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Lateral organization 

• representation and linking of features at a similar level of abstraction 

• self-organizing topographical maps 

• efficient image coding to explain receptive field properties 

• machine learning methods for grouping

feedforward?



Wallisch, P., & Movshon, J. A. (2008). Structure and Function Come Unglued in the Visual Cortex. Neuron, 60(2), 194–197.
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What determines the different selectivities 
for pathways and areas?

image information required for different basic tasks

intrinsic object properties 
for identification

object-viewer properties 
for spatial and motor actions

…but lots of tasks



“standard” feedforward model
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Figure 1: Standard model of V1 simple cell responses. The neuron computes a weighted
sum of the image over space and time, and this result is normalized by the responses of
neighboring units, and passed through a pointwise non-linearity (see e.g., Carandini et al.,
1997

It may seem surprising to some that we should take such a stance. V1 does
afterall have a seemingly ordered appearance—a clear topographic map, and an or-
derly arrangement of ocular dominance and orientation columns. Many neurons are
demonstrably tuned for stimulus features such as orientation, spatial-frequency, color,
direction of motion, and disparity. And there has even emerged a fairly well agreed
upon “standard model” for V1 in which simple-cells compute a linearly weighted sum
of the input over space and time (usually a Gabor-like function) and the output is
passed through a pointwise nonlinearity, in addition to being subject to contrast gain
control to avoid response saturation (Figure 1). Complex cells are similarly explained
in terms of summing the outputs of a local pool of simple-cells with similar tuning
properties but di�erent positions or phases. The net result is to think of V1 roughly
as a “Gabor filter bank.” There are now many papers showing that this basic model
fits much of the existing data well, and many scientists have come to accept this as a
working model of V1 function (see e.g., Lennie, 2003a)

But behind this picture of apparent orderliness, there lies an abundance of un-
explained phenomena, a growing list of untidy findings, and an increasingly uncom-
fortable feeling among many about how the experiments that have led to our current
view of V1 were conducted in the first place. The main problem stems from the
fact that cortical neurons are highly nonlinear—i.e., they emit all-or-nothing action
potentials, not analog values. They also adapt, so their response properties depend
upon the history of activity. Cortical pyramidal cells have highly elaborate dendritic
trees, and realistic biophysical models suggest that each thin branch could act as a
non-linear subunit, so that any one neuron could be computing many di�erent non-
linear combinations of its inputs (Hausser & Mel, 2003), in addition to being sensitive
to coincidences (Softky & Koch, 1993; Azouz & Gray, 2000, 2003). Everyone knows
that neurons are non-linear, but few have acknowledged the implications for studying
cortical function. Unlike linear systems, where there exist mathematically tractable,
textbook methods for system identification, non-linear systems can not be teased
apart using some straightforward, reductionist approach. In other words, there is no
general method for characterizing non-linear systems.2

2The Volterra series expansion is often touted as a general approach for characterizing non-linear
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convolution — similar filtering operations repeated over space

Similar filtering operations repeated between subsequent levels 
Vn -> Vn+1

for V1

deep convolutional networks

canonical computation?



spatial frequency channels — 1968

just 2 in homework #6

classic models, 16 or more

…but are there more types in V1?

V1



How do tasks constrain feature 
hierarchies?

Grouping to form more abstract features, given image regularities that support tasks  

— “hand - wired” (Riesenhuber and Poggio, …) 

— supervised learning 

• — “20 questions” approach (Ephstein et al.) 

- find diagnostic features that distinguish the categories for the most important tasks to 
determine the top level 

- repeat at a lower level of abstract to find sub-features that distinguish the diagnostic 
features 

- …and so forth 

• deep convolutional networks 

— unsupervised learning based on based on successive discovery of image regularities (Barlow) 

• detecting “suspicious coincidences”:  

- Is p(feature A, feature B) >> p(feature A) p(feature B) 

- if so, recode to remove dependence. E.g. contingent adaptation example 

- advantage of general features. but perhaps mainly useful at lower levels of the hierarchy 



Hierarchical models 
for feature extraction for recognition

Local features progressively grouped into more 
structured representations 

• edges => contours => fragments => parts => 
objects 

Selectivity/invariance trade-off 

• Increased selectivity for object/pattern type 

• Decreased sensitivity to view-dependent variations 
of translation, scale and illumination



Hegde and Felleman, 2007

Hierarchical models 
of object recognition

bread and butter of ventral 
stream modeling



Recall simple & complex 
cells in V1

Simple cells 

• “template matching”, i.e. detect conjunctions, 
logical “AND” 

Complex cells 

• insensitivity to small changes in position, detect 
disjunctions, logical “OR” 

Recognition as the hierarchical detection of 
“disjunctions of conjunctions”



Recognize the letter “t”

i=1 i= 2 i=3 i=1 i= 2 i=3 i=1 i= 2 i=3

i=9

“t” is represented by the conjunction 
of a vertical and horizontal bar: AND

OR OR ...

= t

which can occur at any one of many locations i

“t”:  h1 && v1  || h2 && v2  || h3 && v3...



increasingly invariant to 2D transformations (position and scale) by
combining afferents (S units) with the same selectivity (e.g., a
vertical bar) but slightly different positions and scales.

The present theory significantly extends an earlier model (5). It
follows the same general architecture and computations. The
simple S units perform a bell-shaped tuning operation over their
inputs. That is, the response y of a simple unit receiving the pattern
of synaptic inputs (x1, . . . , xnSk

) from the previous layer is given by

y ! exp "
1

2#2 !
j!1

nsk

"wj " xj#
2 , [1]

where # defines the sharpness of the tuning around the preferred
stimulus of the unit corresponding to the weight vector w ! (w1,
. . . . , wnSk

). That is, the response of the unit is maximal (y ! 1) when
the current pattern of input x matches exactly the synaptic weight

vector w and decreases with a bell-shaped tuning profile as the
pattern of input becomes more dissimilar. Conversely, the pooling
operation at the complex C level is a max operation. That is, the
response y of a complex unit corresponds to the response of the
strongest of its afferents (x1, . . . , xnCk

) from the previous Sk layer:

y ! max
j!1. . . nCk

x j. [2]

Details about the two key operations can be found in SI Text (see
also ref. 23).

This class of models seems to be qualitatively and quantitatively
consistent with [and in some cases actually predicts (23)] several
properties of subpopulations of cells in V1, V4, IT, and PFC (25)
as well as fMRI and psychophysical data. For instance, the model
predicts (23), at the C1 and C2 levels, respectively, the max-like
behavior of a subclass of complex cells in V1 (26) and V4 (27). It
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Fig. 1. Sketch of the model. Tentative mapping between the ventral stream in the primate visual system (Left) and the functional primitives of the feedforward
model (Right). The model accounts for a set of basic facts about the cortical mechanisms of recognition that have been established over the last decades: From
V1 to IT, there is an increase in invariance to position and scale (1, 2, 4–6), and in parallel, an increase in the size of the receptive fields (2, 4) as well as in the
complexity of the optimal stimuli for the neurons (2, 3, 7). Finally, adult plasticity and learning are probably present at all stages and certainly at the level of IT
(6) and PFC. The theory assumes that one of the main functions of the ventral stream, just a part of the visual cortex, is to achieve a tradeoff between selectivity
and invariance within a hierarchical architecture. As in ref. 5, stages of simple (S) units with Gaussian tuning (plain circles and arrows) are loosely interleaved
with layers of complex (C) units (dotted circles and arrows), which perform a max operation on their inputs and provide invariance to position and scale (pooling
over scales is not shown). The tuning of the S2, S2b, and S3 units (corresponding to V2, V4, and the posterior inferotemporal cortex) is determined here by a prior
developmental-like unsupervised learning stage (see SI Text). Learning of the tuning of the S4 units and of the synaptic weights from S4 to the top classification
units is the only task-dependent, supervised-learning stage. The main route to IT is denoted with black arrows, and the bypass route (38) is denoted with blue
arrows (see SI Text). The total number of units in the model simulated in this study is on the order of 10 million. Colors indicate the correspondence between
model layers and cortical areas. The table (Right) provides a summary of the main properties of the units at the different levels of the model. Note that the model
is a simplification and only accounts for the ventral stream of the visual cortex. Of course, other cortical areas (e.g., in the dorsal stream) as well as noncortical
structures (e.g., basal ganglia) are likely to play a role in the process of object recognition. The diagram (Left) is modified from ref. 58 (with permission from the
author) which represents a juxtaposition of the diagrams of refs. 46 and 59.
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Serre, Oliva & Poggio, 2007

recognition in the ventral pathway

A repeating theme:

Local
spatial filters (simple 
and complex cell-
like) arranged in a 
hierarchy can be 
built up to enable 
visual recognition

How do 
neurons 

compute the 
ANDs and ORs?



How do tasks constrain feature 
hierarchies?

Grouping to form more abstract features, given image regularities that support tasks  

— “hand - wired” (Riesenhuber and Poggio, …) 

— supervised learning 

• deep convolutional networks 

• — “20 questions” approach (Ephstein et al.) 

- find diagnostic features that distinguish the categories for the most important tasks to 
determine the top level 

- repeat at a lower level of abstract to find sub-features that distinguish the diagnostic 
features 

- …and so forth 

— unsupervised learning based on based on successive discovery of image regularities (Barlow) 

• detecting “suspicious coincidences”:  

- Is p(feature A, feature B) >> p(feature A) p(feature B) 

- if so, recode to remove dependence. E.g. contingent adaptation example 

- advantage of general features. but perhaps mainly useful at lower levels of the hierarchy 
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Higher-level features?
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Figure 1: Standard model of V1 simple cell responses. The neuron computes a weighted
sum of the image over space and time, and this result is normalized by the responses of
neighboring units, and passed through a pointwise non-linearity (see e.g., Carandini et al.,
1997

It may seem surprising to some that we should take such a stance. V1 does
afterall have a seemingly ordered appearance—a clear topographic map, and an or-
derly arrangement of ocular dominance and orientation columns. Many neurons are
demonstrably tuned for stimulus features such as orientation, spatial-frequency, color,
direction of motion, and disparity. And there has even emerged a fairly well agreed
upon “standard model” for V1 in which simple-cells compute a linearly weighted sum
of the input over space and time (usually a Gabor-like function) and the output is
passed through a pointwise nonlinearity, in addition to being subject to contrast gain
control to avoid response saturation (Figure 1). Complex cells are similarly explained
in terms of summing the outputs of a local pool of simple-cells with similar tuning
properties but di�erent positions or phases. The net result is to think of V1 roughly
as a “Gabor filter bank.” There are now many papers showing that this basic model
fits much of the existing data well, and many scientists have come to accept this as a
working model of V1 function (see e.g., Lennie, 2003a)

But behind this picture of apparent orderliness, there lies an abundance of un-
explained phenomena, a growing list of untidy findings, and an increasingly uncom-
fortable feeling among many about how the experiments that have led to our current
view of V1 were conducted in the first place. The main problem stems from the
fact that cortical neurons are highly nonlinear—i.e., they emit all-or-nothing action
potentials, not analog values. They also adapt, so their response properties depend
upon the history of activity. Cortical pyramidal cells have highly elaborate dendritic
trees, and realistic biophysical models suggest that each thin branch could act as a
non-linear subunit, so that any one neuron could be computing many di�erent non-
linear combinations of its inputs (Hausser & Mel, 2003), in addition to being sensitive
to coincidences (Softky & Koch, 1993; Azouz & Gray, 2000, 2003). Everyone knows
that neurons are non-linear, but few have acknowledged the implications for studying
cortical function. Unlike linear systems, where there exist mathematically tractable,
textbook methods for system identification, non-linear systems can not be teased
apart using some straightforward, reductionist approach. In other words, there is no
general method for characterizing non-linear systems.2

2The Volterra series expansion is often touted as a general approach for characterizing non-linear
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Higher-level features? 
(machine) learn them?

…one problem, not clear how the features learned generalize across tasks



How do tasks constrain feature 
hierarchies?

Grouping to form more abstract features, given image regularities that support tasks  

— “hand - wired” (Riesenhuber and Poggio, …) 

— supervised learning 

• deep convolutional networks 

• — “20 questions” approach (Ephstein et al.) 

- find diagnostic features that distinguish the categories for the most important tasks to 
determine the top level 

- repeat at a lower level of abstract to find sub-features that distinguish the diagnostic 
features 

- …and so forth 

— unsupervised learning based on based on successive discovery of image regularities (Barlow) 

• detecting “suspicious coincidences”:  

- Is p(feature A, feature B) >> p(feature A) p(feature B) 

- if so, recode to remove dependence. E.g. contingent adaptation example 

- advantage of general features. but perhaps mainly useful at lower levels of the hierarchy 



How do tasks constrain feature hierarchies? 
An example for one level of abstraction

Need features for rapid, accurate generalization, given 
a visual task requirement.

Find features of “intermediate complexity”, i.e. 
image “fragments”, that are most informative for 

category distinctions 

Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate 
complexity and their use in classification. Nature Neuroscience



Object recognition in the context of a task 
requirement

What do 
these 
scenes 
have in 
common?



“Up” curbs-- requiring a step up



Distinguish 
from non “up 

curbs”

...that do not 
require a step  
up and require 
different actions



Learning based on informative 
fragments for the task

Evgeniy Bart

Algorithm finds 
fragments that maximize 
mutual information 

Detect “up curbs” from 
an approach angle that 
requires a step. 

View-specific 

Works well 

Experimentally tractable



Do people learn to use fragments of 
predicted “intermediate complexity”

Virtual morphogenesis
Brady, M. J., & Kersten, D. (2003). 
Bootstrapped learning of novel objects. 
Journal of Vision, 3(6), 413–422.



Generating naturalistic object classes
Virtual Phylogenesis

Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object 
Categories. Curr Biol. 18, 597-601



Training

A B

Member of category A or B?



Results
Features of intermediate complexity (local image 
patches) predicted human observers ability to classify 
new objects from learned categories

A

Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object 
Categories. Curr Biol. 18, 597-601

B



How do tasks constrain feature 
hierarchies?

Grouping to form more abstract features, given image regularities that support tasks  

— “hand - wired” (Riesenhuber and Poggio, …) 

— supervised learning 

• deep convolutional networks 

• — “20 questions” approach (Ephstein et al.) 

- find diagnostic features that distinguish the categories for the most important tasks to 
determine the top level 

- repeat at a lower level of abstract to find sub-features that distinguish the diagnostic 
features 

- …and so forth 

— unsupervised learning based on based on successive discovery of image regularities (Barlow) 

• detecting “suspicious coincidences”:  

- Is p(feature A, feature B) >> p(feature A) p(feature B) 

- if so, recode to remove dependence. E.g. contingent adaptation example 

- advantage of general features. but perhaps mainly useful at lower levels of the hierarchy 



A. B.

Zeiler, M. D., Taylor, G. W., & Fergus, R. (2011). Adaptive 
deconvolutional networks for mid and high level feature learning. 
Computer Vision (ICCV), 2011 IEEE International Conference on, 
2018–2025.

Zhu, L., Chen, Y., Torralba, A., Freeman, W., & Yuille, A. (2010). Part and 
appearance sharing: Recursive compositional models for multi-view multi-
object detection (pp. 1919–1926). Presented at the IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition.

unsupervised learning

task general
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Feedback



Shipp, S. (2007). Structure and function of the cerebral cortex. CURBIO, 17(12), R443–9. doi:10.1016/j.cub.2007.03.044

Superficial

Deep



Two computational strategies
Discriminative mechanisms 

• Computational/behavioral speed and accuracy requires 
effective diagnostic features to deal with the enormous 
variation within a pattern/object category 

Generative mechanisms 

• Provide flexibility, generalization

VanRullen, R., & Thorpe, S. J. (2001). The time course of visual processing: 
from early perception to decision-making. Journal of Cognitive 
Neuroscience, 13(4), 454–461.

p(object | image) 
feedforward

p(image | object) X p(object)* 
feedback

* recall bayes:  p(object | image) ∝ p(image | object) X p(object)



Feedback functions
Disambiguation  

• suppress explained input 

• enhance explained input 

The executive metaphor 

• expertise at various levels of abstraction



motivation: 
missing data

Top-down, generative models?



missing data & occlusion



or or not

?

Perceptual “explaining away”



Extraneous data: recognition despite cast shadows

Cavanagh P (1991) What's up in top-down processing? In: Representations of Vision: Trends and tacit assumptions in 
vision research (Gorea A, ed), pp 295-304. Cambridge, UK: Cambridge University Press.



Object variations that haven’t 
been seen before

can recognize as scissors AND 
estimate an articulation



Suggests...

is a more complete picture than this



Doesn’t mean that feedback is necessary for 
recognition (Thorpe et al.) 

But top-down feedback may be important for 

• achieving high-performance given uncertainty, 
occlusion, noise, clutter 

• task flexibility 

• learning new object models



feedback functions?

Coarse-to-fine

• E.g. is it a fox? If so, where is its nose?

Ambiguity reduction through top-down 
prediction

Hierarchically organized representations 
& expertise

Known

next step

To be inferred

Cause Perceptual inference

s1 s2
s1 s2 s1 s2

?

B

I1 I2
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C

I1 I2
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I1 I2
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• fMRI has shown localized 
relative suppression in V1 to 
edges when edges appeared 
to be perceptually “well 
explained” by whole shape 
(Murray et al., 2002). 

• human perceptual adaptation 
experiments show suppression 
to oriented lines—a local 
“feature”— when a whole 
shape is perceived. (He, 
Kersten, & Fang;2012) 

• ultra-high resolution fMRI 
shows increased V1 activity to 
scrambled vs. whole shapes 
(Olman, Harel, Feinberg, He, 
Ugurbil, & Yacoub; (2012)

diamond 
perceived

oriented patches 
perceived

possible contributions of these stimulus differences to V1 acti-
vations, a control experiment was performed. Portions of the line
segments in the 3D shapes were eliminated (introducing line
terminations), but in two different ways: (i) in the nonshape
condition, the corners were deleted and the remaining line
segments were shifted and!or rotated slightly (usually less than
15°) to remove perceived shape, and (ii) in the shape condition
only the middle portions of lines were deleted introducing line
terminations without significantly disrupting shape perception
(see Fig. 5, which is published as supporting information on the
PNAS web site). As in the initial experiment, the shape and
nonshape stimuli were controlled to have the same mean dis-
tance and variance from fixation.

Experiment 2. A second experiment was performed using structure-
from-motion (SFM) stimuli. Random-dot displays were presented
under three conditions: (i) stationary dots, (ii) projections of

random-dot patterns onto moving 3D geometric shapes (SFM),
and (iii) velocity-scrambled moving dots (Fig. 2A).

The stimuli contained 450 dots and subtended 10°. The dots
in the SFM stimuli were projected onto rigid geometric shapes
including cube, cylinder, and ‘‘house-shaped’’ figures. Dots were
randomly selected from a uniform distribution on the object
surface and kept fixed relative to the rotating object surface and
orthographically projected onto the image plane. The dots were
rotated on a randomly chosen 3D axis for 40° in 1.5° increments.
Each stimulus presentation lasted 890 ms, followed by a 110-ms
blank-screen delay before the next stimulus presentation. The
velocity-scrambled stimuli were created by using the same
starting positions as the SFM stimuli, then randomly assigning
each dot’s SFM velocity (speed and direction) to that of another
dot. Thus, the velocity-scrambled stimuli had identical velocities
as the SFM stimuli, but lacked any perceived 3D structure. The
stationary dot condition presented randomly chosen frames
from the SFM stimuli.

Fig. 1. Experiment 1. (A) Examples of the three different stimulus conditions. (B Left) Areas of increased (red!yellow) and decreased (blue) activity comparing
3D figures to random lines for a representative subject on a flattened representation of occipital cortex. (B Right) A flickering ring stimulus matching the mean
eccentricity of the line drawings was used to independently locate the portion of V1 where the line drawing stimuli occurred. The reduced activity for the 3D
figures in V1 is restricted to the cortical area representing the stimuli. The solid line indicates the representation of the vertical meridian, marking the boundary
of V1. The location of MT! defined by random dot motion is included as a reference. Fig. 6 shows the relative location of the ROIs and the location of the ‘‘cuts’’
to flatten the cortex. (C) The average percent signal change from the mean for the three conditions averaged over six subjects. All pair-wise comparisons are
significant, P " 0.001. Error bars are SEM. (D) The average time course of the MRI signal in the LOC (solid line) and V1 (dashed line). Percent signal change is from
the mean activation across all three conditions. Periods corresponding to the three conditions, random (R, white), 3D (dark gray), and 2D (light gray), are shown.
The dissociation between the LOC and V1 is clearly evident: as activity increases in the LOC, activity in V1 declines.

Murray et al. PNAS " November 12, 2002 " vol. 99 " no. 23 " 15165
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evidence for local, feature-specific feedback ?

second (control) scanning session with additional low-contrast
stimuli. One of the 3 subjects returned again for a scanning session
studying the laminar distribution of color-opponent responses and
an additional subject (female, age 25) was also recruited for this
experiment. The 7T system was equipped with a 90 cm bore,
controlled by a Siemens (Erlangen, Germany) console and
equipped with a Siemens head gradient set operating at up to
80 mT/m with a slew rate of 333 T/m/s. A half volume radio-
frequency (RF) coil was used for transmission, and a small (6 cm)
quadrature coil was used for reception [18].

Functional data were acquired with a 3D GRASE [19] pulse
sequence: field of view was 2.2617.960.48 cm3, matrix size was
32625668 (for a nominal resolution of 0.760.760.6 mm, the
third dimension being sampled more finely to compensate for T2*
blurring in the 2nd phase-encode direction), echo train was
,170 msec, TE/TR were 30/2000 msec. Data were acquired
with 25% slice oversampling to eliminate confounding signal
wrap-around in the 3D acquisition.

Experiment design
Stimuli for the main experiment consisted of colored drawings

of common objects on a white background [20]. The visual objects
were masked by a stationary gray occluder and were therefore
visible only through circles on a hexagonal grid (referred to as
mask apertures, each with 2u diameter, separated by 0.7–1.0u of
visual angle). (The occluder was not a physical occluder, but an
inferred mask generated by setting pixel values to mean gray
everywhere except in the specified circular apertures.) For the
scrambled condition, the content of each circular aperture
containing a part of an object was rotated by an angle drawn
with equal probability from two uniform distributions: [60u 120u]
or [2120u 260u]. A set of 188 images was divided into 2 groups:
94 were shown during the intact condition and 94 during the
scrambled condition, to minimize the likelihood that subjects
would recognize scrambled images by detecting familiar patches
learned during presentation of intact images. The colored line
drawings of objects were centered in the image, and because of
variations in shape, image contrast was present in different regions
of the visual field for different images. On average, however, the
intact and scrambled objects provided the same image contrast to
each visual field location (Figure S1). In some image regions, the
intact and scrambled objects did differ in average orientation (e.g.,
near the vertical meridian, intact objects contained more
horizontal orientations than their scrambled counterparts). Details
are provided in Figure S1. This resulted in some low-level stimulus
differences that may contribute to observed neural response
differences between the stimulus conditions, a point that will be
considered in the discussion. Visual stimuli were generated in
Matlab and presented using the Psychtoolbox extensions [21,22].
Subjects viewed the stimuli, which subtended 67.6u, via a mirror
mounted on the surface coil.

Intact and scrambled objects were presented during separate
block-design scans, during which stimulus and rest alternated in
16s blocks, completing 10 K cycles for a total scan duration of
336 seconds (168 TRs). During the 16-second stimulus blocks,
images were presented for 250 ms each (64 images per block,
drawn at random from the set of 94 images). These stimulus blocks
alternated with 16-second rest blocks. Throughout all scans,
subjects were instructed to fixate on a red square at the center of
the screen, pressing a button every time the square changed size.
Attention was therefore not explicitly directed at the objects. As a
control, to be sure that accidental differences in color or stimulus
complexity between the two sets of images did not provide
different strengths of input to V1 (e.g., T-junctions and curvature

that would not be detected by the orientation analysis), scrambled
versions of the objects from the ‘‘intact’’ group were shown as the
first 2 scrambled scans for 2 of the 3 subjects. The average
magnitude of the fMRI response to the two different types of
scrambled object scan did not differ and were therefore grouped
for subsequent analyses. Subjects completed between 10 and 14
scans, alternating between presentation of intact objects and
scrambled objects.

GLM
The stimulus was modeled as a square wave (16 s on, 16 s off)

convolved with a standard model of the hemodynamic impulse
response function, generated by the function spm_hrf.m provided
with SPM2 (http://www.fil.ion.ucl.ac.uk/spm/) using default
parameters. After high-pass filtering the data (cut-off frequency:
4 cycles/scan, or 0.016 Hz), response amplitude was estimated by
least-squares regression between the data and the stimulus model.
Significance was estimated for each voxel by permutation analysis
(randomizing the stimulus condition labels for each time point,
while preserving the essential temporal correlation structure of the
block design, and re-estimating the BOLD response modulation
1000 times) to estimate the probability (p-value) that the given
coherence or modulation amplitude value would result from
chance (Fig. 1, right panel).

Cortical segmentation
Reference anatomical volumes were acquired with 0.7 mm

isotropic resolution (proton-density-normalized MP-RAGE [23]).
Cortical segmentation, along with gray matter (GM) and white
matter (WM) surface definition, was performed on the reference
anatomy using SurfRelax [24]. Cortical depth was quantified for
each voxel as the relative distance from the WM surface (distance
from WM divided by total cortical thickness at that location),
which is more meaningful than absolute distance because of
variation in cortical thickness throughout V1. Several distance

Figure 1. Volume coverage and activation of fMRI experiment
with 0.7 mm resolution. Left: location of functional data is illustrated
on a sagittal section. Right: activation maps from a single subject in
response to both intact (bottom left, black outline) and scrambled
objects (contrast is all-stimuli vs. blank, p,0.01, uncorrected, minimum
cluster size 4 voxels).
doi:10.1371/journal.pone.0032536.g001
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perceptual organization reduces 
activity in V1

Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., & Woods, D. L. 
(2002).; Fang, F., Kersten, D., & Murray, S. O. (2008).

...but non-retinotopic voxels are also suppressed (Wit et al., 2012)

Behavioral evidence for top-down reduction of early activity?  Use 
perceptual adaptation--the psychophysicist’s electrode



Analysis-by-synthesis. Bind lower-level information 
that might be required for executive tasks, e.g. fine-
grain. : enhance lower-level consistent features and/or 
suppress inconsistent ones. Useful for representation 
and interpretation of novel patterns? Dealing with 
clutter?

Predictive coding:  suppress lower-level features that 
are consistent with a confident high-level 
interpretation. Reduce metabolic costs, signal new 
unexplained incoming information.

Disambiguation?



“predictive coding”
through suppression of consistent 

features at lower levels

Lower area
(V1) Higher area

HiLo

Predictive
estimatorInput

Inhibition

Feedforward
error signal

Feedback
prediction

e.g. Rao, R. P., & Ballard, D. H. (1997). Dynamic model of visual recognition predicts 
neural response properties in the visual cortex. Neural Comput, 9(4), 721-763.
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Lee & Mumford, 2003, JOSA
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Damien Mannion, Daniel Kersten & Cheryl Olman



Larger fMRI responses to peripheral patches 
belonging to the perceived “coherent” image

non-coherent conditions for nodes based on their distance from the
centre node, in 2-mm-wide bins with left edges equally spaced
between 0 and 8 mm and for nodes at distances greater than 10
mm.
Finally, we investigated whether the coherence effect depended

on the cortical depth within V1 (the relative distance between the
white and pial surfaces). We defined a set of bins that were each
20% of the distance between the white and pial surfaces and placed
at 20% intervals from 0 to 100% (Olman et al., 2012). We then
used AFNI/SUMA’s 3dVol2Surf to average the timecourses of the
voxels within each depth bin for each participant, forming a cortical
surface representation for each participant, bin and hemisphere.
These surfaces were then analysed with the same GLM approach as
applied for the main analysis, yielding an estimate of the response
to coherent and non-coherent conditions at each depth bin.

Results

We presented observers with natural image patches in an array of
apertures that tiled the visual field. By altering the allocation of source
images to the apertures, we manipulated the likelihood that a given
aperture would be in the context of image structure from the same (co-
herent) or not from the same (non-coherent) scene. Importantly, a dif-
ference in the response to coherent and non-coherent presentations
cannot be attributed to different local image properties – over the
course of the experiment, each aperture displayed the same set of
images in both the coherent and the non-coherent conditions.
We find that coherent and non-coherent image patches evoked

different levels of blood oxygen level-dependent (BOLD) response
in human V1, with coherent and non-coherent stimulation leading to
an average of 1.60 and 1.51 psc units change, respectively (nor-
malised for differences in overall level of activation across partici-
pants; SEM = 0.01), as shown in Fig. 3. This difference was
statistically significant (paired sample t7 = 3.08, P = 0.018). Hence,
the local V1 response can be affected by the consistency of its sur-
rounding context with the overall scene, with the response increas-
ing for a coherent relative to a non-coherent context.

We conducted additional exploratory analyses to investigate the
characteristics of the apparent differences between the coherent and
non-coherent conditions. First, we were interested in determining
whether the coherence effect depended on aperture eccentricity. To
investigate this, we calculated the response to coherent and non-
coherent conditions separately for apertures in the three eccentricity
rings in the array: inner, middle and outer (see Fig. 1). The magni-
tude of the coherent and non-coherent difference was significantly
different across the eccentricity rings (interaction between coherence
and eccentricity in a two-way repeated-measures ANOVA;
F2,14 = 5.11, P = 0.022). As shown in Fig. 4, a significant differ-
ence between coherent and non-coherent conditions was evident in
the middle and outer eccentricities but not at the inner eccentricity.
For apertures at the inner eccentricity, coherent and non-coherent
conditions evoked response magnitudes of 1.12 and 1.09 psc,
respectively (paired sample t7 = 1.78, P = 0.118). Response magni-
tudes were 1.82 and 1.71 psc, respectively, for coherent and non-
coherent conditions for the middle eccentricity apertures (paired
sample t7 = 2.81, P = 0.026), and 1.74 and 1.62 psc for apertures
at the outer eccentricity (paired sample t7 = 3.47, P = 0.010).
We then investigated whether the apparent difference between

coherent and non-coherent stimulation depended on the position
within each aperture. For each participant, we determined the centre
of each aperture’s V1 representation and then calculated the distance
across the cortical surface of each aperture’s constituent nodes (see
Fig. 5A). As shown in Fig. 5(B), the average BOLD response eli-
cited by both coherent and non-coherent conditions decreased with
distance from the aperture centre, reaching a minimum at approxi-
mately 8–10 mm from the centre. The magnitude of the difference
between coherent and non-coherent responses was significantly dif-
ferent across the distances from the aperture centre (interaction
between coherence and distance in a two-way repeated-measures
ANOVA; F5,35 = 8.06, P < 0.001), and displayed a significant nega-
tive linear trend (one-sample t7 = !4.78, P = 0.002). As shown in
Fig. 5(C), the difference between the responses to the coherent and

Fig. 3. Response in V1 to coherent and non-coherent image patches. The
vertical axis shows the response amplitude (percentage signal change units,
psc), and the horizontal axis shows the experiment conditions, with coherent
and non-coherent depending on the relationship between an aperture’s image
patch and that of the other apertures in the display. The points show the
BOLD response (normalised for differences in overall activation levels,
across participants) averaged over participants, source images and apertures,
and the lines are "1 SEM.

Fig. 4. Response in V1 to coherent and non-coherent image patches for
apertures at different eccentricities. The vertical axis shows the response
amplitude (percentage signal change units, psc), and the horizontal axis
shows the eccentricity of the apertures. Points show the BOLD response
(normalised for differences in overall activation levels, across participants)
averaged over participants, source images and apertures at a given eccentric-
ity (squares and diamonds show coherent and non-coherent conditions,
respectively), and the lines are "1 SEM. Asterisks mark comparisons that
are statistically significant (P < 0.05).

© 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
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Scene coherence can affect V1 responses 2899

Mannion, D. J., Kersten, D. J., & Olman, C. A. (2015). 
Scene coherence can affect the local response to 
natural images in human V1.

Preference for coherent patches found in 
more superficial layers of V1

Muckli, L., De Martino, F., Vizioli, L., Petro, L. S., Smith, F. W., Ugurbil, K., Goebel, R. 
and Yacoub E. (2015). Contextual Feedback to Superficial Layers of V1.



Feedback
The executive metaphor  

• Hierarchically organized expertise? 

- E.g. V1: Feature-specific tasks, Huk & Heeger, 2000; Working memory (Harrison & 
Tong, 2009); Perceptual learning (Hochstein & Ahissar,2002); Task-dependent 
changes in early receptive fields (McManus et al., 2011); 

- Foveal V1 as a high-resolution spatial buffer (Lee et al. 1998,; Williams et al., 
2008); 

- Fan, X., Wang, L., Shao, H., Kersten, D., & He, S. (2016). Temporally flexible 
feedback signal to foveal cortex for peripheral object recognition. PNAS. 

• Use of built-in generative knowledge? 

- The “perceived size and V1” puzzle



recall global organization of V1

global: hypercolumns arranged retinotopically

neurons receiving information from nearby 
points in the world are near on cortical surface



Fang, Boyaci, Kersten, & Murray, S. O. (2008). Attention-dependent 
representation of a size illusion in human V1. Current Biology

Feedback: Executive metaphor?



Same 
angular size,

different 
physical size

Encyclopedia of Perception, 
Goldstein Ed., 2009



V1 has a retinotopic map, so for an actual increase in 
ring size,   ,in the image, we expect:

Huk, A. C. (2008) Visual Neuroscience: Retinotopy meets Percept-otopy, Current Biology, 18, 21, R1005-1007.

✓



Front 
ring

Back 
ring

what was found for an illusory increase in ring size

attend-to-ring 
condition

Fang, Boyaci, Kersten, & Murray, 
S. O. (2008). Attention-
dependent representation of a 
size illusion in human V1. 
Current Biology

Ni, A. M., Murray, S. O., & Horwitz, G. D. (2014). 
Object-Centered Shifts of Receptive Field 
Positions in Monkey Primary Visual Cortex. 
Current Biology, 1–6


