
Chapter 3

Integrating Out Hidden Variables: Yuille,

Coughlan, Kersten, Schrater

\Condition on what you know and marginalize over what you don't care about."

Unpublished sayings of Lao Tzu (Translation by Dr. J.M. Coughlan).

\We must integrate all Republicans under a big tent, or else we will split the (expletive

deleted) vote".

Unpublished tapes of Richard Nixon. (Restored by Dr. A.L. Yuille).

Why integrate out hidden variables? When is marginalization necessary? Consider,

for example, splitting the vote in an election. Suppose the Republicans and Democrats

both have a \favourite" candidate and a \challenger". Both the Republicans are slightly

less probable to be elected than the \favourite" Democrat. So, if the task is to estimate

the most probable candidate then you would get the Democrat. But, if you want to

estimate the most probable party voted for you would get Republican. In this case it

would be a good idea for the Republicans to integrate their members under a big tent

behind a single candidate (who would get the votes of all the Republican groups). See

�gure (3.1).

DAN QUESTION { Are you on the boundary as an example??

3.1 Hidden Variables: An Example and Overview

The previous chapters have described how we can perform classi�cation and estimation.

So far, however, we have only dealt with comparatively simple models. For example,

we assumed that the observations x are directly related to the states s by a conditional

distribution P (xjs).
In more realistic cases there may be other variables involved. For example, suppose

we wish to have a model for recognizing objects under variable illumination conditions

(but �xed viewpoint and pose). In this case, the data x is the image of one of the objects

s1; :::; sN . But the images of the objects will depend on the (unknown) lighting conditions

which are characterized by parameters s (labelling, for example, di�erent lighting con�g-
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Figure 3.1 The Democrats (D) and the Republicans (R) both have a favourite (F) and a challenger

(C) as candidates. The probabilities of election of these candidates { Gore, Bradley, Bush, McCain { is

speci�ed in the box (top left) and the favourite candidate is Gore (in this example!). But marginalizing

over candidates makes the Republicans the more popular party. The best strategy for the Republicans

is to integrate their members into a big tent behind a single candidate.

urations). The conditional distribution for the data must be of form P (xjs; h) and we

may have a prior probability on the lighting conditions and objects P (s; h) = P (s)P (h)

(where s takes values s1; :::; sN ). (We assume that the prior probability of the lighting

conditions is independent of the objects).

Bayes theorem allows us to determine

P (s; hjx) = P (xjs; h)P (s)P (h)
P (x)

: (3.1)

At this stage we are faced with a choice. Are we interested purely in recognition? Or

do we also want to estimate the lighting conditions h? Or, perhaps, we might simply want

to estimate the lighting conditions and not care about the object recognition.

Firstly, suppose only care about recognition. It this case we need to marginalize over

the variables h1. This marginalization will take the form of integration, if the variables h

are continuous, or summation if they are discrete. This gives:

P (sjx) =
Z
dhP (s; hjx) or P (sjx) =

X
h

P (s; hjx): (3.2)

For our speci�c example, marginalizing over the light sources means that we are ef-

fectively looking for properties of the image which are relatively invariant to the lighting

1Note that if a loss function is independent of a variable then decision theory says that one should

marginalize over the variable.
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conditions. From theoretical studies (Belhumeur et al) it is known that there are, in

general, no image properties of an object which are fully invariant to lighting (except for

some extremely simple objects). Nevertheless, there are probabilistic regularities about

how image properties of objects behave under di�erent lighting. Such properties are those

which, in principle, are captured by P (sjx).
We should now do standard Bayes decision theory on the marginalized distribution

P (sjx). Indeed we can apply basic decision theory to any problem, where the state vectors

have arbitrarily many hidden variables, provided we condition on the measurements and

marginalize out the variables that we are not interested in. In particular, as we will see in

a later chapter!! we can apply decision theory to hidden markov models for speech where

the number of hidden variables is enormous.

But this general statement \marginalize over the variables you are not interested

in" is more easily said than done. In many cases, this marginalization is impossible to

perform either analytically or even by computer (in an acceptable time). In such cases,

we will need to fall back on approximation techniques which will be discussed later in this

chapter. We should also add that, although the best strategy requires marginalization,

it may be unnecessary and approximations may be very e�ective in realistic situations.

In addition, as we will show later, there are situations involving symmetry where the

information required to make decisions can be extracted without needing to performing

the marginalization!

Secondly, suppose we want to estimate both the object and the lighting conditions. In

this case, we should start with equation (3.1) and attempt to estimate both the variables

s; h simultaneously. This estimation requires specifying a decision function. If we allow all

lighting conditions then the variable h is continuous. We should therefore be wary of trying

to use a MAP estimator because, from the previous chapter, this involves rewarding our

decision only if our estimation is perfectly accurate. But it seems highly unlikely that light

source con�gurations can be estimated to high precision (either by a computer algorithm

or by human observers). Thus a somewhat \tolerant" loss functions will be needed when

estimating the light source h. The set of objects we are considering is discrete so we could

use a Kronecker delta loss function for the s variable.

Thirdly, suppose we attempt to estimate the light source directly. There are, of course,

several algorithms for estimating the light source directly can be found in the computer vi-

sion literature. Such algorithms, however, rely on restrictive assumptions about the images

being viewed. Moreover, none have been rigourously evaluated to determine their degree

of precision2. From our decision theoretic perspective, to estimate the light source requires

marginalizing over the objects fsig to obtain the distribution P (hjx) =Pi P (h; sijx) and
estimating h from this. Whether this is feasible, or not, depends on whether the dis-

tribution P (hjx) is sharp enough to give a reliable estimator for the light source h, see

2Including one by the �rst author of this book.

3



h

s

h

s

s*
j

h*j

h*j
h*m

s*
j

s*m

Figure 3.2 The joint probability density function of h; S are zero except in the circle and ellipse. The

probability density is greatest in the circle (dark shading) and is smaller in the ellipse (light shading).

In this example, estimating the most probable s and h independently from their marginal distributions

gives a di�erent answer than estimating both of them simultaneously from the joint distribution. This

is because the elongation of the ellipse (major axis along h and minor axis along s) means that the

marginal distribution for s is determined mostly by the density in the ellipsoid. By contrast, the marginal

distribution for h is determined mainly by the circle. If the distributions for our object recognition under

variable lighting are of this type, then trying to �rst estimate the lighting (i.e. h) in order to use it

to then estimate s would give poor results. The best strategy would be to estimate s directly by

marginalzing out the lighting.

�gure (3.2). It may be, of course, that P (hjx) has multiple peaks. For example, it has

been shown (Belhumeur, Kriegman, Yuille) that certain objects cannot be distinguished

from each other when viewed under a range of di�erent lighting conditions if the light

source directions are unknown (i.e. if we see object si under any lighting hi then we can

determine a light source hj such that object sj, viewed under lighting hj , looks identical

to object si viewed under si.). See �gure (3.3). We will return to this example in more

detail in a few pages.

On pragmatic grounds, it is important to determine when the problems can be bro-

ken down into well-de�ned, and solvable, subproblems. A simple way to solve object

recognition under variable lighting would be to �rst estimate the light source direction,

independent of the object, and then proceed to estimate the object itself. Bayes decision

theory tells us that this is not the optimal procedure. However, it may nevertheless be suf-

�ciently accurate in any given application. It does throw away information. For example,

it is theoretically possible that there are many object and lighting pairs which give rise

to similar images. In such a case, the posterior distribution for the lighting direction may

have many peaks and the estimation of lighting will be ambiguous. This type of problem

may arise theoretically but, in practice, it may be irrelevant. So it should be emphasized
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Figure 3.3 If the lighting conditions are unknown then it is impossible to distinguish between two objects

related by a GBR (generalized bas relief ambiguity). Because for any image of the �rst object, under

one illumination condition, we can always �nd a corresponding illumination condition which makes the

second object appear identical (i.e. generate the identical image).

that for some problems there may well be short-cuts which give the optimal solution, or

close to it, by using simpli�ed models. However, to determine if such short-cuts are re-

liable we would have to know the full probability distributions and determine when the

short cuts are justi�ed. (See later chapter of the book).

These three tasks are the key concepts that we will discuss in this chapter. The

standard problem is speci�ed by a distribution P (x; h; s) where x is the observations. We

can then choose to either estimate s directly from P (sjx), h directly from P (hjx) or h; s
jointly from P (h; sjx).

3.2 Marginalizing over Continuous Hidden Variables

If the hidden variables are continuous, then marginalizing over them corresponds to in-

tegration. If this integration can be done, either analytically or by computer, then the

problem reduces to standard decision theory on the marginal distribution P (sjx). But

there are also some cases where we may want to estimate the hidden variables alone, by

estimating them from P (hjx), or by jointly estimating them with the state s (i.e. by

estimating from P (h; sjx).)
In general, however, the integrations required for marginalization cannot be performed

and so approximations are necessary. One of most important approximation techniques

is Laplaces's method and its relatives such as the saddle point and stationary phase ap-

proximations. For other situations, it may be possible to extract the relevant information

to solve the decision problem without needing to explicitly do the integral.

Now suppose that we are trying to integrate out the hidden variable h to obtain
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P (sjx) = R dhP (s; hjx). Contributions to this integral come from all values of h for which

P (s; hjx) is non-zero. In particular, it is quite possible that there are subregions of H

space (the space of the hidden variables) where P (s; hjX) is comparatively small but which

nevertheless make a big contribution to the integral because of the size of the subregion.

In physicist's terminology, we have to consider the phase space of the h variable. The

ambiguity in the original problem gets removed because of phase space considerations.

h h

P(I, h | s = A) P(I, h | s = B)
I I

I*

h* h*
A B

Figure 3.4 The probability density for I ; h is zero except on the shaded rectangular bar (where it is

constant). Because of the di�erent amount of phase space (i.e. the di�erent angles of the rectangles) we

�nd that although P(I ; h�
A
js = A) = P(I ; h�

B
js = B) we nevertheless have P(I js = A) < P(I js = B).

More intuitively, suppose an image x is consistent with an object si and a very speci�c

lighting condition hi. But small changes in the lighting conditions hi 7! hi + �h cause

big changes in the image which a�ect the probability that the viewed object is indeed si.

In other words: P (sijx; hi) is large but P (sijx; (hi +�h)) is small for small changes �h

in the lighting. This is called a non-generic case (Freeman) in the sense that it is requires

an accidental alignment of the light source to obtain the observed image for object si. It

is better to seek interpretations of the data which are insensitive to small changes in the

lighting direction. Such interpretations are called generic. It transpires (Freeman) that

the Bayesian procedure of integrating out the hidden variables captures this concept of

genericity and the precise mechanism is through phase space.

To get some insight into this we now proceed to work out an example (developed by

Freeman and Brainard) which illustrates this point.

3.3 Phase Space and Integrating Hidden Variables

To understand the e�ect of phase space when integrating out variables, consider the

following abstract example (from Brainard and Freeman).

The observation x is determined by two unknown variables s; h by probability distri-
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bution:

P (xjs; h) = 1p
2��2

e�(x�sh)2=(2�2); (3.3)

We assume that all values of s; h are equally probable a priori. This is technically an

improper prior on the variables s; h because it is not normalized.

Suppose we want to estimate s; h simultaneously. Then at �rst sight the problem

seems to be ambiguous. If we apply ML estimation we �nd that there are a whole set of

equally likely estimates s�; h� provided s�h� = x. See �gure (3.5).
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Figure 3.5 The probability distribution P(x js; h) = 1p
2��2

e�(x�sh)2=(2�2) as a function of s; h, shown

for x = 10:0.

The problem, however, becomes well posed if we decide we want to estimate s only

and integrate out the h variable. This integration can be done explicitly by observing that

P (xjs; h) is a Gaussian function (ignoring the normalization constant) of the variable h

with mean x=s and variance �2=(s2), Integrating with respect to h gives:

Z
dhP (xjs; h) = 1=s; (3.4)

so the, slightly surprising, result is that the most probable value of s is 0 for any observa-

tion x. (Note we have not assumed a prior P (s) or, to be more precise, we have assumed

the improper prior that all values of s are equally likely).

The reason for this result is simple. For any value of x there will be a set of values of

s; h which are suÆciently consistent with it to give signi�cant contributions to the integralR
P (xjs; h)dh. These signi�cant contributions lie close to the curve sh = x. Almost all

the contributions come from places where jsh � xj < 2�. If we �x s, then the main

contributions come from the set of h such that jh � x=sj < 2x=s. So for small s, the
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contributions to the integral come from a very large region in the space of h's. In other

words, the amount of phase space of the h variables which make contributions increases.

In fact, as s 7! 0, all possible values of h give contributions to the integral. Hence the

best solution is s = 0 independent of the value of the observation. (The fact that the best

solution is independent of the data is, of course, an artifact of this particular example.)

You might wonder whether this result would disappear if we remove the noise from

the problem by specifying that x = sh so that the observation is a deterministic function

of s; h. In such case the probability distribution becomes zero except on the line x = sh.

Does the phase space contribution still apply?

The answer is that phase space is still important even in the case with no noise. To

see this, observe that we can model the deterministic function x = sh by a probability

distribution P (xjsh) = Æ(x � sh) where Æ(:) is the Dirac delta function. Then the result

can be obtained by observing that
R
dhÆ(x � sh) =

R
dĥ(1=s)Æ(x � ĥ) = 1=s where we

have performed the change of variables ĥ = sh. Alternatively, we can derive the same

result by a limiting argument. It can be shown that the Delta function can be expressed

as the limit of a Gaussian distribution as the variance of the Gaussian tends to zero. From

above, we see that the integral with respect to h gives a result 1=s which is independent

of the variance �2. So as we take the limit � 7! 0 the result is still 1=s.

This example is admittedly extreme but it brings out the main point. When estimat-

ing s from P (sjx) = R dhP (s; hjx) we must take into account the phase space of the h

variables.

A more interesting example occurs when we put a prior distribution P (h) on the

hidden variables h. To make life easy for ourself, we assume that P (h) is a mixture of

Gaussians so that we can get a nice analytic expression. So let us select:

P (h) =
1

2

1p
2��2

e�(h�h1)2=(2�2) +
1

2

1p
2��2

e�(h�h2)2=(2�2): (3.5)

We now compute P (xjs) = R dhP (xjs; h)P (h) to obtain:

P (xjs) = 1

2

1p
2��2(s2 + 1)

e�(h1s�x)2=(2�2(s2+1)) +
1

2

1p
2��2(s2 + 1)

e�(h2s�x)2=(2�2(s2+1)):

(3.6)

This can be plotted, see �gure (3.6). Observe that the prior for h biases the value of

s to be close to the solutions s = x=h1 and s = x=h2. But the solution for smaller value

of s has a larger amount of phase space, see the previous example, and so it has a higher

peak.

3.3.1 Generalized Bas Relief Ambiguity Example

We now consider a more complicated and realistic example. In the Lambertian lighting

model the intensity of a surface is given by:
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Figure 3.6 The marginal P(x js) as a function of s with x = 1. We set h1 = 0:5 and h2 = 2:0. Observe

that there are two peaks but the higher one is for the smaller value of s.

I(x) = ~b(x) � ~s; (3.7)

where ~b(x) = a(x)~n(x), with a(x) the surface albedo and ~n(x) the surface normal. The

vector ~s is the light source strength and direction. This assumes a single light source and

that there are no shadows, cast or attached, are present. (In the following subsection we

will generalize to cases where there are attached shadows and also self-cast shadows). We

let the size of the image (i.e. the number of pixels x) be N .

It has been shown (Belhumeur et al) that there is an ambiguity in these equations. So

that we can perform the transformation ~b(x) 7! G~b(x) and ~s 7! GT;�1~s where G is a 3�3

matrix represented a generalized bas relief (GBR) transformation (here T denotes matrix

transpose and �1 stands for matrix inverse), see �gure (3.3). If two objects O1; O2 are

related by a GBR, so that ~b1(x) = G12
~b2(x) for some GBR G12, then for any illumination

of object O1 there will always be a corresponding illumination of object O2 so that the

images of the two objects are identical. It would therefore seem that there is no way of

telling which object is present unless the illumination conditions are speci�ed. A simple

form of a GBR corresponds to scaling the object in depth to 
atten it by an amount �.

Renaissance artists exploited human observer's relative insensitivity to such 
attening by

making \bas relief" sculpture which are 
attened and hence need less material (\bas" is

the French for \low").

We now analyze the e�ect of the phase space of generic views on this problem. As

we will see, integrating out the lighting con�gurations will help resolve the ambiguity

between the two objects.

We assume that the imaging model introduces independent Gaussian noise. The
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probability models are therefore:

P (fI(x)gjO1; ~s1) =
1

(2��2)(N=2)
e�
P

x
fI(x)�~b1(x)�~s1g2=(2�2); (3.8)

P (fI(x)gjO2; ~s2) =
1

(2��2)(N=2)
e�
P

x
fI(x)�~b2(x)�~s2g2=(2�2): (3.9)

To determine the evidence for each model we must integrate out over the lighting

con�gurations ~s1 and ~s2. Each of the likelihood functions can be re-expressed in form:

P (fI(x)gjO1; ~s1)
1

(2��2)(N=2)
e
�f
P

3

�;�=1
T
��
1
s
�
1
s�
1
�2
P

3

�=1
s
�
1
�
�
1
+ g=(2�2)

; (3.10)

where T1 is a matrix with components T
��
1 =

P
x b

�
1 (x)b

�
1 (x),

~�1 is a vector with compo-

nents �
�
1 =

P
x b

�
1 (x)I(x), and  =

P
xfI(x)g2. We are, of course, using the indices �; �

to label the three spatial components of the vectors ~b(x).

The likelihood function is now quadratic in the variables ~s
�
1 that we wish to integrate

over. This integral can therefore be done by standard methods of completing the square.

The result is given by:

Z
d~sP (fI(x)gjO1; ~s1) =

1

(2��2)(N=2)
(2��2)3=2

jdetT1j1=2
e
�f �

P
3

�;�=1
T
�1 ��
1

�
�
1
��
1
g=(2�2)

: (3.11)

A similar result can be obtained for integrating out P (fI(x)gjO2; ~s2) with respect to

~s2. It yields a similar formula with T1; �1 replaced by T2; �2 where T
��
2 =

P
x b

�
2 (x)b

�
2 (x),

��2 =
P
x b

�
2 (x)I(x) (the number  =

P
xfI(x)g2 is the same for both cases). To relate

these results we recall that b�1 (x) =
P3
�=1G

��
12 b

�
2(x) 8 x. This leads to the relations

�
�
2 =

P3
�=1G

��
12�

�
1 and T

��
2 =

P3
�;�=1G

��
12G

��
12T

��
1 . It is then straightforward algebra to

check that

3X
�;�=1

T�1 ��
1 ��1�

�
1 =

3X
�;�=1

T�1 ��
2 ��2�

�
2 jdetT1j = jdetG12j2jdetT2j: (3.12)

It is also straightforward algebra (exercise for the reader) to determine that  �P3
�;�=1 T

�1 ��
1 �

�
1�

�
1 = min~s

P
xfI(x) � ~b1(x) � ~s1g2. We de�ne this to be Emin[fI(x)g].

(Similar results apply for the second model). This gives:

Z
d~s1P (fI(x)gjO1; ~s1) =

1

(2��2)(N=2)
(2��2)3=2

jdetT1j1=2
e�Emin[fI(x)g]=(2�2)

Z
d~s2P (fI(x)gjO2; ~s2) =

1

(2��2)(N=2)
(2��2)3=2

jdetG12jjdetT1j1=2
e�Emin[fI(x)g]=(2�2): (3.13)
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So we see that, after integration, the two hypotheses are not equally likely. The

di�erence is the factor jdetG12j in the denominator. This says that of two hypotheses
~b1(x);~b2(x) related by~b2(x) = G~b1(x) we prefer~b1(x) if jdetG12j > 1 and~b2(x) otherwise.

Now the determinant of a GBR is given by � where the transformation scales the z-axis

by �. So if O2 is enlarged in the z direction (i.e. � > 1 relative to O1, then we prefer

O1. So of the two possible hypotheses we prefer the most 
attened one! (Why? Well,

intuitively if the object is 
at then its appearance is based on its albedo and is largely

independent of lighting conditions { so it is very stable under lighting changes).

3.3.2 Symmetry and Generic Views

What happens if we have cast or attached shadows?3 And multiple light sources? We

now show that the basic results of the previous subsection, namely the dependence of the

determinant of the GBR, remain unchanged.

For this more realistic, and important, case it will be impossible to perform the inte-

grals to marginalize out the lighting conditions. Instead, we present a new method which

takes advantage of the symmetry of the problem to deduce the results for the two object

classi�cation without needing to evaluate the integral.

Symmetry has been present in the examples in the previous two subsections. In both

cases there is an ambiguity between the variables s; h which, in mathematical terms, is

a symmetry. For the abstract example where P (xjs; h) = 1p
2��2

e�(x�sh)2=(2�2) we have

the symmetry h 7! �h and s 7! (1=�)s for any �. For the GBR example we have the

transformation ~b(x) 7! G~b(x) and ~s 7! GT;�1~s where G is a member of the GBR group.

The key point is that when evaluating the evidence of two models related by a sym-

metry transformation then the relative evidence depends only on the symmetry transfor-

mation itself. To put it another way, the symmetry of the problem is broken by the phase

space contribution.

To illustrate this point, we extend our analysis of the GBR to include attached and

cast shadows. To take into account attached shadows we write the illumination equation

as I(x) = maxf~b1(x) � ~s1; 0g + maxf~b1(x) � ~s2; 0g + ::: + maxf~b1(x) � ~sM ; 0g, where the

maximum operation removed points x where ~b(x) � ~s � 0 (these correspond to attached

shadows). To allow for cast shadows, we also set the contribution from light source ~si

to be zero at a point x if the light is blocked in reaching that point. We de�ne a cast

shadow function f1(x;~s
i) which is zero if point x on object 01 lies in a cast shadow under

lighting condition ~si and equals 1 otherwise. It is known (Belhumeur et al) that the GBR

ambiguity holds even when cast and attached shadows are present.

We now obtain

3It is known that Leonardo da Vinci wrongly believed that shadows would not be invariant under bas

relief transformations.
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P (fI(x)gjO1; ~s
1; :::; ~sM ) =

1

(2��2)(N=2)
e�
P

x
fI(x)�

PM

i=1
f1(x:~s

i)maxf~b1(x)�~si;0gg2=(2�2):

(3.14)

The evidence for model O1 is therefore given by the integral:

K[fI(x)g] =
Z
d~s1d~s2::::d~sMP (fI(x)gjO1; ~s

1; :::; ~sM ) =

Z
d~s1d~s2::::d~sM

1

(2��2)(N=2)
e�
P

x
fI(x)�

PM

i=1
f1(x:~s

i)maxf~b1(x)�~si;0gg2=(2�2): (3.15)

It is impossible to calculate this integral analytically. But we do not need to! We

only need to compare its value to that of the evidence for model O2. This can be done by

observing that to compute the evidence for O2 we merely have to replace ~b1(x) by ~b2(x) in

the exponent. These are related by a GBR ~b2(x) = G12
~b1(x). Now we perform a change

of variables (this is the clever bit) so that ~̂s
i
= G

T;�1
12 ~si for all i. With this change of

variables the exponent is now the same whether we are computing the integral for model

O1 or O2! But changing the variables means that we have to introduce a Jacobian factor

in the integral. The factor, of course, is simply jdetG12jM . So, the di�erence in evidence

between the two models is given only by this factor. Setting M = 1 recovers our original

result. But now we have extended it to deal with cast and attached shadows and multiple

light sources. Once again, there will be a tendency to favour \
atter" surfaces if possible.

What happens if we have a prior distribution on the objects? This does not alter

the conclusions greatly. We integrate P (fI(x)gjO1; f~si : i = 1; :::Mg)P (f~b1(x))g) with
respect to f~si : i = 1; :::Mg. The point is that the prior P (f~b1(x))g) is independent of
f~si : i = 1; :::Mg and so can be taken outside the integral. This gives:

logfP (fI(x)gjO1)P (f~b1(x))g)g = �M log jdetG12j+ logK[fI(x)g] + logP (f~b1(x))g):
(3.16)

Recall that the term logK[fI(x)g] is independent of the GBR. So the two important

terms are the �rst term which encourages the object to be 
at and the �nal term which

pulls it towards the prior. This means that the interpretation is pulled towards the most

probable a priori interpretation desired by the prior and the 
at interpretation determined

by the generic factor. The conclusion is that there is an overall bias towards 
atter objects

unless the prior is incredibly strongly peaked (i.e. almost a delta function).

Overall, we see that integrating over the lighting conditions \breaks" the GBR ambi-

guity. Observe, moreover, that it induces a bias towards surfaces which are 
at which is

against the spirit of bas relief in art where one tries to use a pattern with only small relief

to substitute for a pattern with large relief. (Of course, this e�ect is not very strong if

the scaling � of the transformation is close to one). We suggest that the e�ectiveness of
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bas relief is because of prior expectations on shape and albedo. Such priors can only be

partially e�ective, however.

3.3.3 Approximating the marginals: Gaussians approximations and Laplace's Method

In most cases it is impossible to integrate out the hidden variables analytically. In such

cases it is often desirable to approximate the integral. One important class of approxi-

mations falls under the mathematical heading of asymptotic expansions. They are only

rigourously correct in certain precise limits, to be discussed later, but they nevertheless of-

ten give good approximations in other situations. In this section we will describe Laplace's

method which has been called the \workhorse of asymptotic expansions" (Keener). It is

closely related to other methods such as saddle point expansions and the method of sta-

tionary phase. (We note that in this section we are describing general purpose techniques

only and that for certain types of problem there are more e�ective methods which may

not even require approximations, see later chapters).

A second, closely related, technique is to approximate the integrand by one, or more,

Gaussians. In some cases, as we will discuss, this gives identical results to Laplace's

method. This approximation is less well justi�ed, in general, but it is intuitive and is

applicable in situations where Laplace's method is not justi�ed.

The simplest version of Laplace's method occurs when we need to evaluate an integral

of form:

f(�) =

Z 1

�1
e�h(z)g(z)dz; (3.17)

where we are interested in the behaviour of � for large �. This is known as an asymptotic

expansion and the expansion is only provably correct in this limit although it may be a

good approximation in other situations. In the case of large � it becomes legitimate to

expand h(z) in a Taylor series about the value z� which maximizes h(z). It can then

be proven, by Watson's Lemma (see Keener), that one can obtain an asymptotic series

expansion for f(�) which is valid in the limit as � 7! 1. More concretely, we expand

h(z) = h(z� + (1=2)(z � z�)2(d2h=(dz2))(z�) + O((z � z�)3). The �rst order term in the

Taylor series expansion vanishes because (dh=(dt))(z�) = 0 (since z� is a maximum).

We denote (d2h=(dz2))(z�) by h�zz for brevity and observe that it is a negative number

(because z� is a maximum). The expansion gives:

f(�) �
Z 1

�1
e�h(z

�)e�h
�

zz(t�z�)2g(z�)dt

= g(z�)e�h(z
�)

p
�pj�h�zzj : (3.18)

and other higher order terms can be obtained (see Keener).

13



Essentially what we are doing is approximating the integral by a Gaussian distribution

(higher order terms in the expansion will go beyond this approximation). But note we

are doing this for large � so we can neglect the terms from g(z). If � is not large then we

must do a series expansion in the function g(z) as well. For now we treat the asymptotic

(i.e. large �) case only. This requires �rst �nding the value of z that maximizes the

exponent. Then we do a quadratic expansion in the exponent. This turns the integrand

into a Gaussian which we can calculate analytically.
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Figure 3.7 A bad Laplace approximation (left) and a better one (right).

The expansion becomes precise in the limit as � 7! 1. For �nite values of � it remains

an approximation. Its usefulness will depend on the form of the function e�h(z)g(z). In

this case, we must expand the g(z) term as well. If the function e�h(z)g(z) can be well

approximated by a Gaussian then Laplace's method will yield good results. But the results

will be poor if, for example, the integrand has multiple peaks, see �gure (3.7). In such

cases, it would be best to approximate the integrand by a sum of Gaussian distributions

centered about each maxima of the integrand (this, of course, can become complicated).

For this section, we will mainly be concerned with using Laplace's method to approx-

imate integrating out hidden variables. More precisely, we will want to compute:

P (xjs) =
Z
dhP (xjh; s)P (h) =

Z
dhP (h)elog P (xjh;s): (3.19)

It may occur that the distribution P (xjh; s) is of form:

P (~xj~h;~s) = 1

(
p
2��2)N

e�jj~x�
~f(~h;~s)jj=(2�2); (3.20)

where we are assuming independent Gaussian noise for all the N pixels. The function
~f(~h;~s) details how the hidden variables ~h and the state variables ~s combine to form the
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image.

We can now apply Laplace's method by expanding the function ~f(~h;~s) in a Taylor

series about the value ~h� which maximizes ~f(~h;~s) (observe that we will get di�erent

expansions depending on the the value of ~s and, in particular, ~h� is a function of ~s.) The

expansion is only fully justi�ed in the limit of small �2 (i.e. we have set the x in Laplace's

expansion equal to 1=(�2). The expansion can be written as:

~f(~h;~s) � ~f(~h�; ~s) +
1

2
(~h� ~h�)T~f 00; �(~h� ~h�) + 0(j~h� ~h�j3); (3.21)

where ~f 00; � is the Hessian of ~f(~h;~s) with respect to the variables ~h and evaluated at ~h�.

By using Laplace's approximation, for �xed ~s, we obtain:

P (~sj~x) � P (~h�)e�jj~x�
~f(~h�;~s)jj=(2�2) 1p

detC
; (3.22)

where C is the Hessian of jj~x� ~f(~h�; ~y)jj with respect to ~h evaluated at ~h�. More precisely,

we can write jj~x � ~f(~h�; ~s)jj = Pafxa � fa(~h;~s)g. The Hessian C has components given

by @2=(@hi@hj)jj~x� ~f(~h�; ~s)jj which can be evaluated to be:

@2

@hi@hj
jj~x� ~f(~h�; ~s)jj = 1

�2
f
X
a

@fa

@hi

@fa

@hj
+
X
a

ffa(~h;~s)� xag @2fa

@hi@hj
g; (3.23)

evaluated at ~h = ~h�.

The term
p
detC is called the generic viewpoint term (Freeman).

For certain vision problems there is a natural parameter x for which and it is known

that we are only interested in the behaviours for large x. In these conditions the approx-

imation becomes justi�ed. In other cases it needs to be empirically veri�ed by computer

simulations.

What happens if we are not in the asymptotic region (i.e. low noise case for this

example)? Then we can do a Gaussian approximation to the entire integrand. Suppose

we have

logP (x) = log

Z
dhP (xjh)P (h): (3.24)

Then we write the integral in form:

logP (x) =

Z
dheE(h;x); (3.25)

where E(h;x) = � logP (xjh)� logP (h).
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The maximum of P (xjh)P (h) occurs at the minimum of E(h;x). Therefore, to deter-

mine h�, we solve (@=@h)E(h;x)(h�) = 0 with the constraint that the Hessian H(h�;x)

is positive de�nite (i.e. that h� is a true minimum of E(h;x).)

We can them perform an approximation by doing a quadratic expansion about h�.

This sets:

EA(h;x) = E(h� : x) + (1=2)(h � h�)TH(h�)(h� h�): (3.26)

The integral
R
dhe�EA(h;x) can now be performed exactly because it is a Gaussian

distribution in h. This gives:

Z
dhe�EA(h;x) = (2�)n=2 detH(h�)e�E(h�;x): (3.27)

As described, the method is an approximation. It breaks down if, for example, there

are multiple minima of the energy function E(h;x). It also only takes into account the

second order terms in the Taylor series expansion of E(h;x) around h�. Extending the

method to take into account higher order terms is signi�cantly harder.

MENTION SCHRATER AND KERSTEN??

3.4 Discrete Hidden Variables

Many important problems occur when the hidden variables are discrete. They may corre-

spond, for example, to binary variable which label di�erent models for explaining the data

(i.e. the data might be due to models A or B and we do not know which). Alternatively,

they may label \outliers" in visual search tasks.

Some new techniques are required when dealing with discrete variables. It is no

longer possible, for example, apply Laplace's method to approximate over them. There

are, however, other approaches such as mean �eld theory approximations which perform

similar types of approximation. Some of these methods are beyond the scope of this book

and we will refer to them elsewhere. (For example, it is possible to transform discrete

problems into continuous ones and then apply Laplace's method directly { see Hertz,

Krogh, Palmer book. Or Yuille review article in Arbib).

The basic setup is as follows. There are state variables s 2 S that we wish to estimate.

There are data observations x 2 X. Finally there are hidden state variables V 2 H which

are discrete. We have probability models P (x; V js) and we want to estimate the state s

by summing out the hidden variables V .

We present this material in the following sections by treating several important cases.

3.4.1 Signal Known Exactly ModelS

In the previous chapter, we discussed the Signal Known Exactly (SKE) model. We now

describe a version of it where there the signal can come in several di�erent variants. For
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example, the basic signal can be a sinusoid and the variants correspond to changes of

phase. We can now ask two questions: (i) does an input signal correspond to signal or

noise?, and (ii) if it is a signal, then what is its phase? Experiments can be designed in

which the �rst task is possible and yet the second task is not (REFS FROM DAN!!).

We de�ne a set of signal models Si(x) = A cos(�x+�i), where A;� are constants and

the set of f�i : i = 1; :::;Mg give the M di�erent phases that the signal can take.

As in the original SKE case, we de�ne models for the probabilities of the observed

images I(x) conditioned on the signals and the noise. There is assumed to be a background

intensity B(x) which is spatially constant (i.e. B(x) = B; 8 x). The models assume

additive Gaussian noise (independent at each pixel) and so we have models:

P (fI(x)gjSi) =
NY
x=1

1p
2��2

e�(I(x)�Si(x)�B)2=(2�2); i = 1; :::;M

P (fI(x)gjN) =
NY
x=1

1p
2��2

e�(I(x)�B)2=(2�2): (3.28)

We also de�ne prior distributions:

P (N) =
1

2
; P (Si) =

1

2M
; i = 1; :::;M: (3.29)

We now compute the posterior distributions:

P (SijfI(x)g) = P (fI(x)gjSi)P (Si)
P (fI(x)g) ;

P (N jfI(x)g) = P (fI(x)gjN)P (N)

P (fI(x)g) : (3.30)

Our �rst task was to determine whether an input is either signal or noise. In this case,

we must sum over the probability that the input data is generated by each of the models

Si. We can then de�ne a new variable S which determines whether the signal is there or

not. The fSig can now be considered to be hidden variables. We have:

P (SjfI(x)g) =
MX
i=1

P (SijfI(x)g) =
PM
i=1fP (fI(x)gjSi)P (Si)g

P (fI(x)g) : (3.31)

The decision, as to whether there is a signal present, is determined by the log-likelihood

ratio of P (SjfI(x)g) to P (N jfI(x)g). This can be written as:

log
P (SjfI(x)g)
P (N jfI(x)g) = logf

MX
i=1

1

M

P (SijfI(x)g)
P (N jfI(x)g) g: (3.32)

17



Conversely, if we are studying the second task of determining which speci�c signal (i.e.

which phase) is present then we must do a di�erent analysis. We must compare the values

of P (SijfI(x)g) for each i = 1; :::;M to the value of P (N jfI(x)g), and to each other.

Suppose in both cases, we are performing the MAP estimation. Then we should decide

whether the input is signal or noise depending on whether:

MX
i=1

P (SijfI(x)g) � P (N jfI(x)g): (3.33)

But to do the second task requires selecting the maximum of M + 1 numbers:

P (S1jfI(x)g); P (S2jfI(x)g); :::; P (SM jfI(x)g); P (N jfI(x)g): (3.34)

Clearly, it is quite possible that
PM
i=1 P (SijfI(x)g) � P (N jfI(x)g) but P (SijfI(x)g) <

P (N jfI(x)g) 8 i = 1; :::;M . In this case, the question of whether it is signal to noise can

be answered. But the \evidence" for signal requires combining the evidence for di�erent

variants of the signal (i.e. di�erent phases) and no individual Si has enough evidence by

itself to defeat the noise hypothesis.

Cases where \the whole is greater than the maximum of the parts" require than

two, or more, individual signal hypotheses make non-negligible contributions to the total

evidence. This means that for any fI(x)g that is classi�ed as being \signal" we need to

have at least two i; j such that P (SijfI(x)g) 6= 0 and P (Sj jfI(x)g) 6= 0. This implies that

there is an overlap between the individual signal responses and hence it may be hard to

distinguish between them, even by a one on one experiment.

3.4.2 Robustness and Outliers

One of the simplest example of hidden variables is the need for rejecting outliers in the

data. The data can consist either of simple measurements or be as complicated such as

estimates of depth.

Outliers are data that do not �t the probability model which is assume to generate

the data. Suppose, for example, we want to estimate the mean of a set of variables

fx1; :::; xNg. The standard estimator is to set �(x) = 1
N

PN
i=1 xi. This estimator can

be derived as the ML estimator for the mean assuming that the data is generated by a

Gaussian model. In other words, we assume that the data is generated by a distribution

P (xj�; �2) = 1p
2��2

e�(x��)2=(2�2). If the data is identically independently distributed , so

that P (fx1; :::; xNgj��) =
QN
i=1 P (xij�; �), then it is a straightforward application of ML

to obtain the estimator T (x1; :::; xN ) =
1
N

PN
i=1 xi.

A problem arises if some of the data samples are outliers which are not generated by

the Gaussian distribution. Outliers could result arise because the data is contaminated in

some way. Or, perhaps more commonly, because the probability model used to analyze
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Figure 3.8 Top, in this example it is signi�cantly more diÆcult (left) to distinguish noise (dashed line)

from the set of signals (solid line) than (right) from any one signal (solid lines) (signals have �s = 1:5

and noise �n = 0:5). Bottom, in this case it is not signi�cantly harder to distinguish the noise from the

set of signals (left) than from the \closest" signal (right) (signals have �s = 0:2 and noise �n = 0:5).

the data is, at best, an approximation to the (unknown) true probability distribution

(we discuss the issues of how well we can learn probability distributions from data in

a later chapter). In both cases errors can arise from estimation because of the outliers

contaminating the data.

A whole sub�eld of statistics, known as Robust Statistics, has developed to analyze

this phenomena. We refer readers to Huber for theory. The type of robust statistics we

describe here, including the use of hidden variables, is not standard but seems, to us,

to be most appropriate for vision (and is in keeping with the spirit of this book!). See

Berger.

An important application of robust methods and/or outlier detection is to the coupling

of di�erent visual cues. It sometimes happens that two visual cues, depth cues for example,

give such di�erent estimates that they are mutually inconsistent. In such a case one cue

appears to \veto" the other. This can be considered to be a case of robust estimation

with one of the cue values being treated as an outlier (Landy et al.). We will discuss

coupling visual cues in a later chapter from a Bayesian perspective.
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Another example, comes when attempting to match an object model to an image.

Consider the Signal Known Exactly model described in the previous chapter. The SKE

model assumes a template for the target signal and models the noise in the image as

Gaussian. This assumption is �ne in a laboratory environment where the stimuli are

controlled (and much insight into the visual system can be obtained by studying such

a model). However, the types of noise that occurs in real world stimuli are not always

Gaussian. For example, in the display reading task, see �gure!!, the diÆculty in reading

the display is due to the presence of specularities in the image. Such specularities do

not satisfy the independent Gaussian noise assumption because they tend to be spatially

localized. Robust techniques, however, can be used to give models that are less sensitive

to specularities...

FIGURE ON DISPLAY READER { SPECULARIES AS NON-GAUSSIAN.

We now introduce some mathematics. Let us assume that the data x comes from

one of two models P0(xjs0); P1(xjs1). For concreteness, we can assume that these dis-

tributions are both Gaussians P0(xj�0; �0) = 1p
2��2

0

e�(x��0)2=(2�20) and P1(xj�1; �1) =

1p
2��2

1

e�(x��1)2=(2�21).

Now let V be a binary indicator variable which takes two states f0; 1g. If V = 0 means

that the data x is generated by the model P0(x) (corresponding to s0) and V = 1 means

it is generated by P1(x) (corresponding to s1). These variables are \hidden" in the sense

that they are unknown to the observer.

We can then write down a distribution:

P (xjV ) = fP0(x)g1�V fP1(x)gV ; (3.35)

which implies that if V = 1 then the data is generated by P1(x) (i.e. P (xjV = 1) = P1(x))

and V = 0 means that the data is generated by P0(x) (which equals P (xjV = 0).

We also specify a prior distribution P (V ) on the hidden variables to take into account

our prior knowledge of how probable it is a priori that the data comes from models P0(x)

or P1(x). For example, we can write P (V = 0) = 1 � � and P (V = 1) = � for a constant

�. This can be expressed concisely as:

P (V ) = (1� �)1�V (�)V : (3.36)

We can then write the full distribution:

P (x; V ) = P (xjV )P (V ) = fP1(x)gV fP0(x)g1�V (1� �)1�V (�)1�V : (3.37)

In this case, we can explicitly sum out the hidden variables analytically and compute

the marginal distribution for the data x:
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P (x) =
X
V=0;1

P (x; V )P (V ) = (1� �)P0(x) + �P1(x); (3.38)

which is a mixture of probability distributions.

Alternatively, however, we may wish to estimate the variables V assuming that we

know the state variables s0; s1. In other words, we assume that the data is generated

by a mixture of models and we wish to estimate which model generated the data. This

requires computing P (x; V = 0) and P (x; V = 1). By standard decision theory, see

previous chapter, we compute the log posterior ratio:

log
P (x; V = 0)

P (x; V = 1)
= log

P (xjV = 0)

P (xjV = 1)
+ log

1� �

�
; (3.39)

and choose a threshold to make the decision (the threshold will be zero is we use MAP

estimation).

One point to emphasize here is that even if we can, or would like to, sum out the

hidden variables there may nevertheless be situations where we want to estimate them

explicitly. (\One person's hidden variables are another person's state variables".)

We now illustrate one of the main points of robust statistics: namely how much does

using the wrong model penalize us? This penalty is in terms of the accuracy of the

estimates. In the example we assume that the data is generated by a mixture of Gaussian

models, as above. The distributions have the same mean � and variances �2 and 9�2

respectively (i.e. �0 = �1 = � and �0 = � and �1 = 3�).

For Gaussian distributions it is straightforward to compute the mean and variance of

the mixture distribution. The means is given by � and the variance is (1��)�2+�9�2. So
even if � is only 10% the variance estimated from the data is twice the true variance of the

distribution P0(xjs0). See Huber for a more detailed discussion of how the contamination

of Gaussians degrades the performance of statistical estimators.

We now describe another robust method which, in a more complex form, appears in a

number of computer vision models. Suppose we want to estimate the mean of a number

of samples but we know that some samples have been contaminated. We introduce the

method by writing an energy function:

E(fVig; s; fxig) =
NX
i=1

Vi(xi � s)2=(2�2) +
NX
i=1

�(1� Vi) (3.40)

Here s is a continuous variable, fVig are binary f0; 1g variables, and fxig are the

measurement data. The constants �2; � are assumed to be known. We can consider the

energy to be the sum of N energy terms Ei(Vi; s;xi) = Vi(xi � s)2=(2�2) + �(1� Vi).

Now consider the function Êi(s;xi) = minViEi(Vi; s;xi). This function is quadratic

in s for jxi � sj �
p
2��2 and takes a �xed value of � for jxi � sj �

p
2��2. For �xed s
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we pay a \penalty" (xi � s)2=(2�2) for jxi � sj �
p
2��2 and a maximum penalty of �

otherwise. See �gure (3.10).

As we try to minimize the total energy E(fVig; s; fxig) over all the variables s; fVig
we are faced with a tradeo�: it will usually not be possible to �nd adjust the s to be close

to all the data points fxig. For some data points xj it will be necessary to \reject them"

by setting Vj = 0 and paying the rejection penalty �.

To see why we call this approach \robust", we can contrast it with the alternative ap-

proach of removing the fVig variables and simply setting E[s; fxig] =
PN
i=1(xi�s)2=(2�2).

We see that minimizing this energy with respect to s occurs by setting s = (1=N)
PN
i=1 xi,

which is the empirical mean of the data points. Observe that an outlier data-point pays

a penalty (xi � s)2=(2�2) which increases quadratically. By contrast the energy function

E(fVig; s; fxig) is far more tolerant { outlier points pay a penalty which is quadratic if

they are suÆciently close to s but which reaches a maximum of �. Thus outliers have far

less e�ect because they can be rejected without paying exorbitant costs.

...

s

V VVV N1 2

2 3

3

1 N
x x x x...

Figure 3.9 The bayes net representing the generative model behind the robust estimation of the mean.

We now put this analysis into probabilistic terms, see �gure (3.9), by writing a prob-

ability distribution:

P (fVig; fxigjs) = 1

Z
e�E(fVig;s;fxig): (3.41)

In this formulation, the most probable states are those with lowest energy. But there

is a problem: the distribution P (fVig; sjfxig) is not normalizable (i.e. to ensure thatP
fVig
R
dsP (fVig; sjfxig) = 1 would require setting Z to be in�nite) and the expression

should be treated as formal only. To understand this, consider deriving the \distribution"

for s by summing out the fVig. This can be done yielding:
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P (fxigjs) = 1

Z

NY
i=1

fe�(s�xi)2=(2�2) + e��g: (3.42)

This can be interpreted as saying that each variable xi is generated by a mixture

of a Gaussian distribution and a uniform distribution. The trouble is that the uniform

distribution cannot be normalized.

This problem can be �xed by putting the problem in a box. This means we replace the

scalar � by a function b(s; xi) chosen so that b(s; xi) = � for jxi � sj < B and b(s; xi) = 0

otherwise. We simply choose the \box size" B to be larger than the range of the samples

fxig that we get. Then, e�ectively, we can replace b(s; xi) by � but still have a normalized
distribution.
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Figure 3.10 Top left, the quadratic energy function (for the Gaussian). Top right, the quadratic with

a cut o� corresponding to a rejection penalty �. Middle left, the corresponding Gaussian and uniform

distributions. Middle right, the mixture of the two distributions. Bottom, the e�ective energy function

corresponding to the mixture distribution.

Certain distributions are very sensitive to contamination from outliers. The Gaussian

distributions are particularly sensitive, which is unfortunate given their popularity. This

can be quanti�ed by the use of concepts from robust statistics such as in
uence functions

(Huber). The problem arises because the \tails" of the Gaussian distribution fall o�

very fast. This says that data more than two standard deviations away from the mean

is extremely unlikely and if such data arises, due to contamination, then it will distort
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the estimates severely. It is sometimes better, in practice, to approximate a Gaussian

by a t distribution which has tails that fall o� more slowly (Ripley). This distribution

is parameterized by a mean �, a covariance ��=(� � 1), and two parameters �; p. Its

probability density is given by:

�(1=2(� + p))

(��)p=2�(1=2�)
j�j�1=2f1 + (1=�)(x� �)T��1(x� �)g�(1=2)(�+p): (3.43)

3.4.3 Visual Search

We now address the visual search problem of detecting an outlier sample among a set of

samples. This problem has been much studied and reported in the visual search literature

and is sometimes called pop-out. Our purpose here is to treat the problem as an example of

statistical inference in the presence of hidden variables which can correspond, for example,

to binary labels for each sample which determine whether the sample is an outlier or not.

We will not, in this chapter, be concerned with issues such as search strategy and reaction

times (though we will say something about this in a later chapter).

Models of the type we will describe have been developed by several authors (Palmer,

Verghese and Pavel) who have made explicit comparisons to experimental data. Issues

that arise, both in experiments and theory, are whether there is asymmetry in the pop-out

(i.e. whether detecting an A in a background of B's is easier than detecting a B in a

background of A's), and whether conjunctions of features makes the pop-out task easier

or harder. Another concern is how does familiarity with the stimuli a�ect performance of

either expert or non-expert subjects. These issues will be discussed as we proceed.

3.4.4 Basic Bayes for Pop Out: Known Distributions

In this section we assume that the data samples are generated from one of two known

probability distributions PA(:) or PB(:) and the Bayesian estimators are derived based

on this assumption. In the next section, we will discuss situations where the probability

distributions are unknown (although this situation is less clear cut).

Suppose we have a set of samples fx1; :::; xN+1g. We consider two visual tasks. The

�rst task is to detect if there is an outlier in the samples. The second task, which assumes

an outlier is present, is to determine which sample it is. The third is to detect if there is

an outlier in the samples and if so where it is.

For the �rst task, we consider 2AFC where one stimulus consists of N + 1 samples

generated by PB(:). For the second stimulus, N samples of the data are generated by

PB(:) and a single (unknown) sample is generated by PA(:).

This problem can be modelled using additional variables fVig. These are binary

indicator variables which determine whether the data comes from PA(:) or PB(:). In

other words, Vi = 1 if the data element xi is generated by PB(:) and Vi = 0 is the element

is an outlier (i.e. generated by PA(:)). We do not, of course, know these fVig, we have to
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estimate them.

P (x1; :::; xN+1jV1; :::; VN+1) =
N+1Y
i=1

PB(xi)
ViPA(xi)

1�Vi : (3.44)

The distribution of the fVig will be di�erent for the non-outlier model PNO and the

outlier model PO. We have:

PNO(fVig) =
N+1Y
i=1

ÆVi;1;

PO(fVig) = 1

N + 1
ÆPN+1

i=1
Vi;N

; (3.45)

where the PO(:) allows there to be N + 1 outlier positions.

To evaluate the two models, we must sum out over the internal (secondary) variables

fVig. We obtain:

PNO(fxig) =
N+1Y
i=1

PB(xi);

PO(fxig) = 1

N + 1

N+1X
j=1

PA(xj)
Y
i6=j

PB(xi): (3.46)

Note that we could have derived these distributions directly without bothering with

the intermediate fVig variables. Why did we bother? Well, making the intermediate

variables explicit helps by making it clear that di�erent tasks are closely related and di�er

only by which variables are marginalized over. More importantly, however, for the more

sophisticated models later in this book (and indeed later in this chapter) making the

hidden variables explicit greatly simpli�es the notation and allows us to use algorithms

such as EM, see later section of this chapter.

Hence, the decision criterion for determining whether there is an outlier or not is given

by the log-likelihood ratio test:

logf PO(fxig)
PNO(fxig)g = logf 1

N + 1

N+1X
j=1

PA(xj)

PB(xj)
g: (3.47)

Thus, if we use MAP, we should decide that there is an outlier only if
PN+1
j=1

PA(xj)

PB(xj)
>

(N + 1). As usual, we see that the e�ectiveness of the test depends on the log-likelihood

ratio logPA(x)=PB(x).

Note that this is asymmetric in the A and B. The diÆculty of detecting an outlier A

within a background of B is not the same as doing the converse. To get intuition for why
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this asymmetry can arise consider the simple example where the observables x can take two

values only. We label these values �; � and suppose that PA(x = �) = 1; PA(x = �) = 0

but that PB(x = �) = 0:5; PB(x = �) = 0:5. With these distributions, detecting a sample

of A in a background of B's is an almost impossible task. The sample from A will be an

� but the N background samples from PB(:) will have roughly an equal number of �'s

and �'s (typical samples will look like �; �; �; �; �; �; � whether or not there is an outlier

present). This means that the � from A will easily get lost in the background of �'s from

B. However, consider the opposite task of detecting a sample of B in a background of

A's. Half the time, the sample from B will be a � which will be straightforward to pick

out of the background of �'s generated by PA(:). (All samples without an outlier will be

of form �; �; �; �; �, but samples with an outlier may be of form �; �; �; �; �). In a more

technical subsection we will give further results about how asymmetry can arise.

For the second task, we assume that the data is generated by the model PO(fxig). To
determine the outlier, we are then asked to select the most probable con�guration of the

fVig conditioned on the data (and, of course, with the restriction that there is only one

outlier). This gives the estimate for the outlier as:

V �
i = 0; i� = argmaxi log

PA(xi)

PB(xi)
: (3.48)

This again depends on the log-likelihood ratio but in a completely di�erent form.

Once again there is asymmetry in the task which can be seen by considering the previous

example where the observations are �; �.

To understand the error rates for this problem we �rst turn it into a standard two

decision classi�cation problem. This requires deriving a probability distribution for the

maximum of log
PA(xi)
PB(xi)

for N samples xi from PB(:). This can be done using a simple

identity (ref Rivest et al). We have the cumulative probability distribution (i.e. we must

di�erentiate it to get the probability density function):

Pr(maxflog PA(xi)
PB(xi)

: i = 1; :::; Ng > T j x drawn fromB) = 1�fPr(PA(x)
PB(x)

< T j x drawn fromB)gN :
(3.49)

We can compare this to the probability distribution for the response of the A sample:

Pr(flog PA(x)
PB(x)

= yj x drawn from A) =

Z
dxPA(x)Æ(log

PA(x)

PB(x)
� y): (3.50)

From these two distributions it is possible to calculate the false positive and false

negative error rates as in the previous chapter.

The third task is the hardest. We now have N + 1 hypotheses. First, all the data is

generated by PB(:), second the �rst element of the data is generated by PA(:) and the
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rest by PB(:), third that the second element is generated by PA(:) and the rest by PB(:),

and so on. We label these hypotheses as H0, for all the data coming from PB(:). to Hi

the hypothesis that the data from PA(:) is the ith element. The prior probabilities are

P (H0) = 1=2 and P (Hi) = 1=(2(N + 1)) for i = 1; :::; N + 1.

We now specify the likelihood functions:

P (x1; :::; xN+1jH0) =
N+1Y
i=1

PB(xi);

P (x1; ::::; xN+1jHj) = PA(xj)
N+1Y
i6=j=1

PB(xi): (3.51)

In this case, we simply need to pick the largest of the following set of numbers (cor-

responding to the votes for model H0 and HJ , j = 1; :::; N + 1 respectively.

flog P (x1; :::; xN+1jH0)+log(1=2); log P (x1; ::::; xN+1jHj)+log(1=(2(N+1))); j = 1; :::; N+1:g
(3.52)

From the form of the distributions this reduces to picking the maximum of

f1; log PA(xj)

(N + 1)PB(xj)
; j = 1; :::; N + 1:g (3.53)

This is clearly the hardest task. It is quite possible that an outlier is present but

that log
PA(xj)

(N+1)PB(xj)
< 1 for all j = 1; :::; N + 1. If the choice was to determine whether

an outlier is present (without knowing where its position is) we would simply have to

determine that
PN+1
j=1 log

PA(xj)

(N+1)PB(xj)
< 1 which makes it less likely to make mistakes.

Once again, our example with �; � make it clear that this task is also asymmetric.

In this task, misclassi�cations can occur in several ways. Suppose there is no out-

lier present. Then the errors can arise with probability Pr(maxflog PA(xj)

PB(xj)
g > log(N +

1)j fxjg from B) which, using the argument above, we can express as 1�fPr(log PA(x)
PB(x)

>

log(N + 1)j x drawn from B)gN+1. This form of error rate can be small. Alterna-

tively, errors can arise if the (N + 1)th sample is drawn from A. This case can be

misclassi�ed in two ways. Either the stimulus is classi�ed as no outlier being present,

with probability Pr(log PA(x)
PB(x)

< log(N + 1)j x drawn from A)fPr(log PA(x)
PB(x)

< log(N +

1)j x drawn from B)gN . Alternatively, it can be misclassi�ed as having the outlier

occurring in an incorrect position. This requires Pr(maxflog PA(xj)

PB(xj)
g > max(log(N +

1); log PA(x)
PB(x)

)j fxjg from B; x drawn from A).
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3.4.5 More complex models of visual search

We now generalize the class of models we can apply these theories to. This should make

you appreciate the usefulness of making the binary indicator variables V explicit. In later

chapters, we will show that even more sophisticated visual tasks can be formulated in this

way.

The same procedures can be generalized to situations where the number of outliers

is either a �xed number which di�ers from 1 or even a random variable speci�ed by a

probability distribution. We can, for example, consider the outlier task with

P (x1; :::; xN+1jV1; :::; VN+1) =
N+1Y
i=1

PB(xi)
ViPA(xi)

1�Vi ; (3.54)

and with any prior distribution P (fVig) on the indicator variables.

One possibility is to assume that there are H outlier points which are equally likely.

This corresponds to picking a prior distribution:

P (fVig) = 1

Z
ÆPN+1

i=1
Vi;H

; (3.55)

where Z is a normalization factor (exercise, what is it?).

Another possibility is to de�ne a probability distributions for the number of outliers.

Some possibilities are

P (fVig) = 1

Z
e�
PN+1

i=1
Vi ; or P (fVig) = 1

Z
e��f

PN+1

i=1
Vig2 (3.56)

Yet another is to assume that it is most probable for neighbouring points to be outliers

(more sophisticated models of this type will be dealt with in later sections). This can be

expressed by a distribution:

P (fVig) = 1

Z
e
PN

i=1
ViVi+1 : (3.57)

In all cases we can similar analyses. We can determine whether an outlier is present by

comparing PB(fxig with
P

fVig P (fxigjfVig)P (fVig. We can attempt to ask more precise

questions by enlarging the hypothesis set to include all class of allowable con�gurations

of fVig and to evaluate their evidence logPB(fxig and logP (fxigjfVig)P (fVig.
These types of models will clearly predict that performance improves if more extra

features are available. The analysis above would simply be modi�ed to generalize the scale

observables xi to be vector valued ~xi. It has been reported in the literature that search

tasks become signi�cantly simpler when conjunctions of features are present (Treisman).

Analysis of these experiments (Palmer, Verghese, Pavel) suggest that these improvements

are consistent with models of the type we have been describing.
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In later chapters, we will discuss how to formulate far more complicated models within

the same framework by using more powerful families of probability distributions.

3.4.6 Asymmetry in Visual Search tasks

In this section, we give some insight into the search asymmetry by claiming that some

search examples can be analyzed as the number of samples becomes large. This is because

the samples are i.i.d. which implies that their statistical 
uctuations tend to average

themselves out. This section makes use of certain results, such as the law of large numbers

and large deviation theory, which will only be derived in a later chapter. At present these

claims should be taken on faith.

Consider the task of determining if an outlier from PA(:) is, or is not, present in

a background of stimuli from PB(:). The criteria used is the likelihood test (1=(N +

1))
PN+1
i=1 PA(xi)=PB(xi). Now suppose that all the data is generated by PB(:). The

claim is, for certain situations to be clari�ed in a later chapter!!, that the distribution of

the likelihood ratio is sharply peaked at its mean value. The mean value can be calculated

by taking the expectation with respect to
QN+1
i=1 PB(xi). This gives that the most prob-

able value of the test is 1 if all the data is generated from PB(:). Conversely, suppose

all but one element of the data is generated by PB(:). Then the likelihood test splits

into the part corresponding to samples from B and a single sample x from PA(:). The

most probable contribution from the B samples is N=(N +1) (by applying the argument

above). Therefore the likelihood ratio takes the value 1 (with high probability) if all data

comes from B and the random value N=(N + 1) + 1=(N + 1) logPA(x)=(PB(x)). So the

e�ectiveness of the test depends on the probability that PA(x) > PB(x) given that the

data is generated by PA(:). This is just the probability that a sample from PA(:) will be

misclassi�ed as being from PB(:) using ML estimation. So in this limit the search task

becomes equivalent to simply classifying a stimulus as being either A or B by ML. This

is therefore usually asymmetric because the overall between two distributions is usually

asymmetric, see �gure (3.11).

Arguments of this type should be used with great caution. In making the argument

we have assumed that the distribution of a large set of samples generated by PB(:) is

in�nitely tightly peaked. Strictly speaking, this will only be true in the (unrealistic) limit

as the number of samples goes to in�nity. To make the argument rigourous we refer to

a later chapter!! where we put bounds on the probabilities of the expectations over large

samples from B of di�ering from the mean value.

3.4.7 Manhattan Example

We now describe another example of hidden variables. This involves binary indicator

variables that label di�erent types of edges in an image. The input to the system is the

set of edges extracted from an image. See �gure (3.13).

Most indoor and outdoor city scenes are based on a cartesian coordinate system which
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Figure 3.11 Asymmetry in error rates. The chance that a sample from PA(:) is misclassi�ed as B is not,

in general, the same as the chnace that a sample from B(:) is misclassi�ed as A. There wil, however,

be no asymmetry for the important case of equal variance Gaussians.

we can refer to as a Manhattan grid. This grid de�nes an ~i;~j;~k coordinate system. This

gives a natural reference frame for the viewer. If the viewer can determine his/her position

relative to this frame { in other words, estimate the ~i;~j or ~k directions { then it becomes

signi�cantly easier to interpret the scene. In particular, it will be a lot easier to determine

the most important lines in the scene (corridor boundaries and doors, street boundaries

and traÆc lights) because they will typically lie in either the~i;~j or ~k directions. Knowledge

of this reference frame will also make it signi�cantly easier and faster to outliers which

are not aligned in this way. We de�ne 	 to be the compass angle. This de�nes the

orientation of the camera with respect to the Manhattan grid: the camera points in

direction cos	~i � sin	~j. Camera coordinates ~u = (u; v) are related to the Cartesian

scene coordinates (x; y; z) by the equations:

u =
ff�x sin	� y cos	g
x cos	� y sin	

; v =
fz

x cos	� y sin	
; (3.58)

where f is the focal length of the camera (or eye).

At each image pixel we either have an edge (with its orientation) or no edge. The

edge could result either from an~i;~j;~k line or from an un-aligned edge. More formally, the

image data at pixel ~u is explained by one of �ve models m~u: m~u = 1; 2; 3 means the data

is generated by an edge due to an~i;~j;~k line, respectively, in the scene; m~u = 4 means the

data is generated by a random edge (not due to an ~i;~j;~k line); and m~u = 5 means the

pixel is o�-edge. The prior probability P (m~u) of each of the edge models was estimated

empirically to be 0:02; 0:02; 0:02; 0:04; 0:9 for m~u = 1; 2; : : : ; 5.

It is a straightforward geometry to show that an edge in the image at ~u = (u; v) with

edge normal at (cos �; sin �) is consistent with an ~i line in the sense that it points to the
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Figure 3.12 (Left). Geometry of an~i line projected onto (u; v) image plane. � is the normal orientation

of the line in the image. Because our camera is assumed to point in a horizontal direction, the vanishing

point lies on the u axis. (Right) Histogram of edge orientation error (displayed modulo 180Æ). Observe

the strong peak at 0Æ, indicating that the image gradient direction at an edge is usually very close to

the true normal orientation of the edge. This distribution is modelled using a simple box function.

vanishing point if �v tan � = u + f tan	 (observe that this equation is una�ected by

adding �� to � and so it does not depend on the polarity of the edge). We get a similar

expression v tan � = �u+ f cot 	 for lines in the ~j direction. See �gure (3.12).

We assume that there is an uncertainty in estimating the edge orientation �~u at a

point ~u described by a probability distribution Pang(�), see �gure (3.12). More precisely,

P (�~ujm~u;	; ~u) is given by Pang(�~u � �(	;m~u; ~u)) if m~u = 1; 2; 3 or U(�~u) = 1=(2�) if

m~u = 4; 5. Here �(	;m~u; ~u)) is the predicted normal orientation of lines determined by

the equation �v tan � = u + f tan	 for ~i lines, v tan � = �u + f cot	 for ~j lines, and

� = 0 for ~k lines.

In summary, for models 1,2 and 3 the edge orientation is modeled by a distribution

which is peaked about the appropriate orientation of an ~i;~j;~k line predicted by the com-

pass angle at pixel location ~u; for model 4 the edge orientation is assumed to be uniformly

distributed from 0 through 2�. Places where there are no edges are automatically assigned

to model 5.

Rather than decide on a particular model at each pixel, we marginalize over all �ve

possible models (i.e. creating a mixture model):

P (�~uj	; ~u) =
5X

m~u=1

P (�~ujm~u;	; ~u)P (m~u) (3.59)

In this way we can determine evidence about the camera angle 	 at each pixel without

knowing which of the �ve model categories the pixel belongs to.

To combine evidence over all pixels in the image, denoted by f�~ug, we assume that
the image data is conditionally independent across all pixels, given the compass direction

	:

P (f�~ugj	) =
Y
~u

P (�~uj	; ~u) (3.60)
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Figure 3.13 Detecting bikes (left column) and robots (right column) in urban scenes. The original

image (top row) and the edge maps (centre row) { displayed as a grey-scale image where black is high

and white is low. In the bottom row we show the edges assigned to model 4 (i.e. the outliers) in

black. Observe that the edges of the bike and the robot are now highly salient (and make detection

straightforward) because most of them are unaligned to the Manhattan grid.

Thus the posterior distribution on the compass direction is given by
Q
~u P (�~uj	; ~u)P (	)=Z

where Z is a normalization factor and P (	) is a uniform prior on the compass angle.

To �nd the MAP (maximum a posterior) estimate, we need to maximize the log pos-

terior term (ignoring Z, which is independent of 	) log[P (f�~ugj	)P (	)] = logP (	) +P
~u log[

P
m~u

P (�~ujm~u;	; ~u)P (m~u)]. This can be computed by an algorithm which evalu-

ates the log posterior numerically for the compass direction 	 in the range �45Æ to +45Æ,
in increments of 1Æ.

You can also integrate out the fmig to get the  . (This is an exercise for the reader.)

3.5 The EM algorithm

The Expectation Maximization (EM) algorithm is a very common procedure for integrating

out \hidden variables". In principle, it is very general and, as we describe below, it is

guaranteed to converge to a local optimum. There is no guarantee, however, that it
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will converge to the optimal solution. Indeed, as we will show, it can be reformulated

as a variant of the standard steepest descent algorithm. Steepest descent algorithms are

guaranteed to converge to a local minimum but will often fail to reach the global minimum

unless they start out with good initial conditions.

3.5.1 Mixture of Gaussians Case

We start with a simple example. We have data fxi : i = 1; :::; Ng which is generated

by a mixture of Gaussians P (xj�a; �2) for a = 1; :::;M (where M < N). Our goal is to

estimate the means of the Gaussians (we assume that their variances are known). The

problem is that we do not know which data is generated by which Gaussian.

We introduce an auxiliary variable fViag so that Via = 1 if data xi is generated by

model P (xj�a; �2) and Via = 0 otherwise. We impose the constraint
P
a Via = 1; 8 i to

ensure that every data point is generated by exactly one model. We now write:

P (fxigjf�ag) =
X
fViag

P (fxig; fViagjf�ag): (3.61)

Here we set

P (fxig; fViagjf�ag) = 1

Z
e�
P

ia
Via(xi��a)2=(2�2); (3.62)

which assumes a uniform prior on the fViag's (i.e. any assignment of the data to the

model is, a priori, equally likely).

First, we check that this formulations means that P (fxigjf�ag) is a mixture of Gaus-
sians. To do this we �rst write P (fxig; fViagjf�ag) = 1

Z

QN
i=1 e

�
P

a
Via(xi��a)2=(2�2). For

each i, we now sum over the variables fVia : a = 1; :::;Mg with the constraint Pa Via = 1.

This yields P (fxigjf�ag) = 1
Z

QN
i=1f

PM
a=1 e

�
P

a
(xi��a)2=(2�2)g which shows that each xi is

generated independently from a mixture of Gaussians. (Exercise, check this by considering

the special case when M = 2).

Now we want to estimate the most probable f�ag from P (fxigjf�ag). The EM

algorithm says that we can do this by iterating two steps. The �rst step estimates

the probability that data xi is generated by distribution a. More precisely, we compute

P̂ (fViag) = P (fViagjfxig; f�ag) using our current estimate of the f�ag. Since this prob-
ability distribution factorizes over i, see equation (3.62), we can express this as the prod-

uct of probability distributions P (Vaijxi; f�ag) for each i. Because Via is binary val-

ued (i.e. Via = 0; 1) we can represent this by the expected value of Via which we call
�Via =

P
Via

ViaP (Vaijfxig; f�ag).
This estimation is done by marginalization. It gives:

P (Via = 1jxi; f�ag) = e�(xi��a)2=(2�2)PM
b=1 e

�(xi��b)2=(2�2)
: (3.63)
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The second stage is to make the most probable estimates of the f�ag assuming that

the P (Via = 1jxi; f�ag) are �xed. More precisely, we choose the f�ag to maximizeP
fViag P̂ (fViag) logP (fViag; fxigjf�ag). This gives:

�a =

PM
i=1

�ViaxiPM
i=1

�Via
; 8 a: (3.64)

The �rst stage estimates which model is most likely to have generated the data xi

(given the current values of the model parameters). The second stage, estimates the

means �a of the models with the data weighted by the (estimated) probability that it is

due to model a.

The two stages iterate and can be proven, see next subsection, to converge to a local

maximum of P (fxigjf�ag). (This, of course, is ML estimation but the same approach can

be easily extended to deal with MAP estimation if there is a prior om the f�ag). The

procedure does require initialization and, frankly, whether the algorithm converges to the

true maximum of P (f�agjfxig) often depends on how good the initialization is.

This example, hopefully, gives some intuition about the EM algorithm. But it is

unrepresentative in several respects. Firstly, both the E and M stages can be solved for

analytically. In more realistic cases one or both steps will require calculation by computer.

(Imagine if we replaced
P
ia Via(xi � �a)

2 by
P
ia Via(xi � �a)

4 in the exponent of the

probability!). Secondly, the intermediate (or hidden) variables fVaig are binary variables

of a particularly simple form. There is no need for this either, but it does drastically

simplify things.

3.5.2 The general form of the EM algorithm

This subsection describes the general form of the EM algorithm. Our formulation will be

for continuous hidden variables but it can be adapted directly to discrete hidden variables

(just replace the integrals by summations).

Suppose the observations x are generated by state variables s and hidden variables h.

We assume that the probability distributions P (x; hjs) are known.
For example, x could represent the image of an object s and the hidden variables

h could be the illumination conditions (or the viewpoint, or some internal state of the

object).

The goal is to �nd the MAP estimator s� which maximizes

P (sjx) =
Z
P (x; hjs)P (s)

P (x)
dh: (3.65)

The term P (x) is constant (independent of s) so we drop it in order to simplify the

algebra. (I.e. we search for the maximum of P (sjx)P (x) with respect to s.)

The EM algorithm is guaranteed to �nd at least a local maximum of P (sjx). It starts
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by making a guess s0 of the state variables. Then it proceeds by iterating two steps. The

E-step estimates the distribution of h from P (hjx; st), where st is the current estimate of
the state. The M-step maximizes

R
dhP (hjx; st) logfP (h; xjs)P (s)g to estimate st+1. The

two steps combined give an update rule:

st+1 = argmax
s
f
Z
dhP (hjx; st) logfP (h; xjs)P (s)g: (3.66)

The EM algorithm for a mixture of Gaussians, previous subsection, can be derived

from this general case by replacing the h by V , the integrals by summations, and using

the speci�c probability distribution for the mixture case, see equation (3.62). (Details left

as an exercise for the reader).

3.5.3 Why Does the EM algorithm Converge?

Now we address the issue of why the EM algorithm converges. It may seem to be a

miraculous algorithm because it enables you to integrate out hidden variables that you

never observe. But it is not so strange when one understands it (\A miracle is simply

technology that you don't understand" W. Gates. III). It should be stressed that the EM

algorithm always assumes a probability distribution for the hidden variables conditioned

on the state variables. So knowledge about the hidden variables is built into the system

from the start.

We now give a proof for convergence for the EM algorithm. The proof proceeds by

showing that the EM algorithm can be simply transformed into a steepest descent/ascent

algorithm of an energy function. The E-step corresponds to minimizing with respect to one

set of variables (with the other variables kept �xed) while the M-step involves minimizing

with respect to the second set of variables (with the �rst set �xed). it is clear that each

step of this procedure will reduce the energy and, provided the energy is bounded below,

convergence to at least a local minimum is guaranteed. (The requirement that the energy

be bounded below will automatically be true unless the probability distributions are truly

bizarre).

The basic idea (Hathaway, Hinton and Neal) is to de�ne a new variable P̂ (h) which

is a probability distribution. We then de�ne a function F (P̂ ; s) speci�ed by:

F (P̂ ; s) =

Z
dhP̂ (h) log P (h; xjs) �

Z
dhP̂ (h) log P̂ (h); (3.67)

which can be re-expressed as the log-likelihood we wish to maximize logP (xjs) minus
the Kullback-Leibler distance D(P̂ (h)jjP (hjx; s)) between the estimated distribution on

the hidden variables P̂ (h) and the true distribution of h conditioned on our data x and

current estimate of s.

The key result is that maximizing this \energy" function with respect to P̂ and s is

equivalent to the EM algorithm
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Theorem: EM Equivalence Alternatively maximizing F (P̂ ; s) with respect to P̂

and s respectively (keeping the other variable �xed) is equivalent to the EM algorithm.

Moreover the maximum of F (P̂ ; s) with respect to P̂ is the evidence logP (xjs) for the

state s.

Proof. The key point to note is that marginalizing logP (xjs) is equivalent to maximiz-

ing logP (xjs)�D(P̂ (h)jjP (hjx; s)) jointly over s and P̂ (h), where P̂ (h) is any distribution
on h (and D(:jj:) is the Kullback-Leibler divergence). The non-negativity of the Kullback-

Leibler divergence, combined with the fact that the divergence is zero only between identical

distributions, ensures that the maximum is reached only by setting P̂ (h) equal to the true

distribution on h, i.e. P (hjx; s). By expanding out the Kullback-Leibler divergence, We

can rewrite logP (xjs)�D(P̂ (h)jjP (hjx; s)) as H(P̂ )+
R
dhhatP (h) logfP (hjx; s)P (xjs)g,

where H(P̂ ) = � R dhP̂ (y) log P̂ (h) is the entropy of P̂ . This can then be rewritten as

H(P̂ )� R dhP̂ (h) log P (h; xjs).
We illustrate this proof by obtaining an energy function which corresponds to the mix-

ture of Gaussian example discussed earlier. The hidden variables are the binary indicator

variables fViag. The probability distribution on them can be represented by their expect-

ed values f �Viag with the constraint that
P
a
�Via = 1; 8 i. The entropy for this distribution

can be calculated to be �Pia
�Via log �Via. We therefore obtain an energy function:

E[f �Viag; f�ag] =
X
ia

�Via
(xi � �a)

2

2�2
+
X
ia

�Via log �Via +
X
i

�if
X
a

�Via � 1g; (3.68)

where the f�ig are Lagrange multipliers to impose the constraints
P
a
�Via = 1; 8 i.

s

P(h)^

sinit

Figure 3.14 The two steps of EM treated as steepest descent, or ascent, in the two sets of variables.

This formulation makes it clear that the EM algorithm will converge.

It can be veri�ed that minimizing E[f �Viag; f�ag] with respect to f�ag gives the M-
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step, see equation (3.64), while minimizing with respect to f �Viag gives the E-step (when

expressed in terms of the f �Viag). See �gure (3.14).

3.5.4 A Traditional Proof of Convergence of the EM algorithm.

This subsection gives a more traditional proof of convergence of the EM algorithm. The

proof is, perhaps, less intuitive than the one based on the steepest descent connection.

Theorem. Convergence of EM. Each iteration of EM satis�es P (st+1js) � P (stjx)
and so, provided P (sjx) is bounded above, the algorithm converges to a local maximum of

P (sjx).
Proof. By using the equality P (h; xjs) = P (hjx; s)P (xjs) we can write:

Z
dhP (hjx; st) logfP (h; xjs)P (s)g =

Z
dhP (hjx; st) log P (hjx; s)

P (hjx; st)
+

Z
dhP (hjx; st) logP (hjx; st) + logP (xjs) + logP (s): (3.69)

The second term on the right hand side is simply minus the Kullback-Leibler divergence

D(P (hjx; st)jjP (hjx; s)) from P (hjx; st) to P (hjx; s) and is non-positive and equals zero

only if P (hjx; st) = P (hjx; s). Therefore if we set s = st in the equation above, we obtain

Z
dhP (hjx; st) logP (h; xjst) =

Z
dhP (hjx; st) logP (hjx; st) + logP (xjst) + logP (s):

(3.70)

This gives:

logfP (xjs)P (s)g � logfP (xjst)P (st)g = D(P (hjx; st)jjP (hjx; s))
+

Z
dhP (hjx; st) logP (h; xjs)�

Z
dhP (hjx; st) logP (h; xjst)

�
Z
dhP (hjx; st) logP (h; xjs) �

Z
dhP (hjx; st) logP (h; xjst): (3.71)

The EM algorithm says we should select st+1 to maximize
R
dhP (hjx; st) logfP (h; xjs)P (s)g.

Hence we can be sure that
R
dhP (hjx; st) logfP (h; xjst+1)P (st+1)g �

R
dhP (hjx; st) logfP (h; xjst)P (st)g.

Therefore if we set s = st+1 in the equation above, we can guarantee that the right hand

side will be non-negative. Thus logfP (xjst+1)P (st+1)g � logfP (xjst)P (st)g and the the-

orem is proven.

3.5.5 Another EM example: maybe too hard?

THIS EXAMPLE MAY BE TOO HARD { it hides EM under too much algebra!!

An example of the EM algorithm is for the problem of �nding stop signs in an image

(Yuille, Snow, Nitzberg). We have a template f~za : a = 1; :::; 8g for the corner positions
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of a standard stop sign viewed from front-on at a �xed distance. By the use of feature

detectors (who exact form is irrelevant here) we have detected points f~xi : i = 1; :::;Mg
which are possible positions for the corners of the stop sign. Our goal is to match our

template f~zg to these data points f~xg. To allow for viewpoint variations, we assume that

the images of the template is given by A~za+~b : a = 1; :::; 8, where A is an matrix to allow

for change in shape of the sign caused by the (unknown) viewpoint and ~b is the position

of the sign. So the variables A;~b together are the state s that we wish to estimate. The

hidden variables are binary indicator variables fViag which determine whether data point

~xi is matched to template point ~za. These matching variables must also take into account

the fact that some corners f~zg of the stop sign may be occluded by other objects and

hence be invisible. Conversely, there may be data points f~xg that do not correspond to

corners of the template.

We specify a probability distribution:

P (f~xig;VjA;~b) = e�E[V;A;~b:f~xig]

Z
; (3.72)

where Z is the normalization factor and

E[V;A;~b : f~xig] =
X
ia

ViajA~xi +~b� ~zaj2 + �
X
i

(1�
X
a

Via): (3.73)

The indicator matrix V is constrained so that, for all i,
P
a Via = 0 or 1 to ensure

that each data corner is matched to at most one true corner. If a data corner point is

unmatched then it pays a penalty �.

In this case, the probability distributions for the V can be represented by the mean

values �Vai because the variables are binary (for distributions on binary variables the means

specify the distribution precisely).

The algorithm proceeds as follows. Firstly, we initialize the variables f �Vaig. Then we

apply the E and the M step repetitively. The E-step involves estimating:

�Vai =
e�jA~xi+

~b�~zaj2

e�� +
P
c e

�jA~xi+~b�~zcj2
: (3.74)

The M-step involves solving the simultaneous linear equations for A and ~b:

A(
X
ia

�Via~xi) +~b(
X
ia

�Via �
X
ia

( �Via~za) = 0;

A(
X
ia

�Via~x
T
i ~xi) +

X
ia

�Via~x
T
i
~b�

X
ia

~xTi ~za = 0: (3.75)

This example is again a bit simple because both E andM steps can be done analytically.
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3.6 MFT Approximation and Bounding the Evidence

What happens when we have discrete variables and cannot compute the marginal distri-

butions analytically? Is there anything like a Laplace approximation in this case? (Again,

we warn that we are describing general purpose techniques in this section and for certain

types of problem there are more e�ective methods which may not even require approxi-

mations, see later chapters).

The answer is yes, there are a set of approximations �rst obtained in the statistical

physics literature and then applied to probability estimation tasks. In this section, we will

describe one method known as the naive mean �eld theory approximation. One advantage

of this derivation is that it makes it explicitly clear that the approximation gives a lower

bound of quantities of interest such as the evidence. (Though natural extensions to higher

order terms give approximations which may be better but which cannot be proven to be

upper or lower bounds).

Suppose, for example, that we are trying to evaluate the evidence for a visual search

task, see previous section, where the distribution of the data conditioned on the hidden

states is given by:

P (x1; :::; xN+1jV1; :::; VN+1) =
N+1Y
i=1

PB(xi)
ViPA(xi)

1�Vi ; (3.76)

and the distribution of the hidden states is:

P (fVig) = 1

Z
e
PN

i=1
ViVi+1 : (3.77)

The probability of the data is then given by

P (x1; :::; xN+1) =
X
fVig

f
N+1Y
i=1

PB(xi)
ViPA(xi)

1�Vig 1
Z
e
PN

i=1
ViVi+1 : (3.78)

This summation is very diÆcult to perform if N is large. Mean �eld theory, however,

gives a way to approximate it.

There are many ways to derive mean �eld theory approximations (refs). We choose

the method that is most consistent with the spirit of this book (Jordan et al.). Suppose

we want to estimate the evidence logP (xjs) for a state s when observing the data x.

And suppose that we have hidden variables h and so P (xjs) = Ph P (x; hjs). One way

to approximate this is by replacing the probability distribution P (hjx; s) by the \closest"
element of a family of distributions fP�(hjx; s) : � 2 �g. (The choice of this approxima-
tion family is important and we will return to it shortly.) We measure closeness by the

Kullback-Leibler divergence between P�(hjx; s) and P (hjx; s) to be:
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F [�] =
X
h

P�(hjx; s) log P�(hjx; s)
P (hjx; s) (3.79)

Using Bayes theorem, (P (hjx; s) = P (xjh; s)P (hjs)=P (xjs)), we can rewrite this as:

F [�] =
X
h

P�(hjx; s)flog P�(hjx; s) + logP (xjs)� logP (xjh; s) � logP (hjs)g: (3.80)

We can therefore write:

logP (xjs) = F [�] +
X
h

P�(hjx; s)flog P (xjh; s) + logP (hjs)� logP�(hjx; s)g: (3.81)

F [�] is always positive semi-de�nite (because it is a Kullback-Leibler divergence) and

so we can turn this into an inequality logP (xjs) �Ph P�(hjx; s)flog P (xjh; s)+logP (h)�
logP�(hjx; s)g.

This inequality is strengthened by selecting �� = argmin� F [�]. Hence, we obtain

logP (xjs) �
X
h

P��(hjx; s)flog P (xjh; s) + logP (hjs)� logP��(hjx; s)g: (3.82)

This result is only useful if it is possible to �nd a set of families P�(h;x; s) for which

it is both possible to estimate �� and to compute the right hand side of the inequality.

The most promising family is the set of factorizable distributions so that

P�(h;x; s) =
NY
i=1

pi(hi;x; s); (3.83)

where we denote the variable h = (h1; :::; hN ). The parameters � correspond to the ways

of specifying the distributions pi(hi;x; s). For example, it may be assumed that each

hi is a binary variable which takes a state either 0 or 1. Then we can parameterize

pi(hi;x; s) = �hii (1 � �i)
1��i . The set of variables � = �1; :::; �N will specify the distri-

bution P�(h;x; s) =
QN
i=1 pi(hi;x; s) uniquely. (Note that in this approximation the f�ig

will be functions of the data x and the state s which we are calculating the evidence for.)

We now return to our example from visual search. So we replace the h by fVig and
drop the s variable (because our example, for simplicity, only considers the evidence for

a single state).

We can write logP (x; V ) as
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logP (xjV ) + logP (V ) =
N+1X
i=1

fVi logPB(xi) + (1� Vi) logPA(xi)g+ 1

N

NX
i=1

ViVi+1 � logZ:

(3.84)

We approximate by factorized distributions of form:

P�(fVig : x) =
NY
i=1

f�Vii (1� �i)
1�Vig: (3.85)

The mean values of the fVig with respect to P�(fVig : x) are given by V̂i = �i. Hence,

we see that:

X
fVig

P��(fVigjx)flog P (xjfVig)+logP (fVig)�logP��(fVigjx)g =
NX
i=1

�i�i+1+
N+1X
i=1

f�i logPB(xi)+(1��i) log PA(

(3.86)

The f�ig must be found to minimize the right hand side. The equations correspond to
the well known mean �eld equations studied in statistical physics. Although there are are

no algorithms known to be guaranteed to solve them (in general) there are nevertheless a

set of good approximate algorithms that converge, at least, to a local minimum of these

equations. Recall, that if we are only looking for a lower bound, then a local minimum

will be suÆcient.

In any case, suppose we have found f��i g which gives a local minimum of
P
h P��(hjx)flog P (xjh)+

logP (h)� logP��(hjx)g. Then the value of the bound can be computed directly by sub-

stituting in for f��i g. Hence, we �nd that:

logP (x) �
X
i;j

Wij�
�
i�

�
j +
X
i

�i�
�
i �
X
i

f��i log ��i + (1� ��i ) log(1� ��i )g; (3.87)

where f�ig are chosen to maximize the right-hand-side.

How does this method relate to Laplace's method described in the previous section.

Although there are striking di�erences there are some underlying similarities. The mean

�eld method applies only to binary, or discrete valued, variables. The model evidence is

therefore de�ned by a sum over discrete states. It is possible, however, using techniques

from analytic continuation to re-express this sum in terms of integrals over continuous

variables which can be re-interpreted as the f�ig. One can then apply Laplace's method to
this continuous version. The result is that the variables f��i g that maximize the integrand
for Laplace's method are precisely those which minimize F [�]. So the mean �eld method

correspond to doing the �rst part of Laplace's method but ignoring the quadratic and
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higher order terms. (This analytic continuation is used a great deal in Statistical Physics

but a rigourous justi�cation for it is lacking to our knowledge).

Key points:

� Model Selection Motivation

� Continuous Variable Tasks.

� Genericity.

� Laplaces's method

� Discrete Variable Tasks

� Robustness and Outliers

� Visual Search

� Manhattan

� EM Algorithm

� MFT Approximation
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