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Deep learning ana
human vision

Mini lecture 2: hand-wired vs. learning
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Hubel & Wiesel, 1960s

receptive fields

a dictionary of image features?
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an example of what DiCarlo et al. called a “normalized LN” mode, or NLN

shallow convolutional networks
what can they do?

detect edges a .

detect faces

textures

...but despite much research, few of these shallow networks work very well as models of human perception, except for
simple stimuli and tasks

e.g. they work well as predictors of contrast detection, discrimination of certain types of textures.
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what determines the weights w,; as
one proceeds up levels (j) of the hierarchy?,

the tasks of vision,
e.g. “core” recognition
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the regularities in images,
e.g. high correlations between nearby pixels

hierarchical models for feature extraction
given task constraints, e.g. core recognition

* Local features progressively grouped into more

structured representations

* edges => contours => fragments => parts =>
objects

» Selectivity/invariance trade-off

* Increased selectivity for object/pattern type

* Decreased sensitivity to view-dependent variations
of translation, scale and illumination

Fukushima 1988

Figure 3.30

Fukushima, K. (1988). Neocognitron - a Hierarchical Neural Network Capable of Visual-Pattern Recognition. Neural Networks, 1(2), 119-130.
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simple & complex cells in V1

» Simple cells

* “template matching”, i.e. detect conjunctions, logical
“AND”

* Complex cells

* insensitivity to small changes in position, detect
disjunctions, logical “OR”

* Recognition as the hierarchical detection of
“disjunctions of conjunctions”

“t” is represented by the conjunction

Recognize the letter “t”
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Riesenhuber & Poggio, 1999
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volunteers to lead
next week paper discussions?

« Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007).
Robust object recognition with cortex-like mechanisms. Pattern
Analysis and Machine Intelligence, 29(3), 411-426.

» Serre, T, Oliva, A., & Poggio, T. (2007). A Feedforward Architecture
Accounts for Rapid Categorization, 104(15), 6424-6429.

* Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object
recognition in cortex. Nature Neuroscience, 2, 1019-1025.

* Wu, C.-T,, Crouzet, S. M., Thorpe, S. J., & Fabre-Thorpe, M. (2015).
At 120 msec You Can Spot the Animal but You Don“t Yet Know It’s a
Dog. Cognitive Neuroscience, Journal of, 27(1), 141-149. http://
doi.org/10.1162/jocn_a 00701




