Introduction to Neural networks
(Psy5038W)

The visual system:
overview of a large-scale neural
architecture

kersten.org



Goals

Provide an overview of a major brain subsystem to
help anchor concepts in neural network theory.

Behavioral, functional requirements that determine
the computations that networks must do.

Discuss issues of neural representation.

Connect various parts and functions of the visual
system with neural network ideas we've studied
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Visual behavior—jobs of vision

Within-object relations: Object perception
e feature grouping, categorization, identification

* Object properties/attributes: size,
shape,material, pose,expressions,...

Viewer-object relations
e navigation,heading ,time-to-contact,...
e manipulation/grasp
etracking

Object-object relations

*relative depth, relative motion, scene
iInterpretation, planning, scene recognition,...



Inferences range over:
* types of features & attributes (shapes, material)

* levels of abstraction (parts, objects, actions,
scenes)

e spatial scales

e relationships

Descriptions are inferences of object properties and relationships
— i.e. causes of image intensities, not of image intensity patterns

A working hypothesis is that these inferences are based on
deep, generative knowledge of how virtually any natural
image could be produced



computational problems

model uncertainty

vision is concerned with causes of image intensity patterns, but the
causes of behavioral relevance are encrypted and confounded

many hypotheses about cause can be consistent with the same
local image evidence

local variations in image evidence can be consistent with the same
cause

accurate perceptual decisions resolve these ambiguities by
combining lots of image evidence with built-in knowledge

rationale for Bayesian wmodels of information processing



computational problems

scalability

Solving toy (low-dimensional) problems rarely
scales up to deal with the complexity of natural
images.

Humans have the capacity to deal with an
enormous space of possible objects (30 to
300K) as they appear in different contexts in
natural images for different tasks.

rationale for understanding feedforward architecture, e.g. “deep”
convolutional networks



computational problems

task flexibility

Vision stimulates and support answers to a
imitless range of questions. Human vision doesn't
just recognize objects and patterns, it supports
the interpretation of scenes.

rationale for a computational understanding of sequential
processing ano control...the role of feedback



levels of analysis

functional/behaviora

theories bayesian theories architectures/

algorithms neural circuits

computational vision

bayesian decision theory provides framework
for modeling uncertainty

architectures/algorithms provide tools for
understanding scalability and task flexibility



graphical models

hierarchical
lateral organization, hierarchical organization:
organization generative
lateral processing, reciprocal view
interactions between feedforward
features of similar type processing, feedforward,
iIncreasing feedback &
abstraction lateral
processing

rationale for computations on

, computations on directed graphs,
wndirected graphs P grap

e.g. meme



theories of the brain’s internal
processes of perceptual inference

30+ cortical areas that are visually sensitive, often with specific preferences, such as

» |ocalized edges, color,

* motion

» Object patches, whole objects,..

* face parts, faces

e bodies,..

» places...

Wallisch, P., & Movshon, J. A. (2008). Structure and Function
Come Unglued in the Visual Cortex. Neuron, 60(2), 194—
197.
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® receptive field size
® invariance to position, size, illumination, ..
® pattern selectivity
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ventral
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feedforward

Wallisch, P., & Movshon, J. A. (2008)

feedback



Bidirectional processing

ascending pathway

Vi V2 V3... V(n)
Superficial 1 , 1
Deep 6 e s—l |5
LGN descending pathway
T (feedback) |
retina

Shipp, S. (2007). Structure and function of the cerebral cortex. CURBIO, 17(12), R443-9. doi:10.1016/j.cub.
2007.03.044



Feedforward

Lateral

Feedback
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Are there common principles of organization and
computation
laterally, feedforward, and feedback?



overview of the rest of the — |4> |
semester

e |Lateral organization
e grouping similar features
 metabolically and statistically efficient representations
e neural population codes: representing uncertainty?
e Hierarchical architecture
e Feedforward functions

» Feedback functions
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primary visual cortex (V1)

local: small hypercolumns consisting of banks of neurons
tuned for edge orientation

neurons representing similar features are near
on cortical surface

“simple cells” — template matching generic newron
model
“complex cells” — template matching tolerant

to spatial shifts 2 layer generic newron model

global: hypercolumns arranged retinotopically

One location column

1 _2 Mmm (entire darkened area)

1 i

\\ /)//

/ \
Right and left Set of orientation
ocular dominance columns from
columns 0 to 180 degrees

neurons receiving information from nearby
points in the world are near on cortical surface

neurons receive information laterally, from nearby neurons on cortical surface




lateral organization

Why the organization? The level of abstraction?

will return to this twn detail when we get to
feedforward functions (and deep, supervised
learning)

* Keep similar features together for feedforward
integration.

* Neural population codes

« Lateral computations to group features of
similar type—segmentation

* Efficiency constraints

e Minimum (neural) wiring constraint

how cawn receptive field welghts

 Efficient representation of sensory input & be Learmneol (uwsuqaervised)?

cost of neural activity

« Efficient representations for learning unsupervised Learning to
support supervised learning



standard
non-linear spatial filter
V1 model

One location column
(entire darkened area)

Right and left Set of orientation
ocular dominance columns from
columns 0 to 180 degrees
Figure 3.30
welghts
o Response Pointwise
Image Receptive field normalization non-linearity Response
linear
response /
I(x,y,t) ——>» i I —> —> ()
K(x,y.1) 0
nieghboring
neurons

thewn applied to whole image tnput via convolution, once for each “channel”




S standard
(1 == non-linear spatial filter
NEE V1 model

Receptive
field

Right and left
ocular dominance
columns

Figure 3.30

One location column
(entire darkened area)

Set of orientation
columns from
0 to 180 degrees

Normalization

_— / _—
— il
linear _ .
Neighboring
Just one of many feedforward channels neurons

to explain orientation/spatial frequency
selectivity




lateral organization

Why the organization? The level of abstraction?

* Keep similar features together for will return to this when we get to feedforwarol
feedforward integration. functions (and deep, supervised Learning)

e Lateral computations to group features of
similar type—segmentation

 Efficiency constraints

e Minimum (neural) wiring constraint

* Efficient representation of sensory input how caw receptive fielo welghts
& cost of neural activity be Learned (wnsupervised)?
 Efficient representations for learning wnsupervised Learning to

support suqaervised Learning



lateral organization:“maps

I

Why the organization? The level of abstraction?

* Keep similar features together for e
feedforward integration.

e Lateral computations to group features of
similar type—segmentation .

 Efficiency constraints

* Minimum wiring constraint

 Efficient representation of sensory input
& cost of neural activity

 Efficient representations for learning
Markov Random Fleld models,
Gibbs sampling



Grouping

link contours with similar
orientations

link regions with similar
colors, textures

What should the Local features be? How many different types?



One location column

1 - 2 Mim (entire darkened area)

\ //J/

\
e \?
/ \
Right and left Set of orientation
ocular dominance columns from
columns 0 to 180 degrees

Figure 3.30

Vi

neurons receive information
laterally, from nearby neurons
on cortical surface, i.e.
between hyper columns

The local spatial context may
support orientation grouping




color grouping?

©
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prior + likelihood

..but would the visual system
need to “denolse”?
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what Ls nolse anyway?




Human tMRI evidence for lateral computations?

Craik-O’Brien-Cornsweet illusion




What are the features that are being linked!?

image = f(pigment, illumination) ~ r(x,y) x e(x,y)

reflectance pattern, r(x,y) illumination, U
N\

perceptual .-~
inference

image pattern /l/

estimate pigment property--the reflectance, and discount illumination

prior probabilistic structure:
illumination spatially smooth
reflectance is piece-wise constant.
E.g. gibbs sampler texture demo




Response Pointwise

Image Receptive field normalization non-linearity Response
linear .
response
I(X1Yyt) E—— @ p4> -or/ —_ > f > I‘(t) ConVOIUtlon
K(xy.) 0
nieghboring

neurons

Craik-O’Brien-Cornsweet illusion

V1 response follows
perceived lightness,
not physical intensity

o oy

Purely lateral? Don't
know. But neuroimaging
effect persists with when

Ldcalized V1 attention is diverted.
responses here should be the
same with standard feedforward

model

Boyaci, H., Fang, F, Murray, S. O., & Kersten, D. (2007). Current Biology, 17(11), 989-993.



lateral organization

Why the organization? The level of abstraction?

* Keep similar features together for
feedforward integration.

e Lateral computations to group features of
similar type—segmentation

 Efficiency constraints

e Minimum wiring constraint

what constrains receptive field
welghts?
how to learn?

 Efficient representation of sensory input
& cost of neural activity

 Efficient representations for learning

both wnsupervised, and supervised learning
methools



unsupervised learning of
receptive fields

e Unsupervised learning assumes there is statistical
structure to be discovered in the sensory input

e Exploit regularities in natural image input to either
reduce redundancy or dimensionality, or reduce
#active neurons with minimal loss of information.

“efficient coding theories”
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Types of structure

1rst order
What to do with the structure?

Recode to eliminate it

250
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the inverse of the CBF method of generating random numbers



2396 J. Opt. Soc. Am. A/Vol. 4, No. 12/December 1987

of structure
2nd order

Kersten, D. (1987). Predictability

o oty o ot s Pixel colors can predict the colors of

J Opt Soc Am A, 4(12), 2395-2400, their neighbors

Gives rise to neural network models that
are closely related to principles of
image compression developed in signal
processing theory, as in “difference
coding”

R(x) = L(x) - L(x-1)

which exploits the observation that L(x)
is often ~ L(x-1)

this looks Like Lateral tnhtbition!

R(z) = L(2) = >y yp wz — 2") L(2')



Types of structure
2nd order

Dimensionality reduction via
Principal Components Analysis (PCA) or Singular Value Decomposition (SVD)

uwswper\/iseol Learning

decorrelates the 'prut

2 pixel example:

and provides the basis for
throwing out dimensions

MAPFCENSESRR ,,
CINNRENRBER - Lue
EENRERNE BN RE



Principal Components Analysis (PCA) with neural networks

dz
diz

X - Y
2@ 4 Q 2

Hebbian learning + Oja’s rule to normalize weights:
Agy = a(x,y, - g;¥])

Oja’s rule automatically normalizes:

24y =1
i,j



...but because of symmetry, this network will only pull out the
first principal component, and does it twice (in this case)

A solution?

Ag; = arxjyi — Y Eq}cjy}c\
\ =R

Sanger, T. (1989). Optimal unsupervised learning in a single-layer linear feedforward
neural network. Neural Networks, 2, 459-473.

...but this still seems dissatistying because one neuron would
do lots of work, the next less so, and the next even less, etc..

A solution?



*autoencoder networks”

use backprop to find weights that encourage L to predict its
own values: input L close to the output L :

training pairs: {L;,L;}

| reduce or
L~L expand
finds subspace that captures larger dimensionality

fraction of the variance



In PCA, the number of basis functions or vectors is less
than or equal to the dimensionality of the input

But what if “efficiency” has another meaning, e.g. represent
a high-dimensional input (an image) with as few features as possible?

...and we allow for over-complete representations where the number
of feature detectors could be more than the dimensionality of the
iInput

I(x,y) = zn:Ai(xJ)Si si= Y Wilx,»)I(x,).
i=1 X,y

R IR

(see Lecture 5)




only a few features required for one image...but what if we
wanted to have a set of features, or “dictionary” that was
in “good” for all natural images”

Good, efficient representation is interpreted as finding the receptive field
weights that minimize the sum of squared errors AND # active neurons

so given L(x,y) in a set of images find the Aj(x,y)’s that minimize:

L(w,y) = sidiley)* + D Blsi)

.

7
pewaLLzes loss of information pena Ltzes too ma ny
about the image active neurons



the Aj(X,y)’s

“sparse coding”
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Olshausen & Field’s model of V1 receptive fields

captures localized sensitivities to orientation and spatial

frequency



Higher-order structure!

Other Neurons

Figure 1: Hlustration of image statistics as seen through two neighboring recepiive fields.
Left image: Joint conditional histogram of two linear coefficients. Pixel intensity corre-
sponds to frequency of occurrence of a given pair of values, except that each column has
been independently rescaled to fill the full intensity range. Right image: Joint histogram of
divisively normalized coefficients (see text).

responses of linear model neurons with receptive fields that are close in space,
preferred orientation or spatial frequency are not statistically independent

Schwartz, O., & Simoncelli, E. P. (2001). Natural signal statistics and sensory
gain control. Nature Neuroscience, 4(8), 819-825.



Higher-order structure!

Linear spatial filter

m—> @ - firing rate
Accounts for neurophysiological responses ?
of neurons in V1.

Schwartz, O., & Simoncelli, E. P. (2001). m

Natural signal statistics and sensory gain Outputs from other cortical cells
control. Nature Neuroscience, 4(8), 819-
825.

n
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The middle disks have the same physical

- luminance variance, but the one on the right
appears more “contrasty”, i.e. to have higher
variance.

This may be a behavioral consequence of
an underlying non-linearity in the spatial
filtering properties of V1 neurons involving
“divisive normalization” derived from
measures of the activity of other nearby
neurons.

From Heeger



More on decorrelation:

contingent adaptation



Contingent Adaptation: McCollough effect
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McCollough, C. (1965, 3 September 1965). Color Adaptation of
Edge-Detectors in the Human Visual System. Science, 149,

the cortex. In C. Miall, R. M. Durban, & G. J. Mitchison (Ed.), The

Computing Neuron Addison-Wesley.
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Barlow, H. B., & Foldiak, P. (1989). Adaptation and decorrelation in due to adaptation



lateral organization

Why the organization? The level of
abstraction?

o Keep similar features together for
feedforward integration.

» Lateral computations to group features
of similar type—segmentation

o Efficiency constraints

« Efficient representation of sensory
input & cost of neural activity

 Efficient representations for learning

e Minimum wiring constraint

to keep similar features near..
but Vi is ~ 2D, and many features!

One location column

1 — 2 (entire darkened area)
7 —
B 0 \\\
- | —
7 N

Right and left Set of orientation
ocular dominance columns from

columns 0 to 180 degrees
Figure 3.30

how can Lagout be Learned?



minimum wiring

Durbin, R., & Mitchison, G. (1990). A dimension reduction

Ts'o, D. Y., Frostig, R. D., Lieke, E. E., & Grinvald, A. (1990, 27 framework for understanding cortical maps. Nature, 343,
July 1990). Functional Organization of Primate Visual Cortex 644-647.
Revealed by High Resolution Optical Imaging. Science, 249,

417-420.

Kohonen map demo: Mapping 2D to 1D

Tanaka, K. (2003). Columns for complex visual object features
in the inferotemporal cortex: clustering of cells with similar but
J ust v1? slightly different stimulus selectivities. Cereb Cortex, 13(1),
90-99.



next lectures

e Unsupervised organization of features
 PCA, SVD
e non-orthogonal mappings and contingent adaptation
« anti-hebbian learning sclentific writing too
e auto encoders
* Relation to machine learning: clustering, EM, K-means
* Minimum wiring algorithm (Kohonen) for global cortical organization

» Neural population codes for representing probabilistic information



next lectures

e Hierarchical processing in depth

* feedforward—deep convolutional networks

e feedback



