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Abstract

This work investigated how humans integrate visual information
with object knowledge for interception behavior. When attempting
to intercept a moving object using only monocular visual informa-
tion, the optimal interception position may be ambiguous–the ob-
server may be viewing a small object that is near or a large object
that is far away. Regardless, humans are quite adept at monocular
interception so it is likely that additional information is incorpo-
rated to disambiguate the visual information. We hypothesize that
object size information is integrated to accomplish this disambigua-
tion. This sort of auxiliary information integration is well-defined
by a Bayesian model of information propagation. We derived a
Bayesian model that represents scene attributes relevant to inter-
cepting an object and relations among these attributes. Our model
combines sensory measurements with prior scene knowledge to in-
fer an object’s position. To test our model we asked participants to
intercept a moving ball in virtual reality. In some trials participants
were able to see and touch the ball before intercepting it, in others
they were only able to see it. When allowed to touch the ball, par-
ticipants showed improved interception performance. Effectively,
they discounted the variation in image size that was caused by vari-
ation in object size to obtain more accurate knowledge of object
distance. This discounting is consistent with Bayesian information
propagation and confirms our hypothesis that human participants
use Bayesian inference to estimate an object’s distance for inter-
ception.

CR Categories: I.2.10 [Artificial Intelligence]: Vision and
Scene Understanding—Modeling and recovery of physical at-
tributes; I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism—Virtual Reality; J.4 [Social and Behavioral
Sciences]—Psychology; I.4.8 [Image Processing and Computer Vi-
sion]: Scene Analysis—Sensor Fusion;

Keywords: interception, perceptual inference, Bayes, virtual real-
ity

1 Introduction

1.1 Perception for interceptive behavior

Intercepting a moving object requires accurate perceptual decision-
making and precise motor control. The observer must determine the
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time and position at which the object will reach him, and coordinate
a movement to that position at that time. Timing an interception is
a well-studied behavior; several authors have reported that infor-
mation contained in the visual display of an object is sufficient to
determine an appropriate interception time [Lee and Reddish 1981;
Lee and Young 1985; Peper et al. 1994; Caljouw et al. 2004].

Selecting an interception position can be quite difficult because
the available image data is less reliable, or even ambiguous un-
der monocular viewing. A simple example is the ambiguity that
occurs when relying on an object’s image size to make a distance
judgment. The object may be small and close to the observer, or
large and far from the observer, yet project to the same image size
in both situations. Despite this adversity, monocular interception is
still quite accurate [Servos and Goodale 1998].

An observer needs information about the object’s size to disam-
biguate the distance indicated by image size. Unfortunately, object
size information is not directly measurable as the object approaches
in the moments before an interception. But by gathering object size
information from previous experience with the object, an observer
may incorporate that experience with the measured image size to
arrive at an unambiguous prediction of object distance. A Bayesian
model for inferring object distance provides a principled framework
for this information combination problem. The purpose of this pa-
per is to formulate the problem of using object size information for
interceptive behavior as a process of Bayesian inference and test
our model’s predictions by comparing them to actual human inter-
ceptive performance.

1.2 Bayesian modeling of perception

Perception is a process of probabilistic inference of scene properties
from sensory data. In the Bayesian approach to modeling percep-
tion, scene attributes are treated as random variables; knowledge
about these attributes is represented as probability distributions over
the possible values [Kersten et al. 2004; Knill and Richards 1996].
Dependencies among scene attributes are represented as conditional
probability distributions. The observer’s cumulative knowledge
about the scene can be represented as a joint probability distribu-
tion over all of the scene attributes that can be factored according
to the conditional dependencies.

There is growing evidence that biological perception is a process
of Bayesian inference [Knill 1998; Ernst and Banks 2002; Weiss
et al. 2002; Mamassian and Landy 2001; Körding and Wolpert
2004; Battaglia et al. 2003]. In many of these studies, human
participants achieved near-optimal performance given the informa-
tion they were provided. This supports the theory that for some
scenes, the brain has well-defined representations of the relation-
ships among the scene’s attributes and is able to integrate sensory
measurements with prior knowledge to make estimates of a desired
scene property.

Sensory measurements, prior knowledge, and the dependencies
among scene attributes are the fundamental components of a
Bayesian model. Appendix A provides some details of their roles
and a simple example. For a more complete discussion of percep-
tion as Bayesian inference consult Kersten et al. [2004].



2 Theory and experiment

2.1 Experimental task

We measured human performance on intercepting a moving ball to
test our model’s predictions. In our experiment we asked partici-
pants to intercept a ball moving in virtual reality that they viewed
monocularly. We constrained their hand to move on a fixed line
that intersected their viewpoint. Because of this constraining line,
the only component of the interception position that was under the
participant’s control was the interception distance. The ball moved
through the scene and crossed this line at some position (called the
crossing distance) within the participant’s reach. For a single inter-
ception, we recorded a participant’s interception distance as their
judgment of ball distance.

As mentioned in the Introduction (section 1.1), monocular visual
information for estimating the optimal interception distance is am-
biguous. For a particular image size, if the ball is small then it must
be near, and will require a near interception distance. If the ball is
large then it must be far, and will require a far interception distance.

For a Bayesian observer, auxiliary ball size information helps dis-
ambiguate the distance indicated by image size. Therefore, we
tested the impact that auxiliary information of the ball’s size had on
human interception performance. Before some interceptions, we
allowed our participants to touch the ball (haptic condition). For
other interceptions participants were not allowed to touch the ball
and had to rely on their prior knowledge of ball sizes (no-haptic
condition).

Figures 1 and 2 show diagrams of the experimental scene. The
letters denote relevant scene attributes for interception. The par-
ticipant needs to estimate the crossing distance,R, to successfully
intercept the ball.θ indicates the ball’s image size andS indicates
the ball’s actual size (diameter).

2.2 Bayes’ net

Bayesian influence is elegantly represented by a class of graphi-
cal models called a “Bayes’ network” [Pearl 1988]. It is possible
to model perceptual inference of desired scene attributes in Bayes’
nets [Schrater and Kersten 1999; Schrater and Kersten 2000]. One
advantage of this representation is that it is easy to visualize the
relations among scene attributes. Another advantage is that sub-
groups of random variables may be easily identified as instances of
“cue combination” or “perceptual explaining away” [Kersten et al.
2004]. Recognizing a familiar subgroup may lend insight into what
brain mechanisms are responsible for a particular component of the
perceptual inference process.

A Bayes’ net that represents the scene attributes and their condi-
tional dependencies for our interception task is show in Figure 3.
This Bayesian model uses monocular visual information (θ̂ ) and
haptic information (̂S) to compute a posterior probability distribu-
tion over crossing distances,p

(
R | θ̂ , Ŝ

)
.

We assumed observers had no prior assumptions about the cartesian
coordinates of the crossing distance,X andZ. This is equivalent
to assuming a uniform probability distribution on possible values
of X andZ. Consequently no information fromψ can propagate
through theX andZ nodes to influenceR, renderingψ andR inde-
pendent. This meant that the remaining relevant scene attributes for
the Bayesian observer trying to intercept the ball were: the crossing
distanceR, image sizeθ , image size measurementθ̂ , ball sizeS,
and ball size measurementŜ.

Appendix B gives the derivation ofp
(
R | θ̂ , Ŝ

)
. This derivation

does not need to be understood to continue to the model predictions,
but an interested reader may find it instructive. The important point
of the derivation is that an observer can compute the posterior prob-
ability by combining sensory measurements with prior knowledge
according to known conditional probability distributions.

2.3 Predictions

2.3.1 Bayesian observer crossing distance estimation

The Bayesian observer computed an optimal interception distance.
The optimal interception distance was defined as the crossing dis-
tance with the highest posterior probability given the image data
and prior knowledge (called “maximum a posteriori” estimation).
The optimal interception distance reflects any relevant scene knowl-
edge, including a haptic ball size measurement if it is available.

According to our Bayesian model (Figure 3), image size depends on
the ball’s size and crossing distance. When image size is the only
measurement available to the observer (no-haptic condition), the
ball’s crossing distance must be inferred using the image size mea-
surement and an assumption of ball size drawn from prior knowl-
edge. In our experiment the actual ball size was randomly selected
from a finite uniform distribution so the participant’s assumption of
ball size was not necessarily accurate. If the actual ball was smaller
than the assumed ball size, the observer would judge it to be far-
ther away than it actually is. If the actual ball was larger than the
assumed ball size, the observer would judge it to be nearer than it
actually is. These systematic misjudgments will appear as biases in
judged distances according to Bayesian inference.

When participants have a measurement of the ball size (haptic con-
dition), that measurement may combine with the prior ball size
knowledge and create an assumption about the ball’s size that is
generally more accurate than in the no-haptic condition. When at-
tempting to disambiguate the crossing distance as indicated by im-
age size, the more accurate ball size information of the haptic ob-
server will result in more accurate predicted crossing distance esti-
mates. The first prediction of a Bayesian observer is thatauxiliary
size information will improve interception performance.

The way auxiliary ball size information improves the crossing dis-
tance estimates is it allows the observer to discount the effect of ball
size on image size. Since the image size naturally reflects the ball’s
distance and the ball’s size, an observer who is able to “explain
away” the effect of ball size on image size will have a better esti-
mate of the ball’s distance. In this way the more accurate ball size
knowledge of the haptic observer will tend to eliminate the small
and large ball biases discussed above. The second prediction of a
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Figure 1: OBSERVER AND BALL DIAGRAM : The relationship be-
tween object size,S, radial distance between the object and the ob-
server,R, and image size (expressed as visual angle),θ .
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Figure 2: OBSERVER AND BALL TRAJECTORY DIAGRAM: The
relationship between the observer, the ball’s cartesian coordinates
(X,Z), and the ball’s polar coordinates(R,ψ) as it moves in the
X-Z plane.

Bayesian observer is thatthe improvement in interception perfor-
mance derives from discounting the ball size’s influence on image
size.

2.3.2 Information propagation

Figure 3 depicts inference in the no-haptic and haptic cases. Three
example experiment trials are demonstrated in which three balls
with different sizes are presented at different distances. The dis-
tances are selected so thatθ for each ball is the same. The boxes
contain no-haptic and haptic observers’ probability distributions
over scene attributes for the different trials. Figure 3(A.) shows
three different measurements ofS indicated by lines at three differ-
ent size values for the haptic case. In the no-haptic case there are no
Ŝs. In Figure 3(B.) the red curve isp(S) and is all the information
a no-haptic observer has aboutS. The blue curves are the proba-
bilities onS for the balls in the haptic condition, inferred from̂Ss.
Figure 3(C.)’s green curve is the probability ofθ inferred fromθ̂ .
As mentionedθ is the same for all three balls hence there is one
green curve for all three balls.

In order to perform an interception, theR must be inferred. When
the no-haptic observer computes the posterior probability ofR for
each of the three balls, the red solid line distribution from 3(A.)
combines with the green solid line distribution from 3(C.) to form
the red solid line distribution in Figure 3(D.). The red curve in 3(D.)
represents the posterior probability of crossing distance,p

(
R | θ̂

)
,

for the no-haptic observer. Becauseθ is the same for all three balls,
and the no-haptic observer relies on the samep(S), his p

(
R | θ̂

)
distributions are the same for the three different balls. The blue
dotted curves in 3(D.) are the haptic observer’sp

(
R | θ̂ , Ŝ

)
distri-

butions. The haptic observer combines the blue dotted line distri-
butions from 3(A.) with the green solid line distribution from 3(C.)
to form the blue dotted line distributions in Figure 3(D.).

Since the no-haptic observer’s assumption of ball size must be the
same for each ball, the differences among ball sizes do not affect
the posterior distribution onR. For the haptic observer the different
ball sizes cause different posterior probabilities onR. In actuality,
for different sized balls to form the same image size, they must be
at different distances, so the haptic observer’s information is more
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Figure 3: INFORMATION FLOW THROUGH BAYES’ NET IN NO-
HAPTIC AND HAPTIC CONDITIONS: The nodes correspond to
scene attributes identified in Figures 1 and 2 as well as measure-
ments of those attributes (S*, θ*, ψ*) In the text the measurements
are denoted̂S, θ̂ , andψ̂, respectively. The black dotted lines in-
dicate direct ball size information that is available to participants
only in the haptic condition. The purple arrows represent informa-
tion flow among the nodes through Bayesian inference.

accurate.

3 Methods

3.1 Stimuli

Experiments were conducted in a custom visual haptic workbench
that provides calibrated visual and haptic information about objects
in a virtual scene (Figure 4). Participants viewed the virtual scenes,
head-fixed (using a headrest) and monocularly (eye-patch on left
eye), displayed on a 21” CRT (pixel resolution of 1600 x 1200, 85
Hz). The display was positioned above and at a 90 deg angle from
the participant’s main direction of gaze and was viewed through a
mirror to create a virtual image of the scene in front of the partici-
pant. Below the mirror was a reachable space in which participants
held a PHANToM force-feedback stylus (Sensable Technologies)
that tracked their hand position throughout the experiment. The
PHANToM was also used to generate force feedback to simulate
stylus-object contact when objects were touchable (haptic condi-
tion only), and to generate contact feedback during the interception
task. A common coordinate frame was established for this virtual
space that put the origin at the participant’s right eye, the x and y
axes lined up with the imaging plane, and gaze direction was along
the -z axis.

Participants seated at this virtual workspace were able to see and
feel several objects in the virtual scene. All seen and felt objects
were spatially coincident with each other and visual rendering em-
ployed accurate perspective projection. The virtual workspace was
designed to provide participants with a realistic 3D visuo-haptic ex-
perience.

Figure 5 shows a screenshot of the virtual workspace. The visual
stimuli included a 3mm virtual sphere that spatially coincides with



the participant’s actual hand position in the virtual workspace. The
bottom of the virtual workspace was a visible and touchable ground
plane with a checkerboard visual texture. The hand sphere and
ground plane were always present throughout every trial.

Figure 4: PARTICIPANT SEATED AT WORKSPACE: A partici-
pant performing the experiment. He views a mirror that reflects
the display’s image into his eyes. Below the mirror he holds a
force-feedback stylus that provides a haptic interface to the virtual
workspace. All visual and haptic stimuli are spatially coincident
and rendered accurately.

Figure 5: V IRTUAL WORKSPACE: This is a screenshot of the vir-
tual workspace that the participants experienced. The small blue
sphere represents the participant’s hand position. The larger ball is
the visual and haptic target. The ground plane is the checkerboard
surface along the bottom of the scene.

The object that the participants interacted with was a virtual ball
whose diameter was randomly selected from between 1.4 and 4.2
cm. Each ball had a random texture mapped onto it that did not
contain any cues to distance. In some trials, participants were al-
lowed to touch the ball and the visual and haptic stimuli accurately
reflected the ball’s geometry.

3.2 Task

The participant’s task was to intercept a moving ball as it crossed
an invisible line through the origin, +15 deg (positive angles were

rightward) from the z-axis in the x-z plane (theconstraining line).
The interception involved moving the stylus to the position along
the line where the ball was predicted to cross. To simplify the task,
the stylus was constrained to stay on the line by applying a cylin-
drical force field directed toward the line whose magnitude was de-
termined by the stylus end-point’s perpendicular distance from the
line. Preceding the interception phase was an exploration phase that
provided visual and haptic feedback about the ball’s size for half the
trials. Participants were instructed to use the exploration phase to
observe the ball so that they could best perform a subsequent inter-
ception of it.

3.3 Trials

3.3.1 Exploration phase

Each trial began with one of two types of exploration phases: hap-
tic and no-haptic. Each block contained an equal number of ran-
domly interleaved haptic and no-haptic trials. During the explo-
ration phase, the ball was always located in the x-z plane and re-
mained stationary. In the haptic exploration condition, participants
were able to see and feel a virtual ball for as long as they wanted.
Before they were allowed to continue to the interception phase of
the trial, they had to touch the ball at least once. In the no-haptic
exploration condition, the participants’ hands were constrained to
move along the constraining line used in the interception phase.
Participants were allowed to view the ball for a minimum of one
second and no maximum time. The ball’s distance was randomly
selected from between 30 and 64 cm. The ball’s eccentricity was
randomly selected from between -8.5 and 8.5 degrees, where 0 de-
grees is in front of the participant along his line of sight.

3.3.2 Interception phase

Once the participant was satisfied with the exploration, he de-
pressed the mouse button to begin the interception phase of the trial.
Regardless of whether a trial’s exploration phase was haptic or no-
haptic, the interception phases were the same. Figure 6 shows a
diagram of the interception phase. The ball was always located in
the x-z plane during the interception phase. Once the mouse button
was depressed, the stylus was constrained to move along the con-
straining line described above. At the same time, the ball rapidly
travelled to a random starting position in the left side of the virtual
workspace and remained stationary once it arrived. The ball’s start-
ing position was determined in polar coordinates: the distance from
the eye was randomly selected from a uniform distribution between
100 and 150 cm; while the ball’s starting angle (the visual eccen-
tricity) from the z axis was uniformly selected from between -17
and -5 degrees. Once the participant was ready to begin the ac-
tual interception, he depressed the mouse button and the ball began
to move toward the constraining line. The ball’s velocity was ran-
domly selected from between 25 and 37.5 cm/s. In each trial the
ball crossed the constraining line within the participant’s reach and
continued off the screen. The crossing distance on the line was ran-
domly selected from between 34 and 60 cm. The ball’s total travel
time was between 1.3 and 4.8 seconds.

The participant’s task was to position the stylus tip at the point that
the ball was predicted to cross the constraining line. As the ball
crossed the constraining line, the participant received visual and
haptic feedback on the accuracy of the interception. If the sty-
lus tip was positioned within 3.2 cm of the ball’s center the mo-
ment it crossed the constraining line, a virtual collision was felt (a
small force pulse was applied to the stylus the participant held) and
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Figure 6: INTERCEPTION PHASE DIAGRAM: The ball starts on
the left side of the virtual workspace and moves toward the partici-
pant’s hand that is located on the constraining line. The participant
attempts to intercept the ball as it crosses the constraining line.

the hand position sphere briefly turned green. Otherwise, no force-
feedback was generated and the hand sphere briefly turned red. The
stylus position at the time the ball crossed the constraining line was
recorded and the distance of that position from the participant is
referred to as the “judged distance” in the Results (section 4).

3.4 Participants

Six university students, ages 21 to 30, participated in this study.
One participant’s data was excluded due to his inability to perform
the task above chance levels, so that five participants’ data were
analyzed and presented. All had normal or corrected-to-normal vi-
sion. Four participants were naı̈ve to the purpose of the experiment,
one was an author. All participants gave informed consent in accor-
dance with the University of Minnesota’s IRB standards.

3.5 Data analysis

Each participant performed four blocks of 80 trials on each of four
days for a total of 1280 trials. Each participant performed 1280 in-
terception trials divided evenly among four days. The first day of
trials was not included in the analysis; those 320 trials were consid-
ered to be practice so that the participants could become acquainted
with the experimental task.

Two different 2D regression analyses were performed on each par-
ticipant’s data. Figure 7 shows the scatterplots for a typical par-
ticipant’s interception behavior. Each point represents a single
trial’s interception. The x-axis shows the actual distance that the
ball crossed the constraining line (crossing distance) and the y-axis
shows the participant’s judged distance. In the first 2D regression,
the linear dependence between the crossing and judged distances
was measured. In the second 2D regression, the linear dependence
between the image size and judged distance was measured. Con-
fidence intervals around all regression parameters and significance
tests were computed using a bootstrap procedure that iterated 1000
times. The specific results from the different regressions are pre-
sented below.
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Figure 7: INTERCEPTIONS SCATTERPLOT(PARTICIPANT 3):
These scatterplots show a typical participant’s interception behav-
ior. Each dot represents a single trial’s data point. The x-axis shows
the actual distance that the ball crossed the constraining line (cross-
ing distance). The y-axis shows the judged distance where the par-
ticipant thought the ball would cross. The black diagonal line shows
the line that indicates perfect interceptions. Within the flanking dot-
ted lines is the range in which participants received positive feed-
back for their interception attempt. The colored line is the regres-
sion line for the data.

4 Results

4.1 Does auxiliary ball size information improve in-
terception performance?

From the 2D regression analysis on actual and judged distances,r2

is the proportion of variance in individual judged distances that is
accounted for by the linear coefficient of crossing distance. The
greater the value ofr2, the less the data is scattered from the best-fit
line. Figure 8 shows ther2 values for each participant. Decreased
data scatter around the regression line indicates more consistent in-
terception performance, and generally more accurate interceptions.
Thus r2 was used as a measure of participant interception perfor-
mance; significant differences between haptic and no-haptic con-
dition r2-values indicated significant improvements in interception
performances. Participants 1-4 all had significantly less variance
in interception performance in the haptic condition over the no-
haptic condition (p < .001 for participants 1, 3, 4;p < .003 for
participant 2). Participant 5 showed insignificantly less variance in
interception performance in the haptic condition over the no-haptic
condition. Her failure to significantly improve her performance was
interpreted as a ceiling effect; her performance in the no-haptic con-
dition was so high that motor noise or other limits on performance
may have contributed to her inability to improve her performance
above that high level in the haptic condition.

For four of five participants, providing auxiliary haptic information
about the ball’s size significantly improved their interception per-
formance. A Bayesian view of perceptual inference predicts that
auxiliary ball size information cooperates with other information
to improve crossing distance estimates. These results qualitatively
support the assertion that the brain is able to exploit its knowledge
of the relationship between ball size and crossing distance when
generating interception behaviors.
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Figure 8: INTERCEPTION ACCURACY AS MEASURED BYr2: The
bars in the graph representr2-values. The red bars depict accu-
racy for the no-haptic condition, the blue bars depict accuracy for
the haptic condition. Participants 1-4 show significantly improved
performance in the haptic condition over the no-haptic condition.

4.2 Does the improvement in interception perfor-
mance derive from discounting the ball size’s
influence on image size?

In the no-haptic condition participants had no auxiliary ball size
information. In this condition we expected they would rely on a
general prototype ball size, perhaps represented as a prior probabil-
ity distribution over a range of possible ball sizes. Like the example
above with a small, near ball and a large, far ball, distance ambigu-
ity existed in the no-haptic condition because ball sizes on different
trials varied between 1.4cm and 4.2cm. If the observer assumed a
common ball size for all trials (somewhere in between the small-
est and largest ball sizes for instance), the smaller balls would be
judged further than they actually were and the large balls would be
judged nearer than they actually were. Figure 9 shows the same
scatterplot as Figure 7 but with each trial point’s color indicative of
the ball size used in that trial. Trials were assigned to one of three
bins according to the trial’s ball size with equal numbers of balls
in each bin (because ball sizes were uniformly distributed over a fi-
nite range, each bin roughly corresponds to ball size ranges with the
same width). Best-fit lines for each different bin of trials are also
shown. The no-haptic condition’s best-fit lines are more separated
than the haptic condition’s best-fit lines. This means in the haptic
condition participants’ judged distances did not systematically de-
pend on ball size as much as in the no-haptic condition. The effect
supports a prediction of the Bayesian inference model: participants
should discount the effect that ball size has on image size and make
judgments that are less dependent on the ball size component of
image size variation.

To quantify the above effect, a 2D regression analysis on image
sizes and judged distances was performed. The linear coefficient
on the image size term reflects its correlation with judged distance.
According to the above logic, across no-haptic trials with the same
image size, participants should judge the crossing distance to be
the same regardless of variations in ball size. When the image size
varied in the no-haptic condition, participants’ distance judgments
should be inversely proportional to image size.

In the haptic condition, participants had access to auxiliary ball
size information. In this condition we expect ball size information
should cooperate with image size to influence distance judgments.
Specifically, for trials with the same ball size, if the image size
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Figure 9: INTERCEPTIONS SCATTERPLOT BY BALL SIZE(PAR-
TICIPANT 3): This figure is the same as Figure 7 but with each
trial’s ball size indicated by one of three colors. Red dots repre-
sented small balls, green dots represented medium sized balls, and
blue dots represented large balls. The colored lines are regression
lines for each size of ball. In the haptic condition those regression
lines were nearer to each other.
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Figure 10: RATIO OF θ COEFFICIENTS FOR NO-HAPTIC OVER
HAPTIC CONDITION: The bars represent the ratio of the no-haptic
linear coefficient of image size and judged distance over the haptic
coefficient for each participant.

varies, the participants’ distance judgments should vary inversely.
Likewise, for trials with the same image size, if the ball size varies,
the participants’ distance judgments should vary directly. So we
expect that in the haptic condition, the linear coefficient of image
size should be non-zero to reflect the variance with judged distance.
But, the linear coefficient of image size should be less than in the
no-haptic condition because the judged distances share dependence
on ball size and image size.

We compared the linear coefficient of image size between the no-
haptic and haptic conditions by computing their ratio. A ratio of one
implies there was no distinction in image size dependence between
no-haptic and haptic conditions, a ratio significantly greater than
one shows that when auxiliary ball size information was provided to
participants, their judged distances discounted the effect of ball size
on image size and depended less strongly on image size. Figure 10
illustrates these ratios for each participant. All participants showed
ratios significantly higher than one (p < .001).



5 Conclusion

5.1 Interpretation of results

To summarize the results, when haptic information about a ball’s
size was provided to five participants, four were significantly bet-
ter at intercepting the ball when it moved through the scene. The
participant who did not display this trend appeared to suffer from
ceiling effects because her performance was so high even in the
no-haptic condition, she had no room to improve in the haptic con-
dition. This result is consistent with the hypothesis that the brain
integrates auxiliary ball size information to improve distance judg-
ments for interception behavior.

To determine how the auxiliary ball size information improved dis-
tance judgments, we contrasted how participants treated image size
information between the no-haptic and haptic conditions. In the
no-haptic condition, participants’ distance judgments were signif-
icantly more linearly related to image size than in the haptic con-
dition. In the haptic condition, participants interpreted the image
size in the context of the size of the ball to discount the effect of
ball size on image size. This allowed participants to make distance
judgments that reflected the ball’s crossing distance unbiased by the
size of the ball that was being intercepted in the haptic condition.
This is consistent with a model of perceptual inference in which
auxiliary measurements are used to “explain away” invalid inter-
pretations of a scene and reduce possible perceptual decisions to
the remaining valid interpretations [Knill and Kersten 1991; Bloj
et al. 1999].

5.2 Impact and implications

This study contributes to a growing corpus of evidence support-
ing the view that the human brain uses probabilistic inference to
make perceptual decisions [Kersten et al. 2004; Knill 1998; Ernst
and Banks 2002; Weiss et al. 2002; Mamassian and Landy 2001;
Körding and Wolpert 2004; Battaglia et al. 2003]. It is clear that
biological perceptual systems use prior knowledge in addition to
sensory measurements during perception. Still many details of
Bayesian models for perception remain to be experimentally tested.

For instance, when a Bayesian observer infers a posterior probabil-
ity distribution, the posterior reflects the quality of the information
that was combined to compute it. An open question is whether the
brain measures the quality of the information it collects so as to
perform optimal inference. For example, in the interception task
presented in this study, if the auxiliary ball size information were
diminished in quality, a Bayesian observer would rely more on the
prior knowledge of ball size and less on the haptic measurement
of ball size when computing the probability of crossing distance.
Experimentally human participants could be tested for this predic-
tion by presenting “squishy” balls during haptic exploration whose
precise size is difficult to determine. Presumably this diminished
ball size information would be less effective in “explaining away”
variation in image size, and reduce the difference in interception
performance between the haptic and no-haptic conditions.

In general, Bayesian models of scene attributes are a powerful tool
for quantifying scene information with respect to an observer. Com-
paring human performance with Bayesian model predictions allows
experimentalists to analyze how scene attributes influence percep-
tion. Further, evidence of near-optimal performance by human par-
ticipants in behavioral tasks supports the idea that the brain exploits
knowledge of the dependencies among scene attributes to make per-
ceptual decisions. This evidence give theoreticians a rational basis

on which to propose similar mechanisms being involved with other
behavioral, cognitive, and neurophysiological observations.

A Components of a Bayesian model

Sensory measurementsare observable scene attributes. Consider an
observer trying to determine the curvature of an object. The curved
surface generates a visual texture pattern on an observer’s retina.
This pattern is an example of a sensory measurement.

Prior knowledgeabout scene attributes is represented as a probabil-
ity distribution. For example, if the above observer is outdoors, the
sun is the likely light source. This observer’s prior probability dis-
tribution will have most probability mass in the overhead direction.

Dependencies among scene attributesare represented as condi-
tional probability distributions. In our example, the visual texture
measurement is conditionally dependent on the curvature; as the
curvature changes, the texture measurement changes accordingly.
The conditional likelihood is often called the generative model be-
cause it specifies how a measurement is generated by a scene at-
tribute.

Measurable attributes may also be dependent on other scene at-
tributes that need not be explicitly estimated. These other attributes
are called auxiliary attributes. For the observer trying to determine
the surface curvature of an object, attributes such as lighting direc-
tion, spectral reflectance, and the rendering variables are considered
auxiliary attributes: they influence the measurements of curvature
(or the curvature values), but are not necessary to know the curva-
ture.

The goal of a Bayesian model for perception is to compute a prob-
ability distribution over a desired scene attribute. Prior knowledge
and sensory measurements may be combined according to the con-
ditional probabilities that represent the relationships among scene
attributes to compute the posterior probability of the desired scene
property. The posterior probability distribution contains all of the
information from the other scene attributes as they relate to the de-
sired attribute. The posterior probability of a desired scene attribute,
A, given some measurements the observer makes,M, is denoted
p(A|M). Often this posterior probability function is unknown, but
using Bayes’ rule it can be expressed as:

p(A|M) =
p(M|A) p(A)

p(M)

p(M|A) is the conditional likelihood of a particular scene attribute
generating the observer’s measurements. This represents the rela-
tionship between the measurements and the attributes that causes
them.

p(A) is the prior probability over possibleA values. This term rep-
resents what the observer already knows aboutA before making any
measurements.

p(M) is the total likelihood of the measurement. This represents
how likely a measurement is. If the observer knows the possible
scenes, this term can be computed as the integral over these possi-
bilities, p(M) =

∫
A p(M|A) p(A).

B Derivation of posterior probability

The joint probability over the scene attributes relevant to intercep-
tion is p

(
R,θ ,S, θ̂ , Ŝ

)
. Factoring this distribution gives Eqn. 1 and



updating the factored joint probability by the conditional relation-
ships defined in Figure 3 gives Eqn. 2:

p
(
R,θ ,S, θ̂ , Ŝ

)
= p

(
R | θ ,S, θ̂ , Ŝ

)
p
(
θ̂ | θ , Ŝ,S

)
(1)

p
(
Ŝ| θ ,S

)
p(θ | S) p(S)

= p(R | θ ,S) p
(
θ̂ | θ

)
p
(
Ŝ| S)

(2)

p(θ | S) p(S)

Applying Bayes’ rule, we can substitute:

p(R | θ ,S) =
p(θ | R,S) p(R | S)

p(θ | S)
(3)

into Eqn. 2:

p
(
R,θ ,S, θ̂ , Ŝ

)
=

p(θ | R,S) p(R | S)
p(θ | S)

p
(
θ̂ | θ

)
(4)

p
(
Ŝ| S)

p(θ | S) p(S)

R andSare conditionally independent and we can cancelp(θ | S)
so the joint reduces to:

p
(
R,θ ,S, θ̂ , Ŝ

)
= p

(
θ̂ | θ

)
p
(
Ŝ| S)

p(θ | R,S) p(R) p(S) (5)

We assume the observer knows the generative models,p
(
θ̂ | θ

)

and p
(
Ŝ| S)

, and the relationship between ball size, crossing dis-
tance, and image size shown in Figure 1,p(θ | R,S). By combining
prior knowledge aboutR andS (p(R) and p(S) respectively) with
measurementŝθ and Ŝ, we have a full representation of the joint
distribution over these variables.

The posterior probability distribution that the observer wants to
compute isp

(
R | θ̂ , Ŝ

)
. Becauseθ andSdo not appear in this for-

mulation, the observer integrates over those variables to get the joint
over the relevant variables:

p
(
R, θ̂ , Ŝ

)
=

∫

θ ,S
p
(
R,θ ,S, θ̂ , Ŝ

)
dθ dS (6)

Applying Bayes’ rule we can formulate the posterior probability:

p
(
R | θ̂ , Ŝ

)
=

p
(
R, θ̂ , Ŝ

)
∫
R p

(
R, θ̂ , Ŝ

)
dR

(7)

Substituting from Eqns. 5 and 6 the observer represents the poste-
rior probability as:

p
(
R | θ̂ , Ŝ

)
=

∫
θ ,Sp(θ | R,S) p(R) p

(
θ̂ | θ

)
∫
R,θ ,Sp(θ | R,S) p(R) p

(
θ̂ | θ

) (8)

p
(
Ŝ| S)

p(S)dθ dS

p
(
Ŝ| S)

p(S)dRdθ dS

Since we assumed the Bayesian observer knows all of these compo-
nent distributions, it is capable of explicitly computing the posterior
probability distribution. This formulation may not be analytically
tractable. Regardless, the posterior can be numerically approxi-
mated in a straightforward manner.
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