
Introduction to Neural Networks

More sampling

Overview

Today

More sampling, leading to using Markov Chain Monte Carlo (MCMC) applications to inference on graphs

Why sampling? 

Boltzmann machine’s update rule review

Recall the Boltzmann machine was a fully connected network consisting of binary units. The update 
rule was to set

where: , where 

T (without the indices) is analogous to temperature in  thermodynamics.  For T=1, this update rule 
should by now be quite familiar. If we add a bias term, replace V j and Tij with vector x and matrix w, it is 

the same expression that we saw logistic regression, and for the simple probabilistic model of neural 
spike generation (Lecture 18) where the probability of a neuron firing is:

p(yi = 1 x) = 1
1+e-(w.x +b)

To implement the update rule for the Boltzmann machine, we draw a uniformly distributed number 

between 0 and 1,  and if that number is less than pi =  p(ΔEi) we set the output of the neuron, Vi , to 1; 

otherwise, set it to zero:

This is an example of the use of Monte Carlo sampling to do inference. But sampling can be applied in 
many more ways, for example to learn the weights given training data, and more ways described below.

Earlier we also saw how to sample in one dimension. But sampling gets much harder as the dimension-
ality increases. To further motivate sampling, consider several applications:

Pattern synthesis

Draw samples from a generative model which might be complex. E.g. involving lots of lateral interac-
tions as in an undirected graph. Or involving a top-down directed graph that specifies how causes 
create samples. This can be quite useful in vision to check whether one’s model is capturing the regulari-
ties seen in the data. Sampling can be used to generate complex structured stimuli to test theories of 
human learning and recognition (e.g. Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B., 2015), and in 
principal, to characterize response properties of neurons.



Draw samples from a generative model which might be complex. E.g. involving lots of lateral interac-
tions as in an undirected graph. Or involving a top-down directed graph that specifies how causes 
create samples. This can be quite useful in vision to check whether one’s model is capturing the regulari-
ties seen in the data. Sampling can be used to generate complex structured stimuli to test theories of 
human learning and recognition (e.g. Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B., 2015), and in 
principal, to characterize response properties of neurons.

Figure from Lake et al., 2015.

Texture synthesis, demonstrated below using Gibbs sampling, is an example of sampling given an 
undirected graph.

Learning

Given a model, one use stochastically generated (synthesized) samples in order to compare with data 
so as to adjust parameters (i.e. weights). We saw this in the original Boltzmann machine. 

Optimization

We already saw an example using the Boltzmann machine to do optimization, where we had multiple 
constraints (the stereo problem). For distributions with multiple modes, one may need annealing. 

Inference

Even with low-dimensional architectures (graphical models), given non-gaussian distributions, the 
math for determining simple messages of the sort we saw in our belief propagation example can be too 
difficult, and Monte Carlo simulations are required. For example, it is one thing to posit and write down 
the joint distribution corresponding to this graph:
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but quite another to calculate needed values for unknown variables, with others fixed, and still others 
unwanted. Recall that unwanted variables need to be integrated out in order to calculate ideal perfor-
mance. Practical solutions to solving these kinds of problems is what we are aiming for here and in the 
later material on MCMC sampling.

Integration (summing over) in very high dimensions

Integration or summing over many variables is a recurring problem. Sampling provides a method to do 
numerical integration.

Summing over many variables is required to find the normalization constant for a distribution.  In 
equation 1), the normalization constant is the discrete estimate of the 3D volume of p:

Z = 
x3=1

N3

x2=1

N2

x1=1

N1
p (x1, x2, x3) (1)

You may want to calculate the expectation of a function, f(x) of a random vector, e.g. when you calculate 
the mean, f(x) = x.  You have an expression for the joint distribution, say p(x), where x = (x1,x2,x3,...,xN).

E[f (x)] = 
x1


x2


x3

...
xM

f (x1, x2, x3, ..., xM) p (x1, x2, x3, ..., xM)

Marginalization also requires summing over many variables

p (x1 x2, x3, ..., xM) = ∑x2 ∑x3 ... ∑xM p (x1, x2, x3, ..., xM)

Even if one had formulas for the functions, M can be very, very big. Summing over gets computationally 
expensive to the point of intractability the more variables we need to sum over. If we have 
p (x1, x2, x3, ..., xM)and we would like to sum over M variables, each of which can  take on N 
values. We have to calculate and sum N^M values.  For example, this would be impossible for even a 
small image representation.

Also, there is model selection, where we want to compare the probability of two models given some 
data, we need to integrate out the parameters, θ,  that determine the models, m. For example, one 
model might be a quadratic function with three parameters, and another the sum of three sinusoids, 
whose parameters are the coefficients. Think of the parameters as values to be estimated (or explana-
tions of the data) under model m.  Bayes rule says that given data x:

p (θ x, m) =
p (x θ , m) p (θ m)

p (x m)

The denominator is called the “evidence”. Calculating it is the above normalization problem. For a 
fixed model, we usually don’t need to know the denominator. But if we want to decide which model is 
better we need to evaluate p(x|m) for the various m’s. And this may not be easy:
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The denominator is called the “evidence”. Calculating it is the above normalization problem. For a 
fixed model, we usually don’t need to know the denominator. But if we want to decide which model is 
better we need to evaluate p(x|m) for the various m’s. And this may not be easy:

p (x m) = 
θ

p (x, θ m) = 
θ

p (x θ, m) p (θ m)

As above, θ = (θ1,θ2,...,) may have many dimensions. Nested sampling is one method to do model 
selection. 

Sampling as a metaphor for bottom-up, top-down neural processing

One can either fix causes and draw samples of the data (top-down, “dreaming”), or fix the data and 
draw samples of possible causes (inference). 

Neural sampling as the basis for representations and decisions.

See  Sundareswara & Schrater (2008), Battaglia et al.  (2011); Vul et al. (2012).

▶  1. Show that if you have to sum over M indices (e.g. M = 3 in equation 1) above), each ranging from 1 
to N, you would have to do ~ NM additions. 

If you needed to calculate a marginal distribution over an image representation, say of really tiny 
pictures, 8 x 8 pixels, and each pixel could take on 256 gray levels (i.e. 8 bit pixels) how many sums 
would you have to do? Just for comparison, what can a 64 bit register on your computer count up to?

Sampling

What is Monte Carlo?

Let’s consider the Monte Carlo approach to the problem of calculating the area under a continuous 
function, or the volume of a surface, etc.. In practice, approximations are estimated through numerical 
integration, and one method of numerical integration is to use random sampling. For example, given a 
line that divides a table into two unequal parts, one could estimate the relative proportions of one of 
the areas by randomly throwing lots of balls on to the table and recording the proportion that settled in 
the area of interest.

More generally, we can approximate a density p(x) with a weighted set of samples from a potentially 
very high dimensional space by:

We will see below, that in contrast to deterministic integration, Monte Carlo integration positions 
samples in regions of high probability.

With a large number of random samples {xi} drawn from p(x), we can approximate p(x) as:

pN (x) ~
1

N


i=1

N

δxi - x
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By the definition of expectation we have:

E (f) =  f (x) p (x) ⅆx ≃  f (x) pN (x) ⅆx =

 f (x)
1

N


i=1

N

δxi - x ⅆx =
1

N


i=1

N

 f (x) δxi - x ⅆx =
1

N


i=1

N

f xi

A familiar case is f(x) = x, where 1
N 
i=1

N

xi is the approximation of the mean. 

▶  2. Derive the above relationship starting with a weighted sum of delta functions:

pN (x) ~ 
i=1

N
δxi - x pxi

Using the definition of the delta function, one can show that we can approximate high-dimensional 
integrals with computable sums. Suppose we want to compute the expectation of a function f(x):

SN (f) = 
i=1

N

p xi f xi~
1

N


i=1

N

f xi
N →∞

a.s. S (f) =  f (x) p (x) ⅆx (2)

“a.s.” is a mathematical notion of “almost surely” converges as N approaches infinity

▶  3. Use Monte Carlo sampling to calculate the area of the white area in the figure below. Monte Carlo is 
one option in routines to do numerical integration.

pannter = ImageDataImageColorConvert , GrayLevel, "Bit";

n = 100000;
Total[Table[If[pannter[[RandomInteger[{1, Dimensions[pannter][[1]]}],

RandomInteger[{1, Dimensions[pannter][[2]]}]]] ⩵ 1, 1, 0], {n}]] / n // N

Compare with a direct count of bright points, 1s, with dark points (0s):

Count[Flatten[pannter], 0];
N[Count[Flatten[pannter], 1] / Length[Flatten[pannter]]]

Let's look at some univariate examples to illustrate concepts that can be carried to more complicated 
cases. Of course to draw samples, we could use the inverse CDF method in an earlier lecture, but let's 
try something different, something that is more broadly applicable, and extensible to high dimensions.

Assume that we want to draw samples from a target distribution, p(x) that is hard or impossible to 
directly sample from. But we have a method to draw samples from another distribution that is easy to 
sample from, called the proposal distribution, q(x).  Given a sample from the proposal distribution, we 
can calculate its probability from the target distribution and then keep the sample if it is a true draw, 
but reject it if not. How do we know if it is representative of a true draw from the target distribution? 

Here’s a concrete example. We want to draw samples from this target distribution p*:
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Let's look at some univariate examples to illustrate concepts that can be carried to more complicated 
cases. Of course to draw samples, we could use the inverse CDF method in an earlier lecture, but let's 
try something different, something that is more broadly applicable, and extensible to high dimensions.

Assume that we want to draw samples from a target distribution, p(x) that is hard or impossible to 
directly sample from. But we have a method to draw samples from another distribution that is easy to 
sample from, called the proposal distribution, q(x).  Given a sample from the proposal distribution, we 
can calculate its probability from the target distribution and then keep the sample if it is a true draw, 
but reject it if not. How do we know if it is representative of a true draw from the target distribution? 

Here’s a concrete example. We want to draw samples from this target distribution p*:

Clear[p*, q*]

p* = MixtureDistribution[{2, 1},
{NormalDistribution[0, 1 / 2], NormalDistribution[1, 1 / 4]}];

Plot[PDF[p*, x], {x, -3, 4}, Filling → Axis]

but the only algorithm we have to draw samples from is this one:

q* = NormalDistribution[.5, 1]

NormalDistribution[0.5, 1]

How can we do it? One  way is to use rejection sampling. 

Rejection sampling
The idea is to first find M such that p(x) < M ⨯ q(x), i.e. that PDF[p*,x] < M* PDF[q*,x]. Graphically, we 
want M ⨯ q(x) to be higher than p(x) over the range where p(x)>0.  

Plot[{PDF[p*, x], 20 * PDF[q*, x]}, {x, -3, 4}, Filling → Axis]

Now draw a sample x’ from the proposal distribution, q*, and another sample, u,  from the uniform 
distribution (between 0 and 1). 

Only count the sample x’, if u*M*PDF[q*,x’] < PDF[p*,x’].

In effect, we are drawing a sample from a uniform distribution between 0 and M ⨯ q(x), and testing if it’s 
probability is below p(x). 
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Now draw a sample x’ from the proposal distribution, q*, and another sample, u,  from the uniform 
distribution (between 0 and 1). 

Only count the sample x’, if u*M*PDF[q*,x’] < PDF[p*,x’].

In effect, we are drawing a sample from a uniform distribution between 0 and M ⨯ q(x), and testing if it’s 
probability is below p(x). 

Figure from Andrieu, C., De Freitas, N., Doucet, A., & Jordan, M. I. (2003). 

x := RandomVariate[q* ];
u := RandomVariate[UniformDistribution[]];
M = 2;
samples =

Table[If[(u < PDF[p*, x0 = x] / (M * PDF[q*, x0]) && Abs[x] < 3), x0, Null], {50000}];

gH = Histogram[samples, 48, "PDF"];

gp* = Plot[{PDF[p*, x]}, {x, -3, 4}, Filling → Axis];
Show[{gH, gp*}]

▶  4. Try M = 100. You can see that the rejection sampling is most efficient if M times the proposal 
distribution isn’t too much higher than the target distribution over most of the range. 

Rejection sampling becomes increasingly inefficient as the dimensionality increases when too many 
samples get rejected.

Importance “sampling”
Perhaps should be called “importance approximation”, because we don’t use it to directly produce 
samples from a target distribution, but use samples from a proposal distribution to estimate expecta-
tions with respect to the target distribution. If we sample x from p(x):
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Perhaps should be called “importance approximation”, because we don’t use it to directly produce 
samples from a target distribution, but use samples from a proposal distribution to estimate expecta-
tions with respect to the target distribution. If we sample x from p(x):

E[f] =  f (x) p (x) ⅆx ~
1

N


i

N

fxi

But if we sample x from q(x), then the expectation of f(x)p(x)/q(x) (with respect to sampling from q) is :

E[f] =  f (x)
p (x)

q (x)
q (x) ⅆx =  (f (x) w (x)) q (x) ⅆx ~

1

N


i

N

fxi wxi

Lets look at an example where we find the average of a random variable from target distribution p*, 
but we don’t sample from it directly--as before, we sample from a proposal distribution, q*. In this 
case, let f(x) = x. 

q* = NormalDistribution[0, 3];
p* = NormalDistribution[3, 1];

u := RandomVariate[q*];
weights = Table[{x0 = u, PDF[p*, x0] / PDF[q*, x0]}, {1000}];
Mean[weights[[ ;; , 1]] * weights[[ ;; , 2]]]

0.284649

Compare with the mean when we are allowed to directly sample from p*:

x := RandomVariate[p* ];
xsamples = Table[{x}, {1000}];

Mean[xsamples]

{0.302341}

What is the importance of importance sampling? 

Suppose you need to sample from a truncated normal distribution with support from 0 to 1--call it 
pT(x). You could draw samples from the normal and throw out ones outside of the (0,1) range. This 
could waste many samples. 

Alternatively, you could use the uniform distribution over (0,1) as the proposal distribution, and weight 
each sample by the truncated normal, pT(xi)/,[0,1] = pT(xi)/1. You can show that the mean is:

(1 / N) 
i

N

xi pTxi

And every sample gets used. 
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An example of using importance sampling to estimate the mean of a truncated 
normal

*trunc = TruncatedDistribution[{0, 1}, NormalDistribution[]];
u := RandomVariate[UniformDistribution[{0, 1}]];

In this case Mathematica provides an analytic formula for the mean:

Mean[*trunc]
N[%]

-1 + ⅇ  2
ⅇ π

Erf 1

2


0.459862

But we can also estimate the mean using importance sampling:

Table[{x0 = u , x0 * PDF[*trunc, x0]}, {10000}];
Mean[%]

{0.499209, 0.459676}

Importance sampling can be used to reduce estimator variance.

▶  5. Estimate the variance of the target distribution  of the above truncated normal using importance 
sampling

▶  6. Show that we don’t need to know the normalizing constants for either the target or proposal 
distributions.

Gibbs sampling
Sometimes we can calculate the conditionals:

p xj x-j = p xj x1, x2, ... xj-1, xj+1, ....xN

where “x-j” means all xi such that i ≠ j. In this case, we can start with some initial condition, and 

proceed by replacing each value by a sample drawn from the conditionals/  As we repeatedly iterate 
through all the nodes, the samples approach the distribution of p x1, x2, ... xj, ... xN
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From Andrieu et al. 

The iterations don’t have to be in sequence, but can be chosen at random, as we do below in the 
texture synthesis example. Given a Markov property, the conditionals can be simple e.g.  
p xj x-j = p xj xj-1and Gibbs sampling becomes practical in high-dimensional spaces. For 

Gibbs sampling, we need the probabilities, i.e. normalized. This is illustrated in the texture synthesis 
demo below

Gibbs sampling simple bivariate: demo

This demo takes advantage of a “weird” bivariate distribution, weird because its conditionals are 
gaussian, which makes for a simple gibbs sampler.

weird2ddist[x_, y_] := Exp[-(x * x * y * y + x * x + y * y - 8 * x - 8 * y) / 2];
gcontour = ContourPlot[weird2ddist[x, y]^.2, {x, -1, 8},

{y, -1, 8}, ColorFunction → "BlueGreenYellow", ImageSize → Small]
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n = 50000;
x = ConstantArray[0.0, n];
y = ConstantArray[0.0, n];

x[[1]] = 1.;
y[[1]] = 6.;
sig[z_, i_] := Sqrt[1. / (1. + z[[i]] * z[[i]])];
mu[z_, i_] := 4. / (1. + z[[i]] * z[[i]]);

For[i = 2, i < n - 1, i = i + 2,
sigx = sig[y, i - 1];
mux = mu[y, i - 1];

x[[i]] = RandomVariate[NormalDistribution[mux, sigx]];
y[[i]] = y[[i - 1]];

sigy = sig[x, i];
muy = mu[x, i];

y[[i + 1]] = RandomVariate[NormalDistribution[muy, sigy]];
x[[i + 1]] = x[[i]];(**)

]

Plot the evolution of the x sample values as a function of the iteration (or time step):

ListPlot[x]

10000 20000 30000 40000 50000

2

4

6

8

Plot up the marginal distribution estimates:
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GraphicsRow[{Histogram[x, 50, "PDF"], Histogram[y, 50, "PDF"]}]

Estimate the means of the marginals. E.g. for x:

x

1., 0.225781, 0.225781, -0.137131, -0.137131,

⋯ 49990⋯ , 4.11481, 4.11481, 3.5323, 3.5323, 0.

large output show less show more show all set size limit...

Mean[x]

1.94803

{bins, heights} = HistogramList[x, 50, "PDF"];
maxFreq = N[Max[heights]]
Histogram[x, {bins}, heights &,
Epilog → {{Thick, Darker[Green], Line[{{Mean[x], 0}, {Mean[x], maxFreq + 2}}]}}]

0.5402

And for both:

{Mean[x], Mean[y]}

{1.94803, 1.78225}

Here’s a scatter plot of the samples:
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traj = Transpose[Join[{x[[1 ;; 1000]], y[[1 ;; 1000]]}]];
gtraj0 = ListPlot[traj, Joined → False,

PlotRange → {{-1, 8}, {-1, 8}}, PlotStyle → Pink, Axes → True]

2 4 6 8

2

4

6

8

And finally, visualize how the samples jump around during the last 300 iterations.

traj2 = Take[traj, {Dimensions[traj][[1]] - 300, Dimensions[traj][[1]], 1}];
gtraj = ListPlot[traj2, Joined → True, PlotRange → {{-1, 8}, {-1, 8}},

PlotStyle → {Black, Thickness[.005]}, Axes → False];
Show[{gcontour, gtraj}]

Metropolis-Hastings
We’ve gone from special cases to more general. It can be shown that Gibbs Sampling, for example, is a 
special case of a more general class of samplers called Metropolis-Hastings. 

As before assume we have target distribution, p(x) that may only be specified up to a normalizing 
constant.  We can't directly sample from it, 
but we have a proposal distribution, q(x) that we can sample from. Given a possible sample we can 
evaluate its target probability up to a normalizing constant. Further, we can calculate the conditional 
probabilities q x' x''.  

Here’s a summary of the algorithm:
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As before assume we have target distribution, p(x) that may only be specified up to a normalizing 
constant.  We can't directly sample from it, 
but we have a proposal distribution, q(x) that we can sample from. Given a possible sample we can 
evaluate its target probability up to a normalizing constant. Further, we can calculate the conditional 
probabilities q x' x''.  

Here’s a summary of the algorithm:

Initialize x0 to some arbitrary value
for i = 0 to n - 1

sample u ~ B[0, 1]
sample x* ~ q x* xi

if u < min 1,
p (x*) q xi x*

p xi q x* xi


xi+1 = x*,
otherwise

xi+1 = xi

G xi, x* = min 1,
p (x*) q xi x*

p xi q x* xi
 is called the acceptance function.

The acceptance rule is equivalent to setting xi+1 = x* with probability G xi, x*.

Demonstration

Clear[x, x1, xx, uu, x0, u, p*, q*, A, A0];

The first function, p* defines the target distribution, p(x). Recall that any function, constant ⨯ p(x), will 
also work. 

p* = MixtureDistribution[{2, 1},
{NormalDistribution[], NormalDistribution[2, 1 / 4]}];

gp* = Plot[{PDF[p*, x]}, {x, -3, 3}, Filling → Axis];

This next function below specifies the proposal distribution. We can sample from it and given a possi-
ble sample value as input, we
can calculate its value.

q*[x_] := NormalDistribution[x, 4];

x0 = -10.0; (*initial value*)
uu := RandomVariate[UniformDistribution[]];

We could define the “acceptance function” . = A0 as:

A0[x1_, x0_] :=
Min[1.0, (PDF[p*, x1] * PDF[q*[x0], x1]) / (PDF[p*, x0] * PDF[q*[x1], x0])];

The above acceptance function here is the general case we introduced above-- it puts the Hastings in 
Metropolis-Hastings.

But if you examine the above A0[ ] function, you’ll see that the proposal distribution is symmetric (you 
can swap x1 and x0, and the computed
value stays the same).  So in our case using a symmetric normal distribution for proposal sampling, we 
can simplify the acceptance function:
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G xi, x* = min 1,
p (x*)

p xi


A[x1_, x0_] := Min[1.0, (PDF[p*, x1]) / (PDF[p*, x0])];

n = 1000;
samples = ConstantArray[0.0, n];
samples[[1]] = x0;
For[i = 1, i < n, i++,

x1 = RandomVariate[q*[samples[[i]]]];
Pause[.01];

If[uu < A[x1, samples[[i]]], samples[[i + 1]] = x1, samples[[i + 1]] = samples[[i]]]];

(*gH=Dynamic[Histogram[samples,48,"PDF",PlotRange→{{-3,3},{0,.8}}]]*)

gH =

Dynamic[Show[{Histogram[samples, 48, "PDF", PlotRange → {{-3, 3}, {0, .8}}], gp*}]]

Dynamic[ListPlot[samples, Joined → True, PlotRange → {-6, 6}]]

200 400 600 800 1000

-6

-4

-2

2

4

6

This is sometimes called random-walk Metropolis. Let’s compare the first 50 samples (blue) with the 
last 50 (tan).
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ListLinePlot[{samples[[1 ;; 50]], Take[samples, -50]}]

10 20 30 40 50

-4

-3

-2

-1

1

2

The samples are eventually representative of xi ~ p(x). Because it takes a while for the samples to 
settle, there is an initial “burn in” period--these samples are typically thrown out. Also note because 
the acceptance rule is conditional on the previous sample, that the samples are not independent. 

The original Metropolis et al. paper and simulated annealing papers are among the top 100 most cited 
papers according to Web of Science and Nature: http://www.nature.com/news/the-top-100-paper-
s-1.16224

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. , (1953) Equation of state 
calculations by fast computing machines. J. Chem. Phys. 21,1087–1092.

Kirkpatrick. S., Gelatt, C. D. & Vecchi, M. P. (1983) Optimization by simulated annealing. Science, 220, 
671–680.

To get a sense of their scientific impact, look up the above papers in scholar.google. Also, for Gibbs 
sampling, type in  geman.

So what is a Markov Chain?
We’ve demonstrated several Monte Carlo methods of drawing samples, but haven’t explained the 
“Markov Chain” bit.

Gibbs Sampling and the Metropolis-Hastings methods are both examples of Markov Chain Monte Carlo. 
Where does the Markov Chain come in? 

As a function of time, the iterations determine a sequence of states that have the Markov Property 
characterized by the graph:
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Xt+1Xt

Note that a draw from the proposal distributions only depended on the previously drawn value:

p xi xi-1, ..., x1 = T xi xi-1

T xi xi-1 is a  transition matrix, which can also be represented by a transition graph.

Here’s an example from the wiki page:

With this condition and the assumption that the transition matrix T stays fixed, the stochastic process is 
a Markov Chain. The sequence of draws we simulated above are the samples from Markov Chains.

Under certain "regularity" conditions, with large enough i, the evolution of samples xi will come to 
reflect the distribution of an "invariant" or "stationary distribution", which with the right proposal 
design corresponds to our desired target distribution. Once we have an estimate of that, represented 
by many samples, we can calculate various statistics on it, such as mean values of marginals. Because 
it can take many iterations before the samples are representative of draws from the target distribution, 
one usually drops early samples (from the burn in period) and calculates the mean (or other statistics) 
based on a criterion number of later samples.

Although we don't describe the details of the convergence conditions, they can be illustrated with 
searches on the web (Andriew et al., 2003). A transition takes us from one node (link) to the next. One 
would like to avoid getting trapped in loops and one would like to be able to access any link in the net. 
These two constraints correspond to two conditions, aperiodicity and irreducibilty which in the case of 
Markov Chains are required for the chain to evolve such that samples are drawn from the target distribu-
tion. Google's original PageRank search algorithm used a transition matrix with added noise to ensure 
aperiodicity and irreducibility.
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With this condition and the assumption that the transition matrix T stays fixed, the stochastic process is 
a Markov Chain. The sequence of draws we simulated above are the samples from Markov Chains.

Under certain "regularity" conditions, with large enough i, the evolution of samples xi will come to 
reflect the distribution of an "invariant" or "stationary distribution", which with the right proposal 
design corresponds to our desired target distribution. Once we have an estimate of that, represented 
by many samples, we can calculate various statistics on it, such as mean values of marginals. Because 
it can take many iterations before the samples are representative of draws from the target distribution, 
one usually drops early samples (from the burn in period) and calculates the mean (or other statistics) 
based on a criterion number of later samples.

Although we don't describe the details of the convergence conditions, they can be illustrated with 
searches on the web (Andriew et al., 2003). A transition takes us from one node (link) to the next. One 
would like to avoid getting trapped in loops and one would like to be able to access any link in the net. 
These two constraints correspond to two conditions, aperiodicity and irreducibilty which in the case of 
Markov Chains are required for the chain to evolve such that samples are drawn from the target distribu-
tion. Google's original PageRank search algorithm used a transition matrix with added noise to ensure 
aperiodicity and irreducibility.

Gibbs sampling texture synthesis demo
Let’s look at an application to pattern synthesis. We’ve already looked at the problem of visual interpo-
lation. This was an example of a more general principle of perception in which similar features rein-
force each other, providing the basis for grouping. We discuss this more later when we talk about 
lateral organization in neural architectures for vision. 

Grouping similar features can be represented by an undirected graph:

Suppose the nodes represent pixel values over some probability model of images, such as all the 
images of “grass”. In general, the probability of activation,  si,  of node i will depend on the neighbors j 
in some neighborhood of i:  j ∈ Ni. si. A Markov Random Field (MRF) has the following property:

p si sj; all j ≠ i = p si sj; j ∈ Ni

In other words, to draw samples from p (si given all the other pixels), it is sufficient to 
draw from p (si in a neighborhood of i). This locality restriction makes it tractable to 
calculate marginals and use Gibbs sampling.

Texture perception relies in part on local regularities in images: MRFs

Texture modeling has received considerable attention in biological vision and computer graphics. A 
recent advance in learning pattern distributions is the Minimax theory (Zhu and Mumford, 1997). 

In general, it is a hard problem to draw true samples from high dimensional spaces. One needs a 
quantitative model of the distribution and a method such as Gibbs sampling to draw samples.  

For a recent example of an application of texture synthesis to understanding the networks of the 
brain’s visual system, see Freeman, J & Simoncelli, E. P. (2011)

Often it isn’t important to be sure that one has a “true sample”, and other techniques can be used to 
produce random patterns. E.g. one can first draw sample of white noise, and then iteratively adjust the 
texture to match statistics of the model, e.g. http://www.cns.nyu.edu/~lcv/texture/

Texture synthesis: An example of generative modeling of data

Last time we took a quick look at the application of the Boltzmann machine problems of pattern 
synthesis. This involves a different perspective on the same network--now instead of viewing it as 
doing inference, the network is a generative model.
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Last time we took a quick look at the application of the Boltzmann machine problems of pattern 
synthesis. This involves a different perspective on the same network--now instead of viewing it as 
doing inference, the network is a generative model.

We drew the analogy to dreaming or conscious imagery. A potentially related phenomenon is hypna-
gogic imagery. 

Let's let the units take on continuous values. Consider the quantized case. Suppose rather than just 
binary values, our units can take on a range of values. We'll introduce the idea with a demonstration of 
a pattern synthesizer for texture generation.

Local energy
Local energy potential at location i = 

j∈N i

f Vi - Vj

The local energy determines a local conditional probability for the values at the ith site: 

p Vi Vj, jϵ Ni = κ e-∑j∈N (i)f Vi-Vj

Sampling from textures using local updates

To draw a sample at the ith node, we draw from the local (conditional) probability distribution:

Figure from Kersten (1991)
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Demo

Set up image arrays and useful functions

size = 64; T0 = 1.; ngray = 16;
brown = N[Table[RandomInteger[{1, ngray}], {i, 1, size}, {i, 1, size}]];
next[x_] := Mod[x, size] + 1;
previous[x_] := Mod[x - 2, size] + 1;

We can try several types of potentials.

Ising potential

Clear[f];
f[x_, s_, n_] := If[Abs[x] < 0.5, 0, 1];
s0 = 1.`; n0 = 5;
Plot[f[x, s0, n0], {x, -2, 2}, AxesLabel →

{"\!\(\*SubscriptBox[\(V\), \(i\)]\)-\!\(\*SubscriptBox[\(V\), \(j\)]\)", f}]
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Geman & Geman potential

Clear[f];

f[x_, s_, n_] := N Abs
x

s

n
 1 + Abs

x

s

n

;

s0 = 0.25`; n0 = 2;
Plot[f[x, s0, n0], {x, -2, 2}, PlotRange → {0, 1}, AxesLabel →

{"\!\(\*SubscriptBox[\(V\), \(i\)]\)-\!\(\*SubscriptBox[\(V\), \(j\)]\)", f}]
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Define the potential function using nearest-neighbor pair-wise "cliques"

Suppose we are at site i. x is the activity level (or graylevel in a texture) of unit (or site) i. avg is a list of 
the levels at the neighbors of the site i.
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Suppose we are at site i. x is the activity level (or graylevel in a texture) of unit (or site) i. avg is a list of 
the levels at the neighbors of the site i.

Clear[gibbspotential, gibbsdraw, tr];
gibbspotential[x_, avg_, T_] :=

N[Exp[-(f[x - avg[[1]], s0, n0] + f[x - avg[[2]], s0, n0] +

f[x - avg[[3]], s0, n0] + f[x - avg[[4]], s0, n0]) / T]];

Define a function to draw a single pixel gray-level sample from a conditional 
distribution determined by pixels in neighborhood

The idea is to calculate the cumulative distribution corresponding to the local conditional probability, 
pick a uniformly distributed number, which determines the value of the sample x (through the distribu-
tion). To save time, we avoid having to normalize the cumulative (it should asymptote to 1) by drawing 
a uniformly distributed random number between the max and min values of the output of FoldList (the 
cumulative sum).

gibbsdraw[avg_, T_] :=
Module[{}, temp = Table[gibbspotential[x + 1, avg, T], {x, 0, ngray - 1}];
temp2 = FoldList[Plus, temp〚1〛, temp];
temp10 = Table[{temp2〚i〛, i - 1}, {i, 1, Dimensions[temp2]〚1〛}];
tr = Interpolation[temp10, InterpolationOrder → 0];
maxtemp = Max[temp2];
mintemp = Min[temp2];
ri = RandomReal[{mintemp, maxtemp}];
x = Floor[tr[ri]];
Return[{x, temp2}];];

FoldList [] allows us to effectively draw a sample from a normalized distribution using the inverse CDF 
method.

gg = Dynamic[
ArrayPlot[brown, Mesh → False, ColorFunction → ColorData["SouthwestColors"],
PlotRange → {1, ngray}, ImageSize → Small]]
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For[iter = 1, iter ≤ 10, iter++, T = 0.25;
For[j1 = 1, j1 ≤ size size, j1++, {i, j} = RandomInteger[{1, size}, 2];
avg = {brown〚next[i], j〛,

brown〚i, next[j]〛, brown〚i, previous[j]〛, brown〚previous[i], j〛};
brown〚i, j〛 = gibbsdraw[avg, T]〚1〛;];

gg];

"Drawing" a pattern sample

Was it a true sample? Drawing true samples means that we have to allow sufficient iterations so that we 
end up with images whose frequency corresponds to the model. How long is long enough?

Denoising, and grouping features contingent on lower level input

A MRF can be constrained by image data. For example, suppose the true image is corrupted by noise. 
Fidelity to input image data can be constrained by prior assumptions about what image pixel relations 
are typically like--i.e. that image color patterns tend to be piece-wise constant.

Alternatively, the nodes, s, could represent some useful world property to be estimated, such as a 
material’s intrinsic reflectivity (or surface color).

Here’s a figure from the now classic paper by Geman, S., & Geman, D. (1984) illustrating sharpening and 
noise removal.
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Next time
Scientific computing with Python and Jupyter/IPython notebooks. Examples of neural modeling, and 
Bayesian inference using MCMC sampling.

Appendix

Rejection sampling with uniform proposal distribution

The uniform distribution doesn’t cover the whole range of the target distribution, but may be good 
enough.

M = 4;

p* = MixtureDistribution[{2, 1},
{NormalDistribution[], NormalDistribution[2, 1 / 4]}];

q*2 = UniformDistribution[{-3, 3}];
gq* = Plot[{M * PDF[q*2 , x]}, {x, -3, 4}, Filling → Axis, PlotRange → {-5, 6}];

Clear[u, x];
u := RandomVariate[UniformDistribution[]];
x := Module[{n}, n = 1;

While[Abs[xr = RandomVariate[q*2]] > 3, xr;
n++]; Return[xr]];

samples = Table[If[(u < PDF[p*, x0 = x] / (M * PDF[q*2, x0])), x0, Null], {10000}];
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gH = Histogram[samples, 48, "PDF", PlotRange → {{-3, 4}, {0, .7}}]

gp* = Plot[{PDF[p*, x]}, {x, -5, 6}, Filling → Axis, PlotRange → {-3, 4}];
Show[{gH, gp*, gq*}]
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