Bidirectional processing:
feedforward & feedback
pathways

Lecture 27:
Introduction to Neural Networks
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Kersten, D. J., & Yuille, A. L. (2014). Inferential Models of the Visual Cortical Hierarchy. In M. S. Gazzaniga
& G. R. Mangun (Eds.), The New Cognitive Neurosciences, 5th Edition (pp. 1-22). MIT Press.
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Kersten, D. J., & Yuille, A. L. (2013). Vision: Bayesian Inference and Beyond. In J. S. Werner & L. M.
Chalupa (Eds.), The New Visual Neurosciences (pp. 1-16). MIT Press.
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Lateral organization
* representation and linking of features at a similar level of abstraction
* self-organizing topographical maps
 efficient image coding to explain receptive field properties

* machine learning methods for grouping
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“standard” feedtorward model

for V1
. Response Pointwise
Image Receptive field normalization non-linearity Response

linear
response
l(X,y,t) ——> @ -or/ | — > ‘Z — 1)
K(x,y,1) T

nieghboring
neurons

convolution — similar filtering operations repeated over space

Similar filtering operations repeated between subsequent levels
\% -> Vi+1

oleep convolutional networks

canonteal co Mp wtation?



V1

spatial frequency channels — 1968

Just 2 inhomework #6 1l ==

Input encoded tensor (size: 1x214x320)
ConvolutionLayer tensor (size: 2x212x318)
2 ElementwiseLayer tensor (size: 2x212x318)

3 PoolingLayer tensor (size: 2x209 x 315)
4 ElementwiseLayer tensor (size: 2x209 x 315)
Output decoded tensor (size: 2x 209 x 315)

classic models, 16 or more

...but are there more types Ln V1?



How do tasks constrain feature
hierarchies”

Grouping to form more abstract features, given image regularities that support tasks
— “hand - wired” (Riesenhuber and Poggio, ...)
— supervised learning

* — “20 questions” approach (Ephstein et al.)

- find diagnostic features that distinguish the categories for the most important tasks to
determine the top level

- repeat at a lower level of abstract to find sub-features that distinguish the diagnostic
features

- ...and so forth
* deep convolutional networks
— unsupervised learning based on based on successive discovery of image regularities (Barlow)
* detecting “suspicious coincidences”:
- Is p(feature A, feature B) >> p(feature A) p(feature B)
- if s0, recode to remove dependence. E.g. contingent adaptation example

- advantage of general features. but perhaps mainly useful at lower levels of the hierarchy



Hierarchical models
for feature extraction for recognition

Local features progressively grouped into more
structured representations

e edges => contours => fragments => parts =>
objects

Selectivity/invariance trade-off
e |Increased selectivity for object/pattern type

* Decreased sensitivity to view-dependent variations
of translation, scale and illumination
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IT = inferior temporal cortex

bread and butter of ventral

stream modeling

Hegde and Felleman, 2007/



Recall simple & complex
cells In V1

Simple cells

e “template matching”, i.e. detect conjunctions,
logical “AND”

Complex cells

* insensitivity to small changes in position, detect
disjunctions, logical “OR”

Recognition as the hierarchical detection of
“disjunctions of conjunctions”



Recognize the letter “1”

‘17 Is represented by the conjunction
of a vertical and horizontal bar: I AND — =t

i=|_|_ =) i=3 i i=3|_ i=3 i=1 i= 2 i=3

OR OR ..

which can occur at any one of many locations |

“I’: hysavi | h2sa V2 | h3ssvs..



recognition in the ventral pathway
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Increase in complexity (number of subunits), RF size and invariance



How do tasks constrain feature
hierarchies”

Grouping to form more abstract features, given image regularities that support tasks
— “hand - wired” (Riesenhuber and Poggio, ...)
— supervised learning

* deep convolutional networks

* — “20 questions” approach (Ephstein et al.)

- find diagnostic features that distinguish the categories for the most important tasks to
determine the top level

- repeat at a lower level of abstract to find sub-features that distinguish the diagnostic
features

- ...and so forth
— unsupervised learning based on based on successive discovery of image regularities (Barlow)
* detecting “suspicious coincidences”:
- Is p(feature A, feature B) >> p(feature A) p(feature B)
- if s0, recode to remove dependence. E.g. contingent adaptation example

- advantage of general features. but perhaps mainly useful at lower levels of the hierarchy
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igher-level features?
(machine) learn them?

Input encoded tensor (size: 3x51x51)
ConvolutionLayer tensor (size: 40x47x47)

2 ElementwiselLayer tensor (size: 40x47x47)
3 PoolingLayer tensor (size: 40x24x24)
4  ConvolutionLayer tensor (size: 20x20x20)
5 ElementwiseLayer tensor (size: 20x20x20)
6 PoolingLayer tensor (size: 20x10x10)
7 FlattenLayer vector (size: 2000)
&  DotPlusLayer vector (size: 500)
9  ElementwiseLayer vector (size: 500)
10 DotPlusLayer vector (size: 3)
11 SoftmaxLayer vector (size: 3)
Output decoded vector (size: 3)
o Pointwise
Image Receptive field non-linearity Response
linear
response

I(X,y,t) —>

M >

K(x,y,1)

...one problem, not clear how the features Learned generalize across tasks



How do tasks constrain feature
hierarchies”

Grouping to form more abstract features, given image regularities that support tasks
— “hand - wired” (Riesenhuber and Poggio, ...)
— supervised learning

» deep convolutional networks

o« — “20 questions” approach (Ephstein et al.)

- find diagnostic features that distinguish the categories for the most important tasks to
determine the top level

- repeat at a lower level of abstract to find sub-features that distinguish the diagnostic
features

- ...and so forth
— unsupervised learning based on based on successive discovery of image regularities (Barlow)
» detecting “suspicious coincidences”:
- Is p(feature A, feature B) >> p(feature A) p(feature B)
- if s0, recode to remove dependence. E.g. contingent adaptation example

- advantage of general features. but perhaps mainly useful at lower levels of the hierarchy



How do tasks constrain feature hierarchies?
An example for one level of abstraction

Need features for rapid, accurate generalization, given
a visual task requirement.

Find features of “intermediate complexity”, I.e.
Image “fragments”, that are most informative for
category distinctions

Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate
complexity and their use in classification. Nature Neuroscience



Object recognition in the context of a task
requirement

What do
these
SCenes
have in
common?




"Up” curbs-- requiring a step up

UNIVERSITY OF MINNESOTA




Distinguish
from non “up
curbs”

...that do not
require a step
up and require
different actions




Learning based on informative
fragments for the task

Algorithm finds
fragments that maximize
mutual information

Detect “up curbs” from
an approach angle that
requires a step.

Hit Rate

View-specific

0 0.2 0.4 0.6 0.8 1

Works well

False Positive Rate

LAI?2C LO?2IFTING JArc

Experimentally tractable
Evgeniy Bart



Do people learn to use fragments of
predicted “intermediate complexity”

Virtual morphogenesis

Brady, M. J., & Kersten, D. (2003).
Bootstrapped learning of novel objects.
Journal of Vision, 3(6), 413-422.



Generating naturalistic object classes

Virtual Phylogenesis
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Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object
Categories. Curr Biol. 18, 597-601



Training

Member of category A or B?
A B




Results

Features of intermediate complexity (local image
patches) predicted human observers ability to classify
new objects from learned categories

Main Fragments

5 9

(mtolFragments

5 6 7 8 9

Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object
Categories. Curr Biol. 18, 597-601




How do tasks constrain feature
hierarchies”

Grouping to form more abstract features, given image regularities that support tasks
— “hand - wired” (Riesenhuber and Poggio, ...)
— supervised learning

» deep convolutional networks

o« — “20 questions” approach (Ephstein et al.)

- find diagnostic features that distinguish the categories for the most important tasks to
determine the top level

- repeat at a lower level of abstract to find sub-features that distinguish the diagnostic
features

- ...and so forth
— unsupervised learning based on based on successive discovery of image regularities (Barlow)
» detecting “suspicious coincidences”:
- Is p(feature A, feature B) >> p(feature A) p(feature B)
- if s0, recode to remove dependence. E.g. contingent adaptation example

- advantage of general features. but perhaps mainly useful at lower levels of the hierarchy



unsupervised learning
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Zhu, L., Chen, Y., Torralba, A., Freeman, W., & Yuille, A. (2010). Part and
appearance sharing: Recursive compositional models for multi-view multi-
object detection (pp. 1919—1926). Presented at the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition.

Sunflower  Schooner

Face Face

Cougar

Layer 2 Layer 3 Layer 4

Layer 1

Zeiler, M. D., Taylor, G. W., & Fergus, R. (2011). Adaptive
deconvolutional networks for mid and high level feature learning.
Computer Vision (ICCV), 2011 IEEE International Conference on,
2018-2025.

task general
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feedback



ascending pathway

Vi V2

V3...

V(n)

Superficial 1[— ——
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LGN descending pathway
(feedback)

Current Biology

Shipp, S. (2007). Structure and function of the cerebral cortex. CURBIO, 17(12), R443-9. doi:10.1016/j.cub.2007.03.044




Two computational strategies

p(object | image)

Discriminative mechanisms Feedforwarol

® Computational/behavioral speed and accuracy requires
effective diagnostic features to deal with the enormous
variation within a pattern/object category

VanRullen, R., & Thorpe, S. J. (2001). The time course of visual processing:
from early perception to decision-making. Journal of Cognitive
Neuroscience, 13(4), 454—461.

Generative mechanisms p(image | object) X p(object)*
feedback

® Provide flexibility, generalization

* recall bayes: p(object | image) « p(image | object) X p(object)



Feedback functions

Disambiguation
e suppress explained input
* enhance explained input
The executive metaphor

e expertise at various levels of abstraction



motivation:
missing data

Top-down, generative models!?



missing data & occlusion




Perceptual “explaining away”
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Extraneous data: recognition despite cast shadows

(0

2-D
Shape

Memory

wercT=——o
L

&o@"

N\ N\

Shadow image

Full contour
.-.[/ & F s
&‘} A e

Attached and

external contours Cast shadow contours

Cavanagh P (1991) What's up in top-down processing? In: Representations of Vision: Trends and tacit assumptions in
vision research (Gorea A, ed), pp 295-304. Cambridge, UK: Cambridge University Press.



Object variations that haven't
been seen before

can recognize as scissors AND
estimate an articulation




Suggests...

Image Residual , Decizion
2 Compare Feature Hypothesis
_.,.

images ™| extraction refinement

Hypothesis

"Render"

Synthesized image

Bottom-up / Top-down

is a more complete picture than this

Image Compare
Feature i el B
W iracton | ———® | W SIOTEC ) e Decision
features

Bottom-up



Doesn’t mean that feedback is necessary for
recognition (Thorpe et al.)

But top-down feedback may be important for

® achieving high-performance given uncertainty,
occlusion, noise, clutter

® task flexibility

® |earning new object models



feedback functions?

@V/ 2 A@
Coarse-to-fine L <] —
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® E.g. isitafox! If so,where is its nose?

Ambiguity reduction through top-down
prediction

Hierarchically organized representations
& expertise
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evidence for local, feature-specific feedback ?

Random 2D

3D
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« fMRI has shown localized N UV
relative suppression in V1 to A =
edges when edges appeared 0.2 I b
to be perceptually “well o MR . _ |

. ) F
explained” by whole shape P !
(Murray et al., 2002). '

O4Random 20 3D

* human perceptual adaptation
experiments show suppression
to oriented lines—a local
“feature”— when a whole
shape is perceived. (He,
Kersten, & Fang;2012)
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e ultra-high resolution fMRI
shows increased V1 activity to
scrambled vs. whole shapes
(Olman, Harel, Feinberg, He,
Ugurbil, & Yacoub; (2012)

perceived perceived

diamond oriented patches



perceptual organization reduces
activity inV
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Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., & Woods, D. L.
(2002).; Fang, F., Kersten, D., & Murray, S. O. (2008).

...but non-retinotopic voxels are also suppressed (Wit et al., 2012)

Behavioral evidence for top-down reduction of early activity? Use
perceptual adaptation--the psychophysicist’s electrode



Disambiguation®

Predictive coding: suppress lower-level features that
are consistent with a confident high-level
interpretation. Reduce metabolic costs, signal new
unexplained incoming information.

Analysis-by-synthesis. Bind lower-level information
that might be required for executive tasks, e.g. fine-
grain. : enhance lower-level consistent features and/or
suppress inconsistent ones. Useful for representation
and interpretation of novel patterns’ Dealing with
clutter?



“predictive coding”
through suppression of consistent
features at lower levels ‘

Feedforward

Lower area errorsignal

Input —)@
Inhibition ' I

Feedback
prediction

e.g. Rao, R. P., & Ballard, D. H. (1997). Dynamic model of visual recognition predicts
neural response properties in the visual cortex. Neural Comput, 9(4), 721-763.



Feedforward

Lower area errorsignal

Feedback
prediction



Feedforward

Lower area errorsignal

Feedback
prediction



Feedforward

Lower area errorsignal

Feedback
prediction
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Feedforward

Lower area errorsignal

Feedback
prediction
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Lee & Mumford, 2003, JOSA
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Higher area
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Damien Mannion, Daniel Kersten & Cheryl Olman
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Larger fMRI responses to peripheral patches
belonaing to the perceived “coherent” image

Mannion, D. J., Kersten, D. J., & Olman, C. A. (2015).
Scene coherence can affect the local response to
natural images in human V1.

e 1 4
Preference for coherent patches found in 4L\
more superficial layers of V1 o<
|
Muckli, L., De Martino, F., Vizioli, L., Petro, L. S., Smith, F. W., Ugurbil, K., Goebel, R. l
and Yacoub E. (2015). Contextual Feedback to Superficial Layers of V1. LGN




Feedback

The executive metaphor
* Hierarchically organized expertise?

- E.g. V1: Feature-specific tasks, Huk & Heeger, 2000; Working memory (Harrison &
Tong, 2009); Perceptual learning (Hochstein & Ahissar,2002); Task-dependent
changes in early receptive fields (McManus et al., 2011);

- Foveal V1 as a high-resolution spatial buffer (Lee et al. 1998,; Williams et al.,
2008);

- Fan, X., Wang, L., Shao, H., Kersten, D., & He, S. (2016). Temporally flexible
feedback signal to foveal cortex for peripheral object recognition. PNAS.

» Use of built-in generative knowledge?

- The “perceived size and V1" puzzle



recall global organization of V|

global: hypercolumns arranged retinotopically

neurons receiving information from nearby
points in the world are near on cortical surface




Feedback: Executive metaphor?

Fang, Boyaci, Kersten, & Murray, S. O. (2008). Attention-dependent
representation of a size illusion in human V1. Current Biology
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V1 has a retinotopic map, so for an actual increase in
ring size, 6,in the image, we expect:

Current Biology

Huk,A. C. (2008) Visual Neuroscience: Retinotopy meets Percept-otopy, Current Biology, 18,21, R1005-1007.



what was found for an illusory increase in ring size

Left hemisphere Right hemisphere

Fang, Boyaci, Kersten, & Murray,
S. O.(2008). Attention-
dependent representation of a
size illusion in human V.
Current Biology

attend-to-ring

Ni, A. M., Murray, S. O., & Horwitz, G. D. (2014). rpe
Object-Centered Shifts of Receptive Field Cond |t|0n
Positions in Monkey Primary Visual Cortex.

Current Biology, 1-6



