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The problem of determining surface shape from shading is formulated in terms of Bayesian 
estimation. The goal is to select an estimate of surface shape that best fits some criterion on the 
posterior probability of the surface conditional on the image data. This conditional probability 
is a function of the imaging function and the prior probability of the surface. A gradient 
descent technique is used to compute the best linear estimator of the mean of the conditional 
distribution from a set of random fractal surfaces and their images. Simulations show that the 
derived estimator works well for a wide range of surfaces, including non-fractals. Once 
learned, the estimator could be used to implement a fast, non-iterative parallel device for 
estimating shape from shading with arbitrary light source directions. The estimator has similar 
perceptual deficits to human observers. In particular, it exhibits a loss of coarse-scale surface 
shape, while accurately reconstructing fine-scale details. F 1990 Academic Prer. Inc 

1. INTRODUCTION 

The two-dimensional retinal image providing information about a scene to the 
visual system is a complex function of the three-dimensional structure of the 
environment, the viewing conditions, and the illumination. The visual system must 
invert this “imaging” function, in order to estimate three-dimensional properties of 
the scene. Many of the problems of early vision fall naturally into the framework of 
inverse problems [2, 31. Examples include shape from shading, structure from stereo, 
structure from motion, and reflectance estimation. 

A notable characteristic of many of these problems is that they are ill-posed, 
either because they are under-determined (i.e., no unique solution exists) or because 
of noisy and sparse image data. The solution spaces of the problems must somehow 
be constrained in order to derive a unique solution. Computational models for 
solution of these problems typically employ heuristic constraints which have some 
intuitive appeal to the modellers. The most popular of these is some form of 
smoothness constraint, having been applied to problems as diverse as shape from 
shading [l], structure from stereo [4], and motion detection [5]. 

*This research was supported by BRSG PHB 507 RR 07085 and NSF Grant BNS-8708532 to Daniel 
Kersten, and by NSF BNS-85-18675 and ONR N-00014-86-K-0600 to James A. Anderson. The authors 
would like to acknowledge the help and support of the neural mode&g group at Brown University. We 
would especially like to thank Jim Anderson and Mike Rossen for many helpful discussions and 
suggestions. 

iPresent address: Department of Psychology, University of Minnesota, Minneapolis, MN 55455. 

75 
0734-189X/90 $3.00 

Copyright s 1990 by Academc Press, 1,~ 
All rights of reproducmn in any for& rcservrd 



76 KNILL AND KERSTEN 

This approach has two problems. The first is the determination of which con- 
straints to use in the solution. This is not trivial, as it requires accurate knowledge of 
the structure of the environment. The second is the translation of this knowledge 
into a mathematical representation suitable for model building. For practical 
reasons, the latter problem often guides the selection of constraints. 

An alternative approach to solving these inverse problems is to use an adaptive 
system which learns a desired inverse mapping through associative pairing of real 
images with real scene characteristics [6-81. The constraints existent on the scene 
characteristics will be embodied in the learned mapping, effectively unburdening the 
modeller from the task of specifying them. How well the mapping captures 
the natural constraints will depend on the representations used, the nature of the 
constraints, and the power of the learning algorithm (e.g., linear, polynominal, etc.). 

In this paper, we derive a linear estimator of surface shape from shading using the 
Widrow-Hoff associative learning algorithm. Though we only consider the problem 
of shape from shading, the techniques studied here may be applied to a range of 
problems, and, hopefully, the results we report will serve to guide research into these 
areas. We view the problem as one in statistical estimation and develop the model 
within this framework. In the second section, we introduce the problem and review 
some of the past modelling work on it. The third section contains a brief overview of 
Bayesian estimation theory. The fourth section introduces the learning algorithm. In 
the fifth section we describe a statistical model of natural surfaces which we use in 
the implementation of the model. The sixth section describes the implementation 
of the model. In the seventh section, we present simulation results. The final section 
contains a summary and discussion. 

2. SHAPE FROM SHADING 

2.1. Problem Dejinition 

The shading pattern on a surface provides information about the shape of the 
surface. Recent studies of human perception of shape from shading focus on simple, 
convex objects with occluding boundaries, the most common being ellipsoids and 
spheres [9-lo]. Without the information provided by the boundaries, these images 
appear very flat. Shaded images of more complex surfaces, with several peaks and 
valleys, are, on the other hand, perceived as having three-dimensional shape (see 
Fig. 1). The work presented in this paper will concentrate on the estimation of shape 
from shading away from boundaries and other contours, such as self-occlusions and 
shadows. 

In general, an image will be a complex function of many variables; however, with 
the simplifying assumption of a point light source and matte surfaces, the light 
energy reflected to the viewer from points on a surface is given by the Lambertian 
shading equation 

L = pX(N l I), 0) 

where L is the luminance, p is the surface reflectance, X is the light energy flux 
incident on the surface, N is the surface normal vector at a point, and I is the unit 
vector in the direction of the light source. We ignore the problem of detecting 
variations in surface reflectance, p, which relates to work on lightness constancy 
[12], and assume it is a constant. In most image formation models, p is assumed to 
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FIG. 1. Shaded image of a fractal surface. The surface has a fractal dimension of 2.15 and is low-pass 
filtered with an upper cutoff frequency of 24 cycles per surface (see Section 6 for description of fractal 
surfaces). 

be statistically independent of shape and illuminant away from contours and thus 
may be derived independently. 

In a coordinate system, (x, y, z), where z is the surface height and is taken 
positive in the direction of the viewer, we can represent N as the vector, (n,, n ,,, PZ=)~. 
whose components are given by 

-P 
*, = 

/p* + q* + 1 ’ 

?,, = /&’ 

(21 

1 
n, = 

\ip’ + q2 + 1 
=/m. 
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FIG. 2. Schematic of the image formation process. For a Lambertian surface, reflected luminance is 
proportional to the cosine between surface normal and illuminant direction vectors. 

where 

We have assumed an orientation for surfaces such that the surface normals point 
toward the viewer; thus, n, is always positive. The illtinant vector, I, is written as 
(ix, i,, i,)T. Expanding (l), we obtain for the shading equation, 

L = pX’( ixnx + i,n, + izJT). (6) 

Figure 2 summarizes the imaging geometry. Our goal is to invert (6) and estimate n, 
and ny from the data L at each point in the image. 

2.2. Previous Work 
The models which have been developed for solving shape from shading fall into 

two general categories; those which employ variational techniques and those which 
use assumptions about the local geometry of surfaces to derive a closed-form shape 
estimator. In the variational approach [l, 131, solution of the problem consists of 
finding the surface which minimizes some integral error functional. The functional 
consists of an error term, which reflects how well the surface matches a given image, 
and one or more penalty terms which embody some constraints on the solution 
surface. The penalty term measures how far a surface departs from the given 
constraints. The functional takes the form of an integral evaluated in a bounded 
region, R, of the image 

where S is a representation of local surface shape, f( *) is the shading function (in 
our case, the lambertian equation given in (l)), and P( *) is a penalty function. The 
representation used for S is usually selected for mathematical convenience in the 
formulation of P( ). The constant X is a Lagrange multiplier which weights the 
relative contribution of the penalty and error terms. 

Typical penalty functions are those which embody an integrability constraint and 
those which embody some form of heuristic smoothness constraint. The integrability 
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constraint is an example of a “hard” constraint, in that it is satisfied by all 
differentiable C2 surfaces. A specific definition of the constraint is that the second 
mixed derivatives of surface depth taken in different order, are equal; that is, 

a22 a22 -=- 
ax ay ayax ’ Py = 4,. (8) 

Horn and Brooks [13] proposed a penalty term for this constraint given by 

p = (Py - 4J2- (9) 

An example of a smoothness is the “thin-plate” surface model originally developed 
by Terzopoulous [14] for surface interpolation between sparse depth values. This is 
given by 

P= (g)2+2(~]z+ ($1’. (10) 

Minimizing (10) is approximately equivalent to minimizing the tensile energy in a 
thin metal plate. 

The variational approach ultimately leads to a set of non-linear differential 
equations which require boundary conditions for their solution. These conditions 
are generally taken from the known surface orientations at self-occluding contours 
in an image, though, theoretically, they could be known orientations at any point on 
the surface; for example, those derived at positions with specular highlights. The 
models are, however, limited by the requirement that such boundary conditions be 
derivable from the image. The clear perception of shape in the image of Fig. 1, in 
which there exist no self-occlusions or specular highlights, indicates that human 
perception of shape from shading does not share this limitation. 

A second approach to solving shape from shading has been to make assumptions 
about the local geometry of surfaces and to derive closed-form solutions for local 
surface shape. Pentland [15], and later Lee and Rosenfeld [16], constrain the 
solution space by assuming that surface patches are umbilical; that is, they have 
equal principal curvatures. This is akin to assuming that surface patches may be 
approximated as being locally spherical. Using this constraint, they derive local 
estimators of surface orientation based on the directional derivatives of image 
intensity. These models are not limited by the need for boundary conditions; 
however, they do rely on an assumption of surface structure which is certainly not 
realistic, though it may sometimes lead to reasonable solutions. 

3. STATISTICAL ESMMATION 

In this paper, we pose the problem of shape from shading as one in statistical 
estimation, and describe the constraints on the solution space as existing in the 
global statistical structure of surfaces. We can incorporate these constraints into the 
solution of the problem using Bayesian estimation techniques [2, 171. This formula- 
tion has several advantages. First, it provides a general framework within which 
performance of models and biological systems can be evaluated and compared. 
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Second one can theoretically measure the statistical structure of natural surfaces, so 
that any model we use of that structure can be verified. Finally, for the application 
of a learning system, a statistical model of natural surfaces provides a means for 
computer synthesis of naturalistic surfaces for use as examples in training the 
system. 

We model image formation as a two-dimensional stochastic process, in which the 
image is a deterministic function of the scene with additive white Gaussian noise. 
The actual data available to an observer is a vector of discrete samples of this 
process. The general equation for the observed image is 

L =f(S) + M, (11) 

where L is a vector of image intensities, S is a vector representing local scene 
characteristics,’ f( .) is the deterministic imaging function, and M is a vector of 
independent noise samples. In general, the noise may be non-white or it may be 
combined with the image in some non-linear way, such as multiplicatively; however, 
we will only deal here with this simplified case. 

Using Baye’s theorem, we can formulate the posterior probability of the scene, 
given an image, as 

P(W) = PtwPts) 
P(L) . 

From (11) the forward probability of the image, given the scene, p(LIS), is 
equivalent to p(M = L - f(S)). As the elements of M are uncorrelated Gaussian 
random variables, this is given by 

P&IS) = P@ = L -f(S)), (13) 

p(L = LlS = S) = k X exp[$(L -j(s))T(L -f(s))]. (14) 

p(S) is the prior probability of the scene and embodies the constraints on natural 
scenes. In effect, it represents our prior knowledge about the structure of scenes. 
p(L) is the prior probability of the image; however, for a given image, this is 
constant and so does not affect the estimation. 

To estimate a set of scene characteristics from an image, we must specify some 
criterion on the posterior distribution, p(SIL), which defines an optimal solution. 
The two most common are the mode and the mean of the distribution. In the first 
case, the optimal solution is defined as the most probable scene given an image. This 
is referred to as maximum a posterior (MAP) estimation. In the second case, the 
optimal solution is the one ‘which minimizes the mean squared error of the 
estimates. It is referred to as minimum mean squared error (MMSE) estimation. 

Let us represent p(S) using a Gibbs distribution, 

p(S = S) = k, X exp[ - V(S)], (15) 

‘For shape, S is a tensor of rank two, corresponding to a set of sub-vectors representing surface 
orientation, indexed by spatial position. One can, however, represent it as a one-dimensional vector by 
concatenation of each of these subvectors. 
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where U(S) is referred to as the energy or Gibbs potential of the distribution. The 
constant k, is set to 

in order to normalize p(S). The posterior distribution reduces to 

p(S = S/L = L) = k, x exp - -$(L -j(S))T(L -f(S)) - U(S) . (17) 1 
MAP estimation requires the minimization of the function in the exponent of the 
distribution. This function is equivalent to a discrete formulation of the integral of 
the error functional given in (7), with P(S)2 = U(S), and X = 2a2. A natural 
interpretation, then, of the penalty function used in variational approaches is that it 
parameterizes a probability distribution for S. Values of S for which P(S)2 is small 
are more likely than values for which P(S)2 is large. 

In the simple case that S is Gaussian, the posterior probability reduces to 

p(S = S/L = L) = k, x exp $(L -f(S))T(L -f(S)) - STP-‘S 
I 
, (18) 

with P being the covariance matrix for S. Both MAP and MMSE estimation, in this 
case involve the minimization of the exponent of the distribution. The correspond- 
ing penalty function is linear and given by the inverse covariance matrix, P-‘. 

The previous discussion suggests a four-step strategy for the application of a 
Bayesian approach to the solution of inverse imaging problems. 

(1) Specification of the imaging function. This defines the forward distribution. 
P(LIS). 

(2) Specification of the prior distribution of surfaces, p(S). 
(3) Definition of criterion on p(SI L) for an optimal solution. 
(4) An algorithm for finding the solution which matches the defined criterion. 

For the problem of shape from shading, the imaging function is given in the form 
of Lambert’s law. Combining Eqs. (1) and (11) and substituting the surface normal 
vector for S, we obtain 

L 
‘,, = w , ,  l 1 + Ml, ,’ (19) 

We will leave a discussion of the prior distribution, p(S), until Section 4. The 
criterion we use to define an optimal solution is that we minimize the mean squared 
error over all estimates; thus, the model will estimate the mean of the posterior 
distribution. We use an associative learning algorithm to derive a near optimal 
mapping between images and surfaces. This is described in the next section. 
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4. LEARNING A NEAR OPTIMAL ESTIMATOR 

We would like to derive a pseudoinverse mapping from images to surfaces, 

Q = f*(L), (20) 
such that the average error between the estimated surfaces and the real surfaces is 
minimized. If the imaging function were linear and the distribution of S were 
Gaussian, the optimal mapping would be linear. Unfortunately, for shape from 
shading neither of these conditions hold. A linear mapping may, however, be near 
optimal and, given the availability of learning algorithms for deriving such map- 
pings, it is worth investigating their performance. As we shall see, for the problem of 
shape from shading, the linear map may be implemented as a localized convolution 
operator (see Section 6). Such an operator may be efficiently implemented on 
standard signal processing chips and does not require the iterative schemes of 
non-linear models. If the model works reasonably well, the gain in efficiency may be 
worth the loss of accuracy. When greater accuracy is desired, the estimate obtained 
from application of a linear operator may be used as an initial condition for a more 
complex iterative algorithm, in order to speed up processing. 

Given pairs of examples surfaces and images, we can use the Widrow-Hoff 
error-correcting algorithm to derive a linear mapping between them which mini- 
mizes the mean squared error between estimated and real surfaces [18]. In the 
connectionist literature, this type of algorithm is termed linear associative learning 
[19, 201, and is often interpreted to be computing a generalized inverse. We will refer 
to the example surfaces and images as the training stimuli. The learning rule is given 
by 

AA = p(S, - AL,)L:. 

where A is the mapping being learned and the term in parentheses is the error 
between estimated and real values of S,. Iterative application of this rule to example 
vectors, S, and L,, with appropriate relaxation of the learning constant, p, will 
result in a convergence of A to the desired mapping. 

If the example surfaces are randomly drawn from the distribution p(S), and the 
images are calculated using the imaging function in (l), the derived mapping may be 
interpreted as the best linear estimate of the mean of p (S ] L). This requires that the 
best set of sample surfaces used during learning span the probability space defined 
by p(S). Of course, the actual form of the distribution need not be known, as it is 
implicitly defined by the set of sample surfaces. An optimal mapping for a 
particular space of surfaces may thus be learned through appropriate selection of 
samples. 

5. SURFACE MODEL 

In order to apply the learning algorithm to derive a shape from shading estimator, 
we need to specify a set of example surfaces to use as training stimuli. We could use 
examples of real surfaces as our training set, as suggested in the previous section. 
This would, in some sense, be the optimal approach; however, it has two difficulties. 
It requires the collection of a set of example surfaces which appropriately span the 
space of real surfaces, and it requires the accurate measurement of the shapes of 
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these surfaces. The other possibility is to use a statistical model of surfaces to 
artificially synthesize a set of example surfaces for use in training. This avoids the 
data collection problems of using real surfaces and has the further advantage that it 
provides a tool for analyzing the performance of the shape from shading estimator. 

In this paper, we take the second approach, using a simulation of a fractal 
Brownian process to generate surfaces for the training set. Fractal processes have 
been shown to accurately model a wide range of natural surfaces [21, 231 and so 
provide some hope of deriving an estimator of general applicability. Fractal Brown- 
ian processes are characterized by their statistical self-similarity2 expressed in the 
relationship, 

S(x + Ax) - S(x) 
P ]AxlH <’ =f(L’). (22) 

S, the random fractal process, and x, the index of spatial location, may be 
vector-valued. The exponent, H, is constrained to have a value between 0 and 1. 
The fractal dimension of the process, S, is given by 

D=E+l-H, (23) 

where E is the Euclidean dimension of the function. The relation in (22) expresses 
the invariance of the statistics of S over changes in scale. For two-dimensional 
processes, the fractal dimension is constrained to he somewhere between 2 and 3: 
the fractional part, in some sense, specifying how much of 3D space the process is 
filling. 

We can apply this model to surfaces by letting S represent surface depth on a 
two-dimensional lattice. This lattice corresponds to the region of a scene projected 
onto an image, with surface depth measured in the direction of the observer. Figure 
3 shows two examples of fractal surfaces, the first with D = 2.1, and the second 
with D = 2.5. Notice that the surface with higher fractal dimension appears rougher 
than the one with lower dimension. A fractal dimension near 2.15 seems to 
accurately model many natural surfaces [21]. 

A fractal Brownian process is Gaussian; therefore, it can be fully specified by its 
power spectrum. The power spectrum of a one-dimensional walk on a two-dimen- 
sional fractal process is given by [22] 

P(f) = ;, f>O, 

where 

/I = I - 20. (25) 

“Fractal Brownian processes are technically self-a&e. A self-similar process has the property that a 
piece of the process, l/nth the size of the original, when scaled by a factor n, is in all statistical respects 
the same as the whole process. For a fractal Brownian process, the scaling factor is not n. but n”, with 
O<H<l. 
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b 

FIG. 3. 3D plots of two fractal surfaces with (a) fractal dimension of 2.15 and (b) fractal dimension 
of 2.5. 

We assume that the surface process is spatially isotropic, so that its two-dimensional 
power spectrum is independent of orientation and is given as a function of radial 
spatial frequency, f,, by 

W) = $7 L’O- (26) 

The exponent is related to the fractal dimension by 
/3’ = 8 - 20. (27) 

The constant k is proportional to the variance of S. We further assume that the 
process S is stationary3; that is, its statistics are invariant to changes in spatial 

31dealized fractional Brownian processes are not stationary, as illustrated by the fact that the integral 
l/fp is unbounded for all j3. If we allow the power spectrum to have a low frequency cutoff, however, 
the integral becomes bounded for all p > 2; that is, for D < 3. Such a process is stationary, and may be 
described as exhibiting fractal behavior at scales below that defined by the cutoff frequency. 



LEARNING SHAPE FROM SHADING x5 

position. Isotropy and stationarity are a natural result of the coordinate system for 
the surface process being viewer-centered. Since the ensemble of surfaces which we 
are considering consists of surfaces viewed from all possible positions and orienta- 
tions (e.g., a ball is equally likely to appear in any position in an image), the 
statistics of the ensemble should be independent of position and orientation in this 
coordinate system. 

The fractal model is related to the thin-plate potential function introduced by 
Terzopoulos to enforce surface smoothness. If we use the potential function in (10) 
to parameterize a Gibbs distribution, the resulting random process is Gaussian with 
a power spectrum which falls off proportionally to l/f4 [24]. Setting p’ = 4 in [27], 
we see that this is equivalent to a fractal Brownian process with D = 2. The fractal 
model typically generates complex surfaces which resemble natural landscapes: 
however, the correspondence between fractal model and the thin-plate smoothness 
constraint shows that the model also encompasses simpler surfaces such as spheres 
and ellipsoids (away from occluding boundaries). 

The surface model has two free parameters to vary, the fractal dimension and the 
variance of surface depths, or equivalently, the variance of surface orientations. 
E[p2] = E[q 2]. The orientation variance measures the degree of relief in the 
surfaces of an ensemble. For a given fractal dimension and orientation variance, we 
generate random surfaces by filtering Gaussian white noise through a filter with the 
appropriate power spectrum, generating a two-dimensional lattice of surface depths. 
Surface orientations and normal vectors are calculated using discrete differences 
between depth values at neighboring points in the lattice. Idealized fractals are not 
differentiable, so that one cannot define local orientation for a fractal surface. One 
can, however, define orientation on a coarse scale; correspondingly, we low-pass 
filtered the surfaces before calculating local surface orientations. 

6. THE ESTIMATOR 

Derivation of the estimator involves three major steps. The first step is the 
generation of a large number of sample fractal surfaces with a given fractal 
dimension and orientation variance. The second step is the synthesis of images of 
these surfaces using the Lambertian shading model for an assumed point light 
source at a fixed position. Finally, the Widrow-Hoff learning algorithm is applied to 
pairs of surfaces and corresponding images to derive the estimator. We represent 
surfaces using two vectors, N, and I’$,, containing the surface normal components 
n, and n,), at discretely sampled points on the surface.4 These vectors provide a 
discrete representation of the normal vector field of a surface. The representation 
fully specifies the shape of the surface down to its first derivative. Images are 
represented using a vector of luminance values at discretely sampled points, scaled 
by the mean luminance calculated over the whole image, 

Li / L],, = fi’ 

4 We also ran simulations using the first directional derivatives, az/~?x and az/Jy, to represent local 
surface shape. The performance of the resulting estimator, though fairly good, was not quite as good as 
the one derived for surface normals, hence our choice of the surface normal representation for analysis in 
the paper. 
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where i[L] is the sample mean luminance. This scaling eliminates the constant of 
proportionality, pX, in the shading equation.’ 

Because the surface process is assumed to be stationary, the linear minimum 
mean squared error estimator for N, and NY will be a pair of convolution operators. 
Such an estimator can be learned by associating a vector containing n, and n,, for a 
point on the surface with the image of the surrounding region. The two rows of the 
resulting matrix will contain discrete, two-dimensional, finite impulse response 
filters, which, when applied to whole images, will provide an estimate of the vectors, 
N, and N,,. We refer to these as the SFS (for shape from shading) filters. If the 
filters are F, and F;, the estimated surface shape is given by 

N, = F, *L’, (29) 
NY = Fy *L’, (30) 

where * is the discrete form of the two-dimensional convolution operator, and the 
operation is performed away from the edge of the image (to within a distance from 
the edge of : the width of the filters). 

6.1. Generalizing to Different Illuminant Directions 

The estimator is derived for images generated using a fixed light source direction. 
We would like to be able to apply the estimator to images generated with different 
light sources. Generalizing the estimator to images generated with light sources at 
different tilts (orientation in the image plane) is fairly straightforward. If the 
illuminant is used for synthesizing images has a tilt of 45”, the SFS filters will be 
rotated versions of each other, due to the isotropy of the surface (the statistics of n, 
are the same as those of nY rotated 90’). We can apply the SFS filters to images 
generated with light sources with tilts other than 45” in the following way. Consider 
a coordinate system defined by the tilt of the light source, so that 

ni = n,cos(d - 45) - n,sin(8 - 45), (31) 
n; = n,sin(B - 45) + n,cos(d - 45), (32) 

where 8 is the tilt of the light source away from 0”. For images generated with light 
sources tilted away from 45”, we can estimate surface normal components, n;, n;, 
by rotating the filters by 0 - 45” before applying them. The resulting surface 
normals are represented in a light source centered coordinate system tilted to match 
the orientation of the illuminant. A highly accurate estimate of illuminant tilt for 
use in this procedure is easily derived from the statistics of an image [25, 261. 

We will show simulation results which indicate that the estimator generalizes 
near-perfectly to light sources of different slants (angle away from the viewer), as 
well. 

6.2. Generalizing to Diflerent Surfaces 
The surfaces used in the derivation of the estimator are continuous surfaces 

drawn from a fractal ensemble with a fixed orientation variance. Because the fractal 

‘If a scene contains surfaces or regions of surfaces with different reflectances, an independently derived 
estimate of relative reflectances could be used to weight the scaling factor applied to different parts of the 
image. 



LEARNJNG SHAPE FROM SHADING 87 

process is ergodic, the sample orientation variances (degrees of relief), of these 
surfaces are roughly equal. We would like the estimator to work well for surfaces 
not explicitly drawn from this ensemble; that is, we would like the estimator to 
generalize over a wide variety of surfaces. These include surfaces with different 
degrees of relief than those of the training surfaces, surfaces not explicitly generated 
from the fractal model, such as spheres and ellipsoids, and surfaces which are only 
piece-wise continuous. In the case of piece-wise continuous surfaces, we would like 
the estimator to handle the discontinuities gracefully (e.g., by smoothing over them). 
Performance of the estimator for surfaces with all of the characteristics listed above 
will be tested in the simulations described in the next section. 

7. SIMULATIONS 

The basic strategy for the simulations is to derive a pair of SFS filters through 
application of the Widrow-Hoff learning algorithm to a training set of fractal 
surfaces and their images and to test the filters on images of novel surfaces. The test 
surfaces and images are computer generated, so that performance of the filters can 
be measured directly through comparison of the reconstructed surfaces with the 
original test surfaces. We use three quantitative measures of performance. The first 
two measure the similarity between the normal vector fields of the original surfaces 
and the estimated normal vector fields vf these !urfaces. One measure is the average 
cosine between the estimated vectors, N, and N,,, and the original vectors, N, and 
NY. The other is the normalized mean squared error (NMSE) between the vectors. A 
cosine of 1 indicates perfect reconstruction up to a scaling factor, while a cosine of 0 
indicates no correlation between the estimated and original test surfaces. The 
normalized mean squared error is given by 

NMSE, = “;; i?j”’ , 

x 

NMSE, = E[@, - 4’1 

2E[n2y] ’ 

(33) 

(34) 

NMSE = $(NMSE, + NMSE,), (35) 

where E[nt] and E[nt] are the variances of the n, and n,, components of the 
surface normals for the test surfaces. The NMSE measure provides an error measure 
similar to an inverse signal-to-noise ratio. Perfect reconstruction would result in an 
NMSE = 0, while a completely random reconstruction, with equivalent variances 
for the surface normals would result in an NMSE = 1. 

The third performance measure provides an estimate of the extent to which the 
estimated surface normals violate the integrability constraint. As the two vectors of 
surface normal components are estimated independently, no explicit steps are taken 
to ensure that they are consistent with the constraint that they represent the normal 
vector field of a real C* surface. We can express the integrability constraint using 
the relation 

(36) 



88 KNILL AND KERSTEN 

that is, the integral of the surface gradient calculated along a closed contour is zero. 
A discrete approximation of the contour integral in (36) is the basis for the third 
performance measure. The approximation of the integral, computed over a one pixel 
wide cell on a surface, with lower, left-hand comer, i, j is 

I,j =Pi, j + qj,j+l - Pi+l, j - qi,j* (37) 

If p and q were originally computed using local differences between neighboring 
points on the graph of a discrete two-dimensional function (i.e., a surface), this term 
will equal zero for all cells. The error measure, which we call the normalized mean 
squared integral error (NMSIE), is given by 

E [i’] 
NMSIE = 4E 1P1 . (38) 

Values of j? and $ used to calculate I are computed from the estimated surface 
normals, and E[b2] (or, equivalently, E[a]) is the orientation variance of the 
estimated surfaces. The scaling factor normalizes the error measure, so that random 
estimates, fiX and l$,, have an NMSIE of 1, and estimates which perfectly match the 
integrability constramt have an NMSIE of 0. 

We ran five sets of simulations to study different performance characteristics of 
the learned shape from shading estimators. The first set of simulations provides 
baseline performance data for a pair of filters applied to test images generated using 
the same set of surface and illuminant parameters as those used in the derivation of 
the filter. We look at the effect of filter size on performance in the second set of 
simulations. In the third set of simulations, we examine the performance of the 
filters on images of surfaces with different orientation variances than those used in 
the training set. In the fourth set of simulations we look at the performance of the 
filters on images generated with a range of illuminant slants. Finally, we apply the 
filters to non-fractal surfaces in the fifth set of simulations. 

Simulation 1. Table 1 lists the training set parameters for the first set of 
simulations. We generated a set of 800 29 x 29 pixel surfaces, with a fractal 
dimension of 2.15 and an orientation variance of 0.1. The light source had a tilt of 
45’ and a slant of 35” away from the viewer. These parameters effectively guaran- 
teed that no points on the surface would be in shadow. We associated the 
directional components of the surface normal at the center point on the surface with 
the image of the entire surface, generating a 2 x 841 association matrix. The rows of 

TABLE 1 
Parameters Used to Generate Surfaces and Their Images 

Surface parameters 
IIluminant 
parameters 

Training Fractal 
set dim. 
1 2.15 

Bandwidth 
(cycles/surface) 

O-24 

Orientation 
VtianCe 

0.1 

Tilt Slant 

45” 35” 
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FIG. 4. 29 x 29 pixel SFS filters generated in simulation 1: (a) F, filter; (b) Fv filter. 

this matrix are the convolution filters, F, and FY, which can be applied to larger 
images to estimate surface shape. These are shown in Fig. 4. Note that the filters 
appear qualitatively like second directional derivative filters, with a marked asym- 
metry in the direction of the light source. 

We applied the filters shown in Fig. 4 to images of 128 x 128 pixel surfaces 
generated with the parameters in Table 1 to estimate the surface normals at each 
point on the surface. Figure 5 shows an example of an estimated surface with the 
original surface from which the image was generated (see Appendix A for details of 
how the depths were derived from the estimated surface normal vectors). The cosine 
for this reconstruction was 0.81 and the normalized mean squared error was 0.17. As 
it is difficult to get a good feel for the performance of the model looking at the full 
3D plots, we also show plots of small subsections of the surfaces. The reconstruction 
looks qualitatively poor when the entire surface is plotted, as in (a) and (b) of Fig. 5, 
but looks much better when only a small subsection is shown, as in (c) and (d) of 
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FIG. 5. 3D plots of test surface and surface reconstructed by application of SFS filter to its image: (a) 
test surface; (b) reconstructed surface; (c) center 32 x 32 section of test surface; (d) center 32 X 32 
section of reconstructed surface. 

the same figure. Figure 6 shows 2D plots of randomly selected slices through the 
surfaces. Both Figs. 5 and 6 indicate that the most notable difference between the 
estimated and original surfaces is in the low frequency components of shape. The 
filters clearly discard low frequencies in their estimates. The SFS filters shown in 
Fig. 4 are bandpass; however, fractal surfaces have much greater power at low 
frequencies than at high. The high frequency attenuation of the filters may be 
primarily due to the small amount of high frequency content in the surfaces; 
however, the low frequency attenuation of the filters represents a real loss of 
information about surface shape. 

Application of these filters to 40 images of novel surfaces resulted in an average 
reconstruction cosine of 0.795 and an NMSE of 0.332. The NMSIE for the 
reconstructions was 0.025, indicating that the estimated surface normals do, in fact, 
match the integrability constraint as well. 
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d 

FIG. 5-Conrinued 

b 
FIG. 6. 2D slices through test (solid line) and reconstructed (dashed line) surfaces shown in Fig. 6 
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Filter Performance vs. Filter Size 
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FIG. 7. Plots of average cosine and NMSE performance measures for SFS filters as a function of filter 
size. 

Filter Performance vs. Orientation Variance 
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FIG. 8. Plots of average cosine and NMSE performance measures for 29 X 29 SFS filters as a 
function of test surface orientation variance. 
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Filter Performance vs. llluminant Slant 

f 
Optimal filter for 35 deg. slant 

- Cosine 
- NMSE 

Optimal filters for each slant 

93 

60 

llluminant Slant 

FIG. 9. Plots of cosine and NMSE performance measures for 29 X 29 SFS filters as a function of 
illuminant slant. Open triangles are the performance of optimal filters derived for each individual slant. 
Closed triangles are the performance of SFS filters originally derived for a slant of 35”. 

Simulation 2. The second set of simulations was designed to study the effect of 
filter size on the performance of the estimator. We derived filters of four different 
sizes using training sets with the parameters listed in Table 1. The four sizes used 
were 7 x 7 pixels, 11 x 11 pixels, 15 X 15 pixels, and the original 29 X 29 pixels. 
Figure 7 shows plots of the average cosine and NMSE measures for these filters 
tested on 40 images of novel surfaces. Asymptotic performance is reached near the 
29 X 29 pixel size originally used. 

Simulation 3. We applied the SFS filters derived in the first simulation to images 
of surfaces with a range of orientation variances. The parameters used to generate 
the test surfaces were the same as those used in Simulation 1, with the exception 
that the orientation variance of the surfaces ranged from 0.06 to 0.11. The results of 
applying the filters to images of the test surfaces are shown in Fig. 8. Neither the 
average cosine nor the NMSE for the reconstructions changes significantly between 
orientation variances. As shown by the performance measures in Fig. 9, the filters 
generalize well to a range of orientation variances. 

Simulution 4. It is not clear from the formulation of the problem that a set of 
filters derived for one illuminant slant will generalize to work well on images with 
other slants. We derived different pairs of filters using each of five different 
illuminant slants. These represent optimal estimators for each slant. To study the 
generalizability of the estimator over different illuminant slants, we applied the 
original pair of filters to images generated with each of the six slants and compared 
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its performance with that of the optimal estimators for each slant. Note that we 
tested the filters for slants above and below that used to generate the images on 
which they were initially trained. Figure 9 shows the results. The performance of the 
pair of filters derived for one slant (35’) does not differ significantly from the 
performance of the optimal pair of filters derived for each individual slant. This 
indicates near perfect generalization, in the sense that a pair of filters derived for 
one slant work as well as possible for other slants, given the constraint that the 
filters be linear. 

Performance does improve with increasing illuminant slant. For a 0” slant, the 
images are completely ambiguous, as two equally likely surfaces could give rise to 
the same image, one with opposite curvatures from the other. Learning an estimator 
for this condition by random sampling of surface is, therefore, impossible. As the 
light source moves away from the line of sight, the images become less ambiguous, 
giving an improvement in performance. 

b 

9 
(0 
m 

FIG. 10. 3D plots of field of spheres surfaces and surface reconstructed by application of SFS filters 
to the surface’s image: (a) test surface; (b) reconstructed surface. 
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FIG. 11. 3D plots of test grating surface and surface reconstructed by application of SFS filters to the 
surface’s image: (a) test surface; (b) reconstructed surface. 

Simulation 5. We applied the SFS filters to images of non-fractal surfaces with 
generally good results. In one simulation we applied the filters to an image of 
spheres embedded in a plane, as shown in Fig. 10a. Such a surface has a simpler 
shape than the fractal test surfaces used in the previous simulations. It is also sharp 
edges around the boarders of the spheres. Only the top two-thirds of the hemi- 
spheres of each sphere appear above the plane. This greatly reduces the amount of 
shadow in the image. Figure lob shows a reconstruction of the surface using the 
SFS filters. The reconstructed surface is a good approximation to the original with 
the discontinuities smoothed out. The notable fault in the reconstruction is a small 
asymmetry in the direction of the illuminant. A similar asymmetry results from 
application of a non-linear iterative algorithm without boundary conditions [27]. 
Another example of a simple surface with sharp edges is shown in Fig. lla. This 
surface has the further feature that it is highly anisotropic, being an oriented 
grating. Application of the SFS filters to an image of this surface resulted in the 
reconstructed surface shown in Fig. llb. This is a near perfect reconstruction, with 
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the only difference between the two surfaces being that the sharp edges in the 
original surface have been smoothed out in the reconstruction. 

8. DISCUSSION 

The derived SFS filters provide a fairly accurate estimate of surface shape from 
shading. Through the problem is non-linear, application of linear filters seem 
sufficient to estimate local surface orientation for a broadly defined ensemble of 
surfaces. Furthermore, filters derived using a training set of sample fractal surfaces 
generalize to at least some nonfractal surfaces. A practical system could be built 
using arrays of SFS filters at different orientations. The output of those filters 
aligned with the illuminant tilt would provide the estimate of local surface orienta- 
tion. 

One way to see how well the performance of the SFS filters matches that of 
humans is to generate images of the reconstructed surfaces and compare their 
perceptual appearance with that of the test images. Figure 12 shows a test image 
and the image of the surface reconstructed from that image. Note the similarity in 
our perception of the shapes of the two surfaces. This does not result from an 
equality between the luminance patterns in the two images, as they are, in fact, 
different, but rather a similarity in the perceptually derived shapes of the two 
surfaces. Referring back to the observation that the SFS filters discard low fre- 
quency shape information, this would indicate that we have the same perceptual 
deficit. An intriguing conclusion is that there exist sets of surface metamers, the 
images of which lead to the same perceptual estimate of shape. 

This work has some similarity to a model recently developed by Pentland [23]. 
Pentland approximated the Lambertian shading equation as a linear function of the 
first derivatives of surface depth and derived a linear estimation of surface depth 
from shading, without making recourse to prior constraints on the shapes of 
surfaces.6 Though Pentland’s model uses a different shape representation that that 
used here (depth vs. surface normals), his analysis sheds some light on our results. 
Pentland used a Taylor series expansion of the shading equation in p and q to show 
that linear terms dominate the function for points at which Ip 1, ] q[ -K 1 and the 
illuminant is oblique to the viewer; that is, the illuminant slant is much greater than 
0. Relating these constraints to the shading equation in (6) expressed as a function 
of n, and ny, we see that the effect of the non-linear term is a monotonic increasing 
function of In,], In,], and i,. Thus the linear terms of the equation, expressed as a 
function of n, and ny, dominant when IpI, 141 -=c 1 and the illuminant slant is 
large. In the simulations presented here, the orientation variance was small, so that a 
great majority of the values of Ip ] and (ql were less than 1. Furthermore, the 
performance of the SFS filters improves with increasing illuminant slant. These 
results indicate that the accuracy of the estimator may, to some extent, be a function 
of the applicability of a linear reflectance model. 

One other attempt has been made recently to solve the shape from shading 
problem using an associative learning algorithm. Lehky and Sejnowksi [8] used the 
back-propagation algorithm [29] to train a multilayered neural network to estimate 
the orientation and direction of the principle curvatures of points on an elliptic 

6By estimating surface depth instead of surface orientation, the model does, however, implicitly 
enforce the integrability constraint. 
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parabaloid. They trained the network to solve this problem independently of 
illuminant direction. The model generalizes to different parameters of the para- 
baloid surfaces and to different illuminant slants. Unfortunately, a quantitative 
comparison between the two models is made impossible by the difference in shape 
representations used. Lehky and Sejnowski use a distributed representation of 
principal curvature magnitude and direction, which is, in fact, degenerate (curvature 
magnitude is ambiguously represented). Though they report good results, their 
model has a limited domain of applicability, as it generalizes over only a small 
subclass of simple geometrical objects. 

The results of Lehky and Sejnowski seem to suggest extending the learning 
procedure used in this paper to the learning of non-linear mappings between images 
and surface shape representations. Though the performance of a non-linear estima- 
tor would probably be somewhat better than that reported here for the linear model, 
it would not be qualitatively very different, as the linear model performs quite well 
for smooth surfaces. In related work on learning an estimator of surface reflectance, 
Hurlbert and Poggio [7] found only slight improvements of a linear model for both 
polynominal mappings and mappings through multiple layers of units with sig- 
moidal non-linearities (i.e., using back-propagation). Moreover, the principal weak- 
ness of the linear estimator is found not in its reconstruction of smooth surfaces, but 
in its treatment of surface discontinuities. It smooths over discontinuities and is not 
able to make use of shape information available at self-occluding contours. Cur- 
rently existing non-linear algorithms share this weakness, in that they do not 
provide any explicit mechanisms for handling such discontinuities. Several re- 
searchers have recently developed techniques for finding discontinuities and incor- 
porating them in surface reconstruction [31,17,14,30]. Extension of learning models 
to incorporate these techniques is a necessary next step in the application of these 
models to problems in vision such as shape from shading. 

9. SUMMARY 

We have shown that the application of simple associative learning can be used to 
derive an accurate linear estimator of surface shape from shading. If the example 
surfaces used in learning the estimator are drawn from a prior statistical model of 
natural surfaces and the training images are generated using a well-defined imaging 
function, the estimator can be interpreted as being the best linear estimate of the 
mean of a posterior probability distribution, p(SIL). Similar techniques may be 
applied to solving other problems in vision if appropriate prior models and imaging 
functions can be specified. 

APPENDIX 

The first step in reconstructing a surface from an estimate of the normal vector 
field of the surface is to convert the representation of the normal vector field to one 
of the gradient vector field; that is, the set of vectors (pi, j, qi, j)T. The simplest 
method of integrating the resultant gradient vectors is to tirst reconstruct a bound- 
ary of the surface and then integrate along perpendicular lines to this boundary 
using the appropriate element of the gradient vectors. Elements along the bottom 
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edge of a surface could be reconstructed using 

Z - 0, 0.0 - 

J-1 

‘0. J = ‘o,o + c PO,,, j > 0. 
I=0 

The rest of the surface would be reconstructed using 

i-l 

zi, j = zo ,j + c qk,jT i > 0. 
k=O 

(39) 

(40) 

(41) 

When the gradient vectors are not exactly integrable this technique leads to a 
propagation of the errors in the direction in which the integration is done (in the 
case above, from the lower left corner to the upper right corner of a surface). The 
resulting surface will match the estimates of p exactly but will show an increasing 
error in q as one moves away from the lower left-hand corner. 

We employ a modified version of this algorithm which seems to work quite well 
for the estimates obtained from the shape from shading estimator. The algorithm 
estimates the depth at surface points by averaging the results of integration in 
opposite directions around one pixel cell on the surface. The algorithm steps 
through the surface from left to right and from top to bottom, so that previously 
calculated depth values provided initial conditions for succeeding steps in the 
procedure. Depth values along the bottom and left edges of the surface are 
computed using 

Z - 0, 0,o - (42) 
j-l 

Z 0, j = '0.0 + c Po,r, j>O (43) 
I=0 
i-l 

zi.0 = zo 0 , + c qk,O, i>O (44 
k=O 

Depth values at interior points on the surface are computed using 

Z ,. , = :b-l,, + qj&l,j + zi, j-l + Pi, j-l)? i > 0, j > 0. (45) 

where depth values are computed moving from i = 1 to N and j = 1 to N. For 
each depth value computed, this procedure minimizes the error between the surface 
and the estimated gradient, given the previously estimated depth values. The 
procedure does not ensure that the global error is minimized; however, the quality 
of the reconstructions and the small integrability error shown in the first set of 
simulations indicates that such a simple algorithm is sufficient for our needs. More 
complex algorithms which do minimize the error between a reconstructed and a 
noisy gradient field are given in [13, 271. 
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