Deep learning ana
human vision

Introduction

artificial neural networks & machine
learning

» The first wave: Late 1950s, early 60s:
» Rosenblatt & the perceptron

* The second wave: mid to late1980s
* Rumelhart, Hinton &...

» The third wave: early 2010s to present

e Hinton, LeCun, ....

relevance to neuroscience,
psychology, computation?

* too simple to explain dynamics of neural micro-
circuitry

* ...but perhaps relevant to larger scale functional

architecture?

» descriptive theories of visual behaviorl, lab
examples. predictive theories?

* mainly toy applications in computer science/
computer vision

IS the third wave different?

https://www.nytimes.com/2016/12/14/

networks that recognize objects given natural images,
out-performing state-of-the-art computer vision systems,
and competing with people in limited tasks

what if anything does that tell us about
mammalian/human vision?




Task: find and name the object category

OUH ine recognition and the invariance problem

* labeling: a key problem of visual recognition

¢ shallow models

deep models

* learning the models

discriminative vs. generative models
feedforward vs. feedback

enormous range of appearance variations

discounting/invariance

» Within subordinate-level category ﬁ
« e.g. piece of clothing under $
different lighting, viewpoint,

articulation

* Within basic-level category
* e.g. different types of dogs, coloring
and shape details differ, but basic
structural appearance is similar

* Within super-ordinate category

* two reptiles (snake, lizard) can have
very different visual appearances




view-dependent, image-

shallow models based models

image-based models Examples

no explicit knowledge that * Represent each object category by a collection

objects are 3D of “snap-shots” of its images or of its “key” 2D
features

» Store 2D prototype(s) with model of possible
image variations

Examples Examples

Nearest-neighbor \ Store 2D prototype(s) with model of possible image

. for a given object, store lots of variations

examples of its images or features,
each example has the label for that e To recognize new image either:
object ’

* represent these in a high-

prese ® check to see how close image is to the
dimensional feature space

representation of the prototype (bottom-up/

« to recognize an object from a new Sl feedforward)
appearance, see what the label is of
the nearest stored example

® manipulate object parameters in memory to
o check for a match to incoming images/features
Poggio & Edelman, 1990; Bulthoff & Edelman, 1992; Tarr & Bulthoff, 1995; Liu, Knill & d teedback
Kersten (1995); Troje & Kersten (1999) (top— own/feedbac )




behavioral evidence in humans for both kinds
of recognition

towards deep models

Rosenblatt's model (1957)

how deep?

Inputs  Weights Netinput  Activation
function function

a learning component too, but
we'll come back to that

The Perceptron, A Perceiving and Recognizing Automaton,
Schematic of Rosenblatt’s perceptron. Project Para Report No. 85-460-1, Cornell Aeronautical Laboratory (CAL), Jan. 1957
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Pandemonium architectures tremendous
power because it is capable of recognizing a
stimulus despite its changes in size, style and
other transformations; without the presumption
of an unlimited pattern memory
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0. G. Selfridge. "Pandemonium: A paradigm for learning." In D. V.
Blake and A. M. Uttley, editors, Proceedings of the Symposium on
Mechanisation of Thought Processes, pages 511-529, London, 1959,

Cognitive
Demons

Computation
Demons

Data or Image
Demons




deeper, hierarchical models

3 D model
2.5 D sketch
primal sketch

David Marr’s
1982 model

o _Vewercentred Object centred
ot
Input Primal 21/2-D 3-D Model
Image Sketch Sketch Representation
Zero crossings, Local surface 3-D models
. || blobs,edges, |_..|orientation and | .| hierarchically
Feme'f’_ed bars, ends, discontinuities organised in
Intensities virtual lines, in depth and in terms of surface
groups, curves surface and volumetric
boundaries. orientation primitives

relation to perceptual studies?

« Early vision

« local image measurements (features) that don't require explicit object
knowledge

« Intermediate-level vision

« grouping of local measures that don’t require explicit knowledge of object
categories. Only “generic’knowledge

« symmetry, cue integration, ...
« High-level vision
* “jobs of vision”

* compute within-object relations, object-object relations, viewer-object
relations

relation to the biology?

* global, hierarchical organization

* |ocal neural circuitry building blocks




ventral and dorsal visual streams visual hierarchy
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some history — 1940s
dorsal
MecCulloch-Pitts “neuron”
+ Attributes R
@ Binary inputs and outputs (0 or 1) Wies . .
© Inhibitory inputs are absolute w,
@ Inputs all have same fixed weight H
@ Time invariant s Weghs Nt Acvaton
¥ Time is quantized in units of synaptic delay (o= e e
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+ Key results
@ A synchronous assembly of neurons is Boolean complete
) @ Thekey to computation is the network, not the neuron
eeaionward Walisen, P. & Movshon, J. . (2008) C. Diorio, Week 6: Neural Networks 4




hidden layer

local building blocks s
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what determines the weights w,; as
one proceeds up levels (j) of the hierarchy?,

hierarchical models
for feature extraction

* Local features progressively grouped into more
structured representations

* edges => contours => fragments => parts =>
objects

» Selectivity/invariance trade-off
* Increased selectivity for object/pattern type

* Decreased sensitivity to view-dependent variations
of translation, scale and illumination

Fukushima 1988
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Fukushima, K. (1988). Neocognitron - a Hierarchical Neural Network Capable of Visual-Pattern Recognition. Neural Networks, 1(2), 119-130.

simple and complex cells in V1

simple cell
receptive
field

4

Complex Cells

one model

illustrating
local translation

invariance

y 2 Simple Cells

Complex Cell




simple & complex cells in V1

» Simple cells

* “template matching”, i.e. detect conjunctions, logical
“AND”

* Complex cells

* insensitivity to small changes in position, detect
disjunctions, logical “OR”

* Recognition as the hierarchical detection of
“disjunctions of conjunctions”

Recognize the letter “t”

“t” is represented by the conjunction

of a vertical and horizontal bar l AND =

1=1 I =2 i=3 =1 =2 I i=3 =1 i=2 i=3

OR OR ...
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which can occur at any one of many locations i
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task-related processing } PFC/STS/...

view-invariant units
view-tuned units

C2 units
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S - simple cell like

@ weighted sum
1 - MAX

Riesenhuber & Poggio, 1999

C - complex cell like

learning the weights?

* instead of “hand wiring”, can the weights be
learned?

* “machine learning”
* two approaches
* unsupervised learning

* supervised learning




shallow unsupervised
learning

* efficiency constraints, e.g.
* redundancy reduction

* sparsity

find the weights that minimize the
number of active V1 model simple cells
while preserving the most information
about the image

—~Olshausen and Field, 1996

deep unsupervised learning

* find suspicious coincidences,
and then recode to eliminate

them
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deep supervised learning

* e.g. annotated (i.e. labeled) datasets, with error back-
propagation learning

* googlenet

generative vs. discriminative
models

feedback and feedforward models




Image Residual Decision
Compare Feature Hypothesis
" images *| extraction * refinement »
Hypothesis
"Render"
-+
Synthesized image
Bottom-up / Top-down
Image Feature Compare
- “ - with stored | —____g Decision
extraction features

Bottom-up

volunteers to lead
next week paper discussions?

* Edelman, S. (1997). Computational theories of
object recognition. Trends in Cognitive Sciences,
1(8), 296-304.

* DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012).
How does the brain solve visual object recognition
Neuron, 73(3), 415-434.




