular projection angle and rotation angle, a Euclidean distance between vertices of an input image and the newly projected image is computed (the origin (0, 0, 0) is assumed known to the ideal observer). The likelihood is then computed using the Gaussian with the known variance, which is the constant variance of the target object. Because of the head-tail ambiguity, the same computation is repeated with a flipped head-tail correspondence between the two images above. The likelihood values for all the projection angles and rotation angles are integrated with equal weighting. Finally, the input image with a larger total likelihood will be chosen as more similar to the learned object.

Numerically, 32,776 points on the viewing sphere were chosen in such a way that their distribution was maximally uniform on the sphere (the enclosed convex hull had the maximum volume). Each point represented a projection angle. For each projection angle, 360 rotational angles were chosen (1° each).

For the symmetric condition, the computation was similar except the following two differences. The first was that since independent noise was added only to three vertices on one side of an object, the Euclidean distance was calculated between two images accordingly as well (because the head-tail ambiguity, the head-tail flip was still needed). The second difference was that since an object after deformation remained symmetric, the information regarding the plane of symmetry was not completely lost, so the ideal observer used the information as follows.

For any bilaterally symmetric object, a line connecting any two corresponding points is perpendicular to the plane of symmetry. Therefore, all such lines are parallel to each other. In our case, the lines connecting vertices 1, 5 and 2, 4 were parallel to
each other. Since the object remained symmetric after deformation, these two lines remained parallel to each other as well. Now, since the 3D symmetric object was projected to its 2D image orthographically, these two lines were also parallel to each other. Therefore, although the projection angle was still not completely known, we do know that the rotational angle around the projection direction had to be such that the two new lines had to be parallel with the old. More specifically, there were only two such rotational angles (differing by 180°). Again, the head-tail ambiguity remained.

3. Statistical efficiencies

We calculated the statistical efficiencies for the symmetric and asymmetric conditions separately. For the symmetric condition, we simulated 20 objects, each with the learned view condition and novel view condition, and each condition was simulated with the staircase procedure for 2000 trials. Because the ideal observer had knowledge of the 3D structure of each object, its performance for the learned view and the novel view conditions should be the same. We simulated both conditions to self-check that the thresholds of both conditions for each object were identical, and they indeed were. We obtained an average threshold of 0.379 cm with a standard deviation of 0.013 cm.

For the asymmetric condition, we only needed to simulate nine objects with just the novel condition to obtain an average threshold with a much smaller standard deviation than the symmetric ones: 0.321 ± 0.007 cm.

We then calculated the statistical efficiencies using Equation (1). ANOVA demonstrated, as expected, a better performance for the learned than for the novel views.
(22.50% vs. 16.90%, $F(1, 11) = 12.82, p < 0.01$). The ANOVA also indicated better performance for the symmetric condition than for the asymmetric condition (23.04% vs. 16.36%, $F(1, 11) = 15.00, p < 0.01$), which was unexpected from the discrimination threshold results. The interaction was not significant ($F < 1$). Fig. 5 shows the result.

3. **Experiment 2**

There was a potential confound in Experiment 1. Namely, subjects’ threshold difference between the symmetric and asymmetric conditions might have had nothing to do with symmetry, but rather due to the different numbers of noise sources. That is to say, there were only three independent noise sources for the symmetric condition, and five for the asymmetric condition.

In order to test this possibility, we conducted Experiment 2 under the same conditions as Experiment 1, except that independent noise was added to only three vertices: 1, 3, and 5, whereas no noise would be added at vertices 2 and 4. The resultant object, therefore, would be asymmetric.

If the result in Experiment 1 is completely due to the difference of the number of noise sources, then we expect no difference between the results of Experiment 2 and the symmetric condition of Experiment 1. On the other hand, if symmetry vs. asymmetry has a genuine effect, then we expect a difference in thresholds and statistical efficiencies between this experiment and the symmetric condition in Experiment 1.
A. Subjects

Twelve fresh subjects, naïve to the purpose of the experiment, participated, each with three prototype objects.

B. Results

1. Thresholds

Two-way ANOVA was used to compare the thresholds from this experiment and those of the symmetric condition in the last experiment, with main factors as view (learned vs. novel) and condition (asymmetric vs. symmetric). As expected, the main effect of view was significant, it was easier to discriminate the learned views than the novel views (0.84 cm vs. 1.13 cm, \(F(1,22) = 14.01, p < 0.001 \)). The main effect of condition was not significant (symmetric: 0.85 cm vs. asymmetric: 1.12 cm, \(F(1,22) = 1.17, p = 0.29 \)). Of particular interest was the interaction, which was significant, meaning that discrimination dropped more quickly from the learned to novel views for the asymmetric condition in the current experiment (0.87 to 1.36 cm) than the symmetric condition (0.80 to 0.90 cm) \(F(1,22) = 5.96, p < 0.02 \), Fig. 6). This means that, although the same number of vertices have been added with noise, discrimination is different for symmetric vs. asymmetric objects.

2. The ideal observer computation

We describe here the ideal observer for the task in Experiment 2. Since no noise was added to vertices 2 and 4, and since the origin (0,0,0) was always known, the 2D coordinates of vertices 2 and 4 (four knowns) completely determines the projection
angle (3 unknowns), except that we still have to consider the head-tail ambiguity. We used 20 objects, and each object again with 2000 trials. The average threshold and standard deviation were 0.339 ± 0.004 cm.

3. **Statistical efficiencies**

We computed the statistical efficiencies using Equation (1) for the learned and novel views. We then performed a two-way between-subjects ANOVA comparing efficiencies in this experiment and those in Experiment 1 of the symmetric condition. Both main effects were significant. Efficiencies for the learned views were higher than for the novel ones (19.95\% vs. 13.50\%), $F(1, 22) = 12.93, p < 0.002$. Efficiencies for the symmetric objects were higher than for asymmetric ones (23.04\% vs. 10.41\%), $F(1, 22) = 9.21, p < 0.006$. The interaction was not significant ($F(1, 22) < 1$). Fig. 7 shows the result.

4. **Experiment 3**

So far, the computations of the ideal observer have assumed that only 2D information, namely the (x, y) coordinates of an object’s vertices, is available from an input image. However, shading, self-occlusion, and the shape of creases formed at the joints between neighboring cylinders may provide potential 3D information about the length and depth orientation of each of an object’s cylinders.\(^{25}\) Although the computations of the ideal observer so far are all valid since no bias is introduced in the comparisons, we would still like to know to what extent such 3D information is used by human subjects.
To address this question, we changed the objects into silhouettes so that an object had the same luminance everywhere and all three potential sources of 3D information were absent (Fig. 8). We predict that if subjects’ performance became worse, then it would be evidence that the 3D information was used. Otherwise, it means that these sources of 3D information play no significant role when the prototype objects are symmetric in 3D.

A. Subjects

Four subjects from Experiment 1 plus eight fresh subjects participated; each with six prototype objects, three in the symmetric condition, three in the asymmetric, in a counter-balanced manner.

B. Results

We compared the results with those in Experiment 1 in a three-way ANOVA (silhouette vs. shaded, learned view vs. novel view, and symmetric vs. asymmetric). We first report here the within-subjects analysis with the four subjects. Only two main effects were significant, both confirming the results from Experiment 1 (Fig. 9-left). The thresholds for the symmetric condition was higher than for the asymmetric condition (0.765 cm vs. 0.667 cm): $F(1, 3) = 15.30, p < 0.03$. Thresholds for the learned views were lower than for the novel views (0.622 cm vs. 0.810 cm): $F(1, 3) = 13.03, p = 0.037$. Importantly, the difference between the silhouette and shaded conditions was not significant (0.767 cm vs. 0.665 cm): $F(1, 3) = 2.53, p = 0.21$.

We now look at the between-subjects ANOVA between the eight subjects in the
current experiment and the remaining eight subjects in Experiment 1. The results were consistent with the within-subjects analysis above (Fig. 9-right). Perhaps due to between-subjects variations, the thresholds for the symmetric condition were now only marginally significantly worse than for the asymmetric condition (0.926 cm vs. 0.784 cm): $F(1, 14) = 3.16, p = 0.097$. Thresholds for the learned views were better than for the novel views (0.735 cm vs. 0.975 cm): $F(1, 14) = 11.24, p < 0.005$. Thresholds between the silhouette and shaded conditions were not significantly different (mean ± standard error: 0.875 ± 0.075 cm vs. 0.835 ± 0.080 cm): $F(1, 14) = 0.05 < 1, p = 0.828$.

5. Discussion

We have demonstrated that it is harder, in terms of threshold, to discriminate between two deformed objects when the deformation retains the symmetry. However, when we take into consideration that a “symmetric” deformation has only half of the degrees of freedom as an “asymmetric” deformation, we found that human observers are better able to discriminate symmetric deformations when the input image information is equalized. We stress that without the ideal observer analysis such a conclusion cannot be reached. This suggests that the visual system is indeed better equipped to process symmetric objects.$^{3, 16, 20, 35–37}$

In addition, these results suggest that symmetry within a 2D image does not account for all of the advantage for symmetric objects. Otherwise, we should not expect any difference for the novel views between the symmetric and asymmetric conditions, since a novel view was almost always an asymmetric image. Within-image symmetry,
on the other hand, does suggest an advantage. This is because, for the learned views, the symmetric condition is more efficient than the asymmetric condition. Note that in half of the trials of the symmetric condition, the images themselves were symmetric. Whereas for the asymmetric condition, practically no image was symmetric. We remark that, within the learned views of the symmetric condition, we cannot directly compare the symmetric images vs. asymmetric ones because we used a single stair-case procedure to obtain a single threshold. Therefore, we cannot rule out the possibility that this advantage is completely due to the 3D symmetry, and has nothing to do with the 2D symmetry in an image.

Although our results show that object discrimination is more efficient for symmetric than for asymmetric objects, we emphasize that this does not imply distinct physiological mechanisms for symmetric vs. asymmetric objects. In Bayesian terms, symmetric objects may be handled more efficiently as a consequence of being more common or more important. Yet, somehow priors and task-relevance have to be instantiated in the brain. This kind of specialization may not be completely based on familiarity with many near-symmetric objects in the world, natural and artificial alike, because the objects used in the current study are novel. High efficiencies may have to do with the way the visual system codes for near-symmetric objects, where symmetry is a type of regularity that the visual system exploits to form economic object representations.12,38

The results in the third experiment indicated that, for symmetric prototype objects, shading, self-occlusion, and the shape of creases between two neighboring cylinders, do not provide more information about the 3D shape of an object than the
silhouette of the object does already. This is, in fact, consistent with subjects’ im-
pression that a silhouette of a symmetric object already appears to be a 3D symmetric
object. This is in stark contrast with the previous finding in Liu, Kersten, & Knill
(1999). In that study, shaded (with self-occlusion and creases at the junctions), but
asymmetric objects, gave rise to better (i.e., smaller) thresholds than objects (called
“tinker toys”) of the same 3D configurations but with all the cylinders shrunk to a
line, so that no shading, self-occlusion, and creases were available. Moreover, in that
study, the statistical efficiency for the shaded wire objects was also higher than for
the “tinker toys,” when the ideal observer for the former was assumed to be able to
recover the full 3D structure of an object (the \((x, y, z) \) coordinates of the vertices)
from its single 2D image, and for the latter the ideal observer had only the 2D \((x, y) \)
coordinates of the vertices. It was a strong result because the ideal observer for the
shaded objects was a “super ideal” observer, who was able to recover 3D shape from
shading from a single image. Such a super ideal observer gave rise to the lower bound
of statistical efficiency for the shaded wire objects, which was still higher than for
the tinker toys. The fact that no statistically significant difference has been found
here between the shaded and silhouette symmetric objects is, we believe, a strong
testament that the knowledge of symmetry alone, provides information about the 3D
shape of the objects.

So how may the knowledge of 3D symmetry be obtained from a 2D image? The
following theoretical result may offer a clue. A necessary condition for a 2D image to
be the parallel projection of a 3D symmetric object is this. All lines, each of which
connects two corresponding points of a 3D symmetric object, have to be parallel in
the image plane.32 By extension, in a perspective projection, all these lines have to converge to a single point. (The parallel lines in the orthographic projection case are, of course, a special case since they converge at infinity.)

There is also a theoretical possibility that our result of the symmetry advantage may be explained, at least in part, by the following. When symmetry is detected, it may produce a compelling percept to the extent that symmetry makes other difference less distinguishable.19,20,33,34 We cannot rule out or confirm this possibility, but speculate that, unless the image itself is symmetric, the symmetry percept is not as strong.

Human efficiencies are less than 100\%. What are the possible sources of the inefficiencies? Specifically, such inefficiencies can be attributed to three categories: input stimulus encoding, representation of an object model, and the matching process (please see section 4.1 in25 and23,31 for a discussion in a broader context). First, unlike the ideal observer who codes the \((x, y)\) positions of the vertices precisely, humans are bound to be inaccurate encoding the shape of an input stimulus, e.g., either by the vertex positions or by the lengths of the cylinders and their relative angles. We remark that by assuming that the ideal observer always knows the origin of the coordinate system, which humans may not, this results in a lower efficiency since the uncertainty for the ideal observer is reduced. Second, even if humans can represent an input stimulus perfectly, they may not be able to represent the 3D structure of the object precisely, in contrast to the ideal observer. By precisely representing the 3D structure, we mean that the information contained in the representation can accurately describe the 3D shape of the object, no matter what the format of this representation is.
Third, even if the human visual system can encode an input stimulus and represent
the 3D structure of the object perfectly, it may still be imperfect in matching an
internal object model with an input stimulus. For instance, humans may not be able
to consider and integrate over all possible relative orientations of the model relative
to the input. The visual system may not be able to effectively “rotate” the 3D model
with a large angle to match with a 2D input.

Acknowledgment

We thank the two anonymous reviewers for helpful comments. This research was pre-
viously reported at the European Conference on Visual Perception (ECVP), Trieste,
Italy, 1999. ZL is supported in part by an NSF grant IBN-9817979 and an NEI grant
R03 EY14113. DK is supported by NIH EY02587. We thank Sara L. van Driest, Chris
Wainman, and Ingrid Wu for their assistance in conducting the experiments.

References

attitude and local depth comparisons. Perception & Psychophysics, 58:163–173,
1996.

4. H. I. Bailit, P. L. Workman, J. D. Niswander, and C. J. MacLean. Dental asymme-
try as an indicator of genetic and environmental conditions in human populations.

Appendix

We now outline the assumptions used in deriving the statistical efficiency, while leaving the derivation itself in.\(^2\) Statistical efficiency \(E\) is defined as the squared ratio of discrimination index \(d'\) for the human observer \(d'^H\) versus for the ideal observer \(d'^I\), where \(d'^I = x/\sigma\), with \(x\) being the strength of the signal and \(\sigma\) the standard deviation of the Gaussian noise present:

\[
E = \left(\frac{d'^H}{d'^I}\right)^2 .
\]

(2)

As in the standard analysis, we assume that the human observer is ideal except that there is Gaussian internal noise \(\sigma_H\) added to the input signal and noise. Therefore, \(d'^H = x/\sqrt{\sigma^2 + \sigma_H^2}\). We now need another mathematical result that we proved in\(^2\) in order to complete the derivation. This result says that the percentage correct for the ideal observer is determined by the ratio of standard deviations of target and of distractor noise, \(\sigma_t\) and \(\sigma_d\). In our experimental setting: \(P_{threshold} = f(\sigma_t/\sigma_d)\). (In fact, \(P_{threshold}(\sigma_t/\sigma_d, n)\) is also a function of \(n\), the number of object vertices with independent noise. This is relevant to the issue of different number of noise sources that is discussed in (2) of Section B.) We assumed, in deriving this result, that an ideal observer knows about a prototype object in terms of a vector corresponding to the object’s vertices. It also knows the vectors of an input target object (prototype plus noise \(N(0, \sigma_t)\)) and of an input distractor object (prototype plus noise \(N(0, \sigma_d)\)). This ideal observer also knows the relative position and orientation between the prototype object and an input object. Note that this is an approximation to the ideal observer used in this paper. The ideal observer in this paper does not know the relative ori-
tation of the prototype object relative to an input object. It instead needs to integrate over all possible orientation angles. Here, the optimal strategy is to choose between the two input vectors the one that is closer in Euclidean distance to the prototype vector. The input target and distractor each has a probability distribution of this Euclidean distance, from which the percentage correct for the ideal observer can be derived $P_{\text{threshold}} = f(\sigma_l/\sigma_d)$. Having obtained this relationship, we then know that when the human and ideal observer have the same percentage correct

$$\frac{\sigma_i^2}{(\sigma_d)^2} = \frac{\sigma_i^2 + \sigma_H^2}{(\sigma_d)^2 + \sigma_H^2},$$

which leads to Equation (1).
Fig. 1. A schematic illustration of a physical shape subspace, where along one
dimension (horizontal) the degrees of asymmetry of an object varies, and along
an orthogonal dimension (vertical), shape varies while symmetry is unchanged.
In this paper, we ask whether two shapes are equally discriminable along the
two axis, respectively, if their physical difference is kept constant (by an ideal
observer).

Fig. 2. A 3D symmetric object from multiple views by rotating around the
y-axis (top two rows, left to right), and then around the x-axis (bottom two
rows). These 11 different views (the top left and bottom right are identical)
are called the learned views.

Fig. 3. Example stimuli in the test stage when objects were distorted versions
of the learned symmetric object. Top: both objects were symmetric after the
distortion. Bottom: both were asymmetric.

Fig. 4. Discrimination threshold of 12 subjects when they were 75% of the time
correct. The error bars are standard errors between-subjects. Note that these
error bars cannot directly reflect the statistical significance, since the analysis
is within-subjects (same below).
Fig. 5. Statistical efficiencies for the symmetric vs. asymmetric conditions, and learned vs. novel views. Note that the pattern of symmetric vs. asymmetric comparison is completely reversed here in contrast to the threshold performance.

Fig. 6. Discrimination thresholds for the learned and novel views, of the symmetric condition in Experiment 1 and of the asymmetric condition in Experiment 2.

Fig. 7. Statistical efficiency of the symmetric condition in Experiment 1 and of the asymmetric condition in Experiment 2, for the learned and novel views.

Fig. 8. Experimental stimuli in the test phase when the objects were all silhouettes.

Fig. 9. Threshold comparisons between Experiment 1 and the silhouette condition of Experiment 3. Left: within-subjects comparison (four subjects). Right: between-subjects comparison (eight subjects each). There was no significant difference between the silhouette and shaded conditions.
Threshold (cm)

- Learned
- Novel

Objects

Asym Sym
The threshold (cm) for asymmetrical and symmetrical objects is shown in the bar chart. The chart compares learned and novel objects. The threshold for asymmetrical objects is higher than for symmetrical objects, with learned objects having a slightly higher threshold than novel objects. The error bars indicate the variability in the data.
Objects (within-subjects)
There is a bar graph showing the threshold in centimeters for different objects. The objects are divided into two categories: Sil and Shaded. The graph compares the threshold for Learned objects with the threshold for Novel objects. The y-axis represents the threshold in centimeters, ranging from 0 to 2 cm. The x-axis represents the objects (b/w-subjects). The bars show that the threshold for Learned objects is higher than for Novel objects for both Sil and Shaded conditions.