
Introduction to Neural Networks

Sculpting energy/cost landscapes: interpolation and gradient descent
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Overview

Last time
Probability, statistics overview
Simple sampling

Mathematica functions for multivariate distributions
Later we’ll tackle the problem of drawing samples from high-dimensional, but structured distributions. 
But here we’ll use Mathematica built-in functions to graphically illustrate some of the above ideas, and 
help build intuitions.

Multivariate gaussian probability density

An n-variate multivariate gaussian (multinormal) distribution with mean vector μ and covariance matrix 
Σ is denoted Nn(μ, Σ). The density is:

p (x) =
1

(2 π)n/2 Det[Σ]1/2
Exp-

1

2
(x - μ)T Σ-1 (x - μ)

where Σ-1plays the role, in n dimensions, of the reciprocal of variance  σ2-1=1σ2) in one dimension. 

(x - μ)T Σ-1 (x - μ) is called the Mahalanobis_distance of x from μ. “Distance” in the sense that if the 
mean, μ, is a zero vector, you can think of xTΣ-1 x  as a measure of how far x is away from zero in “units 
of standard deviation” in that direction. 

The covariance matrix Σ can’t be any matrix, it has to be symmetric and “positive definite”. The latter 
means that  xTΣx >0 for any vector x consisting of real numbers (and for which no columns of Σ are 
zero). Suppose for the moment that Σ is a scalar, not a matrix. If x2 Σ > 0 for all x, then Σ would also 
have to be positive, i.e. Σ > 0. Positive definite is a generalization to matrices. In general xTΣx  is a sum 
of linear plus quadratic terms. In general, such a sum can define a planar surface (if all the squared and 
cross-product terms are zero), a valley or ridge, or a convex mound, or a concave bowl. In other words, 
in 2D want a “bowl”, and as a consequence, p(x) will be a convex mound. This is important for the 
existence and uniqueness of a mode. Most sampled covariance matrices will be positive definite.

Mathematica has a built-in function, MultinormalDistribution[μ, Σ].  For example, you can define the 
probability density function for mean vector {μ1, μ2}, and covariance matrix 
σ11

2, ρ * σ11 * σ22, ρ * σ11 * σ22, σ22
2, where ρ parameterizes correlation.



Mathematica has a built-in function, MultinormalDistribution[μ, Σ].  For example, you can define the 
probability density function for mean vector {μ1, μ2}, and covariance matrix 
σ11

2, ρ * σ11 * σ22, ρ * σ11 * σ22, σ22
2, where ρ parameterizes correlation.

Σ = σ11
2, ρ * σ11 * σ22, ρ * σ11 * σ22, σ22

2;

PDF[MultinormalDistribution[{μ1, μ2}, Σ ], {x, y}]

You can ask for the Covariance to be returned:

Covariance[MultinormalDistribution[{μ1, μ2}, Σ]] // MatrixForm

σ11
2 ρ σ11 σ22

ρ σ11 σ22 σ22
2

Examples of PDF, CDF

MultinormalDistributionμ, Σ

m1 = {1,1/2};
r=(1/2)*{{1,2/3},{2/3,4}};
ndist = MultinormalDistribution[m1, r];
pdf = PDF[ndist, {x1, x2}]
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GraphicsRow[{g1 = ContourPlot[PDF[ndist, {x1, x2}], {x1, -3, 3}, {x2, -3, 3}],
g13D = Plot3D[PDF[ndist, {x1, x2}], {x1, -3, 3}, {x2, -3, 3}]}]

▶  1. Use PositiveDefiniteMatrixQ[r]; Plot Σ from above: ContourPlot[{x1, x2}.r.{x1, x2}, {x1, -6, 6}, {x2, -6, 
6}]

Calculating probabilities using the CDF

What is the probability of x1 and x2 taking on values in the region x1 < .5⋂ x2 < 2? 
Recall that the cumulative distribution function is given by:

CDF (x1, x2) = 
-∞

x2

-∞

x1
p (x1, x2) ⅆx1 ⅆx2

So the answer is the area under the PDF shown below.
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grp = RegionPlot[x1 < .5 && x2 < 2, {x1, -4, 4}, {x2, -4, 4},
PlotStyle → Directive[Opacity[.25], EdgeForm[], FaceForm[Gray]]];

Show[{ g1, grp}, ImageSize → Small]

We could numerically integrate to find the area. Alternatively, the answer can be found from the built-in 
cumulative distribution function, or CDF. The value corresponds to the height of the contour at {x1, x2} = 
{.5, 2.0}. Move your mouse over the plot to see the value of the CDF at {x1, x2} = {.5, 2.0}. 

gcdf = ContourPlot[CDF[ndist, {x1, x2}], {x1, -4, 4}, {x2, -4, 4},ImageSize → Small];
Show[{ gcdf, grp}, ImageSize → Small]

 A more precise answer is:

CDF[ndist, {.5, 2.0}]

0.225562

Finding the mode
Recall the mode is the value of the random variable with the highest probability or probability density. 
For discrete distributions, think of it as the most frequent value.

(Sometimes the word “mode” is used to refer to a local maximum in a density function. Then the distribu-
tion is called multimodal. If it has two modes, it is called bimodal.) There may not be a unique mode--the 
uniform distribution is an extreme case of this. 

For the Gaussian case, the mode vector corresponds to the mean vector. But we can pretend we don't 
know that, and use the FindMaximum[] function to find the maximum and the coordinates where the 
max occurs:
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FindMaximum[PDF[ndist, {x1, x2}], {{x1, 0}, {x2, 0}}]

{0.168809, {x1 → 1., x2 → 0.5}}

Drawing samples
As we've used in earlier lectures, drawing samples is done by:

RandomVariate[ndist]

{1.27588, 1.6535}

or

RandomReal[ndist]

Here’s an example of a “white gaussian noise” image. It is called “white” because there are no correla-
tions between the pixel intensities. Each one is drawn independently of the others.

width = 32;
data = RandomVariate[NormalDistribution[0, 1], width * width];
Image[Partition[data, width]] // ImageAdjust

Marginalizing and conditioning normal distributions
Normal or gaussian distributions are the workhorses of probabilistic modeling involving continuous 
variables. And it isn’t just because of the central limit theorem--in fact most natural processes are non-
gaussian and non-linear. There is a close relationships between linearity and gaussianity. So despite 
the world being non-linear and non-gaussian, linear and gaussian assumptions are practically useful in 
many contexts. More importantly, gaussian models provide a useful basis on which to build models of 
gaussian processes and  non-gaussian distributions, e.g. mixture distributions.

This section demonstrates two basic properties of multivariate distributions, namely that they behave 
nicely when subjected to both the product and sum rules. Specifically, conditioning or marginalizing a 
multivariate gaussian results in another gaussian distribution.

Marginalization

Suppose, given the joint  PDF[x1,x2], we want the distribution for just x1, PDF[x1] = marginal[x1]. How do 
we find it? Integrate PDF[x1, x2] with respect to x2. This is the marginal distribution of x1. Below we 
integrate out the other variable, x2from the joint, p(x1, x2) = PDF[x1, x2]. Similarly, we can calculate 
PDF[ x2].
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PDF[ndist, {x1, x2}]
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Clear[x1, x2];

marginal[x1_] := 
-∞

∞

PDF[ndist, {x1, x2}] ⅆx2;

marginal2[x2_] := 
-∞

∞

PDF[ndist, {x1, x2}] ⅆx1;

Note that both marginals are also normally distributed:

{marginal[x1], marginal2[x2]}


ⅇ-(-1+x1)2

π
,
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1
16

(1-2 x2)2

2 π


This is a very important general point. In fact, you can project the variables of a bivariate normal on to 
any line (a*x1+b*x2 = c), and the resulting marginal will still be normally distributed. And more generally, 
the projection of high dimensional multivariate gaussian onto any of its dimensions will be a gaussian.

We can sample from the marginals:

RandomVariate[marginalM, {10}]

{0.405627, 0.785671, 1.52309, 1.69814,
2.16477, 1.6117, 0.447167, 1.4135, 0.701329, 1.18288}

And we can calculate modes. What is the mode of PDF[x2]?

FindMaximum[marginal2[zz], {{zz, 0}}]

{0.282095, {zz → 0.5}}

Let’s plot up the marginals on top of the contour plot of the joint distribution.

mt = Table[{x1, marginal[x1]}, {x1, -3, 3, .2}];
g2 = ListPlot[mt, Joined → True, PlotStyle → {Red, Thick}, Axes → False];

mt2 = Table[{x2, marginal2[x2]}, {x2, -3, 3, .4}];
g3 = ListPlot[mt2, Joined → True, PlotStyle → {Green, Thick}, Axes → False];
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theta = Pi / 2;
Show[g1, Epilog → {Inset[g2, {0, -3}, {0, 0}], Inset[g3, {-3, 0}, {0, 0},

Automatic, {{Cos[theta], Sin[theta]}, {Sin[theta], -Cos[theta]}}]}]

▶  2. Use the built-in function, MarginalDistribution[ ],  to calculate and plot the marginals:

marginalM = MarginalDistribution[ndist, 1];
marginal2M = MarginalDistribution[ndist, 2];

Conditioning

Given the joint  PDF[x1,x2], we want the conditional distribution given x2, PDF[x1, x2] =
PDF[x1, x2]

PDF[x2]
. The 

joint is:
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and the marginal is:

marginal2[x2]
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so the conditional distribution is:

1

4 2 π
3 ⅇ

1
2
-(-1+x1) 

9
4
(-1+x1)- 3

8
-

1
2
+x2-- 3

8
(-1+x1)+ 9

16
-

1
2
+x2 -

1
2
+x2


ⅇ-

1
16

(1-2 x2)2

2 π

1

2 2 π
3 ⅇ

1
2
(1-x1) 

9
4
(-1+x1)- 3

8
-

1
2
+x2-- 3

8
(-1+x1)+ 9

16
-

1
2
+x2 -

1
2
+x2+ 1

16
(1-2 x2)2

Looks more complicated than it is, but it the conditional is still a gaussian. 
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FullSimplify
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..although we’d still want to show that we can write the argument in standard form.

And we can check to make sure the area under the curve along x1 is unity:
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▶  3. Calculate the condition with PDF[ndist,{x1,x2}] and PDF[marginal2M,x2]:

PDF[ndist, {x1, x2}] / PDF[marginal2M, x2]
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Use FullSimplify[] on the exponential arguments to show that the answers are the same.

Mixtures of gaussians with MultinormalDistribution[ ]
Multivariate gaussian distributions are often inadequate to model real-life problems, that for example 
might involve more than one mode or might have non-gaussian properties. One solution is to approxi-
mate more general distributions by a sum or mixture of gaussians. Mixtures can be used to model 
clusters of feature values for object categories. The feature values for each category corresponds to a 
multivariate gaussian.

Clear[mix];
r1=0.4*{{1,.6},{.6,1}};
r2=0.4*{{1,-.6},{-.6,1}};
m1 = {1,.5}; m2 = {-1,-.5};
ndist1 = MultinormalDistribution[m1, r1];
ndist2 = MultinormalDistribution[m2, r2];

mix[x_,mp_] := mp*PDF[ndist1, x] + (1-mp)*PDF[ndist2, x];

Lect14_MultinormalsRegressionSculptingCost.nb     7



Manipulate[gg1 = Plot3D[mix[{x1, x2}, mp], {x1, -2, 2},
{x2, -2, 2}, PlotRange → Full, ImageSize → Small], {{mp, .2}, 0, 1}]

mp

Mathematica has a built-in function for defining mixture distributions:

Clear[?, w, x, y];
?[w_] =

MixtureDistribution[{w, 1 - w}, {MultivariatePoissonDistribution[7, {9, 10}],
MultivariatePoissonDistribution[2, {5, 4}]}];

Manipulate[DiscretePlot3D[PDF[?[w], {x, y}], {x, 0, 30},
{y, 0, 30}, ExtentSize → Full], {w, 0, 1}];

See Zoran and Weiss (2011) for an application of mixture models to discovering visual features in 
natural images.

Using energy and gradient descent to derive update rules
In previous inference examples, weights were determined by Hebbian learning. So the energy land-
scape was sculpted by state vectors to be stored.

But we can also do things the other way around. Rather than figuring out the weights for a Hopfield-
style network that has a known relationship to an energy function, we first specify the energy function, 
and then figure out an update rule that will descend the energy landscape.  From the point of view of 
neural networks, this update rule may look nothing like what neurons do. But it may be the best way to 
start--that is, by sculpting the energy function directly, and then see what emerges in terms of an update 
rule.

We are going to follow this strategy in this notebook on a simple problem of interpolation. It will turn out 
that our update rule is the simplest neural model--a linear summer. Although limited, this kind of analy-
sis provides a starting point for more complicated energy functions with correspondingly non-linear 
update rules.

The energy function is sometimes referred to as a cost function or objective function.
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Motivation: Interpolation problems in perception

 A recurring theme in many of the problems in visual perception that the data available (“features”) in 
the image do not fully constrain the estimate of the surface or surface properties one would like to 
compute. 

A random dot stereogram can have many local features densely packed, with substantial ambiguity in 
matching left eye pixels to those in the right. Here another stereo example in which the features (dots, 
and their disparities) are sparsely packed.

GraphicsRowgleft = Image , gright = Image 

If you cross your eyes so the left and right images go to your right and left eyes, respectively, you may 
be able to see a small square surface, textured with dots, floating out in front of a background of dots. In 
addition to an illusory surface, you may also see illusory boundaries around the small square--i.e. edges 
where there are no changes in intensity.  The visual system seems to interpolate  a surface between 
salient points--the dots. The Kanizsa triangle is another example of perceptual interpolation.

We will study a simpler case of interpolation--namely filling in a line between feature points in just 1D. 
We will do this by constructing an energy function first, and then calculating an update rule by gradient 
descent. But the same principles apply to computational models of stereopsis, shape-from-shading, 
optic flow and other problems in early visual processing.

Energy: Data and smoothness terms

Suppose we have a set of points {i, di}, where i indexes the point, and di is the height at i.
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We would like to find a smooth function, f[i] ~ di, that approximately fits the data points. However, we'll 
assume we don't have specific knowledge of the parametric form of the underlying function. In other 
words, we don't want to assume linear, quadratic, or general polynomial fits, or sinusoidal fits. We could 
just connect the dots. But if there is any wiggly noise, we'd have lots of wiggles that shouldn't be there. 
Further, the model probably wouldn’t generalize well. We want a "smoother fit".

We assume that there are two constraints that will guide the problem of sculpting an energy function to 
reconstruct a line (or surface): 

1. Fidelity to the data; 
2) Smoothness of the fit.

Suppose {di} are the data points, where the i's come from a subset, D of the total domain over which our 

reconstructed function, f is defined. Fidelity to the data can be represented by an energy or cost term 
that is big if the estimate of f is too far away from the data:

Smoothness can be represented by an energy cost in which near-by values of the estimate, f, are 
required to be close:

We combine two constraints by adding:

(1)

λ is a free parameter that allows us to control how much the smoothing should dominate the data or 
fidelity term. Note we assume that the smoothness term is independent of the data, and is equivalent to 
assuming a Bayesian prior in statistics (Poggio et al., 1988; Kersten et al., 1987).

If we wish to start off with some initial guess for the values of f, we can successively improve our esti-
mate by sliding down the slope of E in the steepest direction. As we saw in an earlier lecture, this says 

that the rate of change of fi in time should be proportional to the negative slope of E in the direction of fi

Recall the proof:
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For step Δt, the biggest decrease in E is when cosθ = -1. In other words, when the vectors ∇E and 

df are pointing in opposite directions. So if we make a change df in proportion to -∇E for each time step 
Δt, we will reduce the energy.

df ∝ -∇E
In the limit Δt→0, we can set:

As mentioned above, we've encountered gradient descent before when we calculated the derivative of 
the error function with respect to the weights when we studied linear regression and the widrow-hoff 
rule. But now were are descending in activity, rather than weight space.

Taking the derivative of the above cost function:

 (One can use Mathematica  to verify the pattern of the terms in the derivative.) Or in discrete time steps 
of dt, 

(2)

(Note: We aren’t really doing interpolation yet--for that we need to some book-keeping in that, we have 
to pay attention to when we are updating f 's that don't have data support. We show one way to handle 
that below.) 

You can see that the value of f at time t+dt, is just the weighted sum of the values of f at time t, and the 
data, d. A weighted sum calculation is exactly what our linear model of a neuron does. 

So we've derived an update rule for our energy function that could be implemented with a standard 
linear neural model.

▶  4. What is the weight matrix? Are the diagonals zero? Is the matrix symmetric? 

As we point out later in the low level vision subsection, the power of this approach is that one can 
construct more complicated energy functions, and derive gradient descent update rules that may not be 
linear but are useful to solutions.  For example, the world we see is not constructed from one smooth 
surface, but is better modeled as a set of surfaces separated by discontinuities. An energy function can 
be constructed that explicitly models these discontinuities and their effects on the interpolated values. 
These are sometimes called “weak membrane” models. The energy function in this case is no longer 
quadratic, and the update rule computes more than a weight sum.
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Example: Reconstructing a smooth line, “interpolation” using smoothness

First-order smoothness

A generative model: Sine wave with random missing data points
Suppose we have sampled a function at a discrete random set of points xs. Multiplying the sine function 
by the vector xs picks out the values at the sample points at each location of the vector where xs is 
one, and sets the others to zero.

size = 60;
xs = Table[RandomInteger[1], {i, 1, size}];

data = TableNSin
2 π j

10
 xs〚j〛, {j, 1, size};

g3 = ListPlotTableNSin
2 π j

10
, {j, 1, size}, Joined → True,

DisplayFunction → Identity, PlotStyle → {RGBColor[0, 0.5`, 0]};

g2 = ListPlot[data, Joined → False, PlotStyle → {RGBColor[0.75`, 0.`, 0]},
Prolog → AbsolutePointSize[5]];

Show[g2, g3]
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We are not going to fit the dots on the abscissa. These are places where data is missing, analogous to 
the stereo interpolation regions with uniform regions where there are no points to match. The non-zero 
data are analogous to the disparity values from the two eyes.

We would like to find a smooth function, f[], approximation to the non-zero data points, given the 
assumption that we don't know what the underlying function actually is. 

We have one constraint already--the fidelity constraint that requires that the function f should be close 
to the non-zero data, d. We will use this to construct the "energy" term that measures how close they 
are in terms of the sum of the squared error.

We need another constraint--smoothness--to get the in-between points. There are many ways of doing 
this. If we had a priori knowledge that the underlying curve was periodic, we'd try fitting the data with 
some combination of sinusoids. Suppose we don't know this, but do have reason to believe that the 
underlying function is smooth in the sense of nearby points being close. As above, let's assume that the 
difference between nearby points should  be small. That is, the sum of the squared errors, f[i+1] - f[i], 
gives us the second part of our energy function.

Let's make up a small 8 element energy vector:
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We would like to find a smooth function, f[], approximation to the non-zero data points, given the 
assumption that we don't know what the underlying function actually is. 

We have one constraint already--the fidelity constraint that requires that the function f should be close 
to the non-zero data, d. We will use this to construct the "energy" term that measures how close they 
are in terms of the sum of the squared error.

We need another constraint--smoothness--to get the in-between points. There are many ways of doing 
this. If we had a priori knowledge that the underlying curve was periodic, we'd try fitting the data with 
some combination of sinusoids. Suppose we don't know this, but do have reason to believe that the 
underlying function is smooth in the sense of nearby points being close. As above, let's assume that the 
difference between nearby points should  be small. That is, the sum of the squared errors, f[i+1] - f[i], 
gives us the second part of our energy function.

Let's make up a small 8 element energy vector:

Clear[f];
energyvector =
Table[(f[i+1] - f[i])^2 + s[i] (d[i] - f[i])^2,

{i,1,8}];

energy = Sum[energyvector[[j]],{j,1,8}];

The s[i] term is the "filter"  (the same as xs above) that only includes data points in the data part of the 
energy function. It is zero for i's where there are no data, and one for the points where there are data.

We would like to find the f[] that makes this energy a minimum. We can do this by calculating the 
derivative of the energy with respect to each component of f,  and moving the state vector in a direction 
to minimize the energy--i.e. in the direction of the negative of the gradient.

It can be messy to keep track of all the indices in these derivatives, so let's let Mathematica calculate 
the derivative for f[3]. From this we can see the pattern for any index.

D[energy, f[3]]

2 (-f[2] + f[3]) - 2 (-f[3] + f[4]) - 2 (d[3] - f[3]) s[3]

FullSimplify[%]

-2 (f[2] + f[4] + d[3] s[3] - f[3] (2 + s[3]))

We can use this pattern to see how to set up the Tm matrix below.

Given the derivatives how to solve for f? Now we could generate the full set of derivatives, set them 
equal to zero and solve for f, using standard linear algebra to solve a set of linear equations as we saw 
in the lecture on regression and Widrow-Hopf. . This will work because the energy function is quadratic 
in elements of  f, and thus the derivatives are linear in f. The interpolation function will then be a matrix 
operation on the data. And we can solve our interpolation/approximation problem with a one shot, 
feedforward operation. As mentioned before, life won't always be that easy, and the situation often 
arises in which the energy function is not quadratic. 

So the alternative, which can work in a non-linear case too, is to iteratively update the activity pattern f 
with an update rule--gradient descent. We can do this by expressing the derivative in terms of two 
matrix operations: One on the function to be estimated, f, and one on the data. Let's set up these two 
matrices, Tm and Sm such that the gradient of the energy is equal to: Tm . f - Sm . data
 
 Sm will be our filter to exclude non-data points. Tm will express the "smoothness" constraint.
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Sm = DiagonalMatrix[xs];
Tm = Table[0,{i,1,size},{j,1,size}];
For[i=1,i<=size,i++,Tm[[i,i]] = xs[[i]]+2];
For[i=1,i<size,i++, Tm[[i+1,i]] = -1];
For[i=1,i<size,i++, Tm[[i,i+1]] = -1];

dt = 0.1; 
Tf[f1_] := f1 - dt (Tm.f1 - Sm.data);

We will initialize the state vector to zero, and then run the network for 30 iterations:

f = Table[0,{i,1,size}];
result = Nest[Tf,f,30];

Here is our smoothed function:

g1 = ListPlot[result, Joined → True]
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You can see below that the function was not interpolated in the strict sense--the fit doesn't not pass 
through the data points. If we wanted more fidelity to the data, we could control this by increasing the 
weight given to the data part of the energy term relative to the smoothness part.

Show[{g1, g2, g3}]

10 20 30 40 50 60

-0.4

-0.2

0.2

0.4

0.6

▶  5. Exercise:

Decrease the parameter controlling smoothness to see if you get better fidelity.
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Sculpting for interpolation using second order smoothness constraints
This section elaborates the energy function (and weight matrix) to require that both first and second 
order differences be small.

Clear[energy,energyvector,f,d,s,data];

energyvector = 
Table[(f[i+1] - f[i])^2 + (f[i+2] - 2 f[i] + f[i+1])^2 + s[i] (d[i] - f[i])^2,{i,1,8}];

energy = Sum[energyvector[[j]],{j,1,8}];

By taking the derivative of the energy with respect to one of the interpolation depths, say f[3], we can 
see the pattern of the weights for the gradient descent update rule:

D[energy, f[3]]

2 (-f[2] + f[3]) + 2 (-2 f[1] + f[2] + f[3]) - 2 (-f[3] + f[4]) +

2 (-2 f[2] + f[3] + f[4]) - 4 (-2 f[3] + f[4] + f[5]) - 2 (d[3] - f[3]) s[3]

Simplify[%]

-2 (2 f[1] + 2 f[2] - 8 f[3] + 2 f[4] + 2 f[5] + d[3] s[3] - f[3] s[3])

Now we simulate the sampled data, and then set up the weight matrix:

size = 120;
xs = Table[RandomInteger[1], {i, 1, size}];

data = TableNSin
2 π j

20
 xs〚j〛, {j, 1, size};

Sm = DiagonalMatrix[xs];
Tm = Table[0, {i, 1, size}, {j, 1, size}];
For[i = 1, i ≤ size, i++, Tm〚i, i〛 = xs〚i〛 + 8];
For[i = 1, i < size, i++, Tm〚i + 1, i〛 = -2];
For[i = 1, i < size, i++, Tm〚i, i + 1〛 = -2];
For[i = 1, i < size - 1, i++, Tm〚i + 2, i〛 = -2];
For[i = 1, i < size - 1, i++, Tm〚i, i + 2〛 = -2];

We will give the smoothness term a little more weight relative to the fidelity term:

dt = 0.1;
λ=1.;
Tf[f1_] := f1 - dt (λ*Tm.f1 - Sm.data);

f = Table[0,{i,1,size}];
result = Nest[Tf,f,30];
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g1 = ListPlot[result, Joined → True, PlotRange → {-1, 1}, DisplayFunction → Identity];
g2 = ListPlot[data, Joined → False, PlotRange → {-1, 1}, PlotStyle → {RGBColor[0.75`,

0.`, 0]}, Prolog → AbsolutePointSize[5], DisplayFunction → Identity];
Show[g1, g2, DisplayFunction → $DisplayFunction]
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▶  6. Try different values of the smoothing weight

Probabilistic, Bayesian interpretation

When we know the structure of a problem, and want to construct a Bayesian model, it is often easier to 
begin by constructing a cost or energy function as we did above. And if needed (e.g. if you want to draw 
samples), from there construct a Bayesian posterior.

Minimizing

(3)

is a special case of finding values of f = {f1,f2,...}, that maximize:

p (f d) =
p (f , d) p (f )

p (d)
∝ 

i

e
-

(fi-di)2

2 σd
2 x

i

e
-

(fi-fi+1)2

2 σp
2

given data d = {d1,d2,...}, and a standard deviation (σd) for assumed additive noise in the measure-
ments d, and a standard deviation σp representing prior uncertainty in the smoothness of f. 

To see this, note that the logarithm of p(f |d) is proportional to the energy--a sum of the same quadratic 
terms as in equation (3), and that λ = σp  σd

2, which specifies the trade-off between the noisiness of 
the data and the strength of your prior beliefs. If the data is very noisy, you may want to rely more on 
the prior--i.e. more on “smoothing”. If the data is both accurate and dense, you wouldn’t even need a 
prior.

Note that minimizing a quadratic function leads to a linear estimate--i.e. the solution is a matrix opera-
tion on the data, d. 
In fact, there is a close relationship between normal distributions and linear estimates. Just as the 
assumption of linearity  makes computations fast and convenient, so does the normal assumption.
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Low-level vision

Smoothing and regularization
The solutions of many of computational problems of early vision can be formulated in terms of maxi-
mum a posteriori estimates of scene attributes (Poggio, Torre and Koch, 1985). These problems 
include: detecting edges in images, perceiving/estimating optic flow, perceiving surface color, depth, 
and stereo vision.

A linear solution starts with the assumption that the generative model can be described as a matrix 
multiplication, where the image I is matrix mapping A of a scene vector S:

The scene vector could represent true depth. Then a solution corresponded to minimizing a cost func-
tion E, that simultaneously tries to minimize the cost due to reconstructing the image from the current 
hypothesis S, and a prior "smoothness" constraint on S, as we saw above. λ is a (often free) parameter 
that determines the balance between the two terms. If there is reason to trust the data, then λ is small; 
but if the data is unreliable, then more emphasis should be placed on the prior, thus λ  should be bigger. 
For example, S could correspond to representations of shape, stereo, edges, or motion field, and 
smoothness be modeled in terms of nth order derivatives, approximated by finite differences in matrix B.

The Bayesian interpretation comes from multivariate gaussian assumptions on the generative model:

From Poggio, Torre & Koch, 1985

In edge detection,  noise can create spurious edges. The way to deal with that is by blurring the image 
and then applying a spatial derivative. The above constraint says to assume there is an underlying 
“image”, f, that has the “true perfectly sharp edges”,  which have gotten smoothed out by filter S to 
produce i; and because there is noise, we should find the find f that is consistent with this generative 
assumption, but restricted to the f which is most smooth. This latter constraint is measured by the 
square of the second spatial derivative of f: fxx.

For optic flow (area based), the gradient constraint is what we have seen before: ix u +  iy v + it = 0. The 
smoothness constraint here is expressed as: 

ux
2 + uy

2+ vx
2 + vy

2,  which discourages rapid spatial changes in the optic flow vectors. The notation 

above is: ∂f
∂x
⟷fx.

Yuille, A. L., & Grzywacz, N. M. (1988) proposed including all derivatives, which would include this, as 
well as the “slow” and “smooth” assumptions in the work by Weiss et al. (2002).

Above we looked at the one-dimensional analog of surface reconstruction where we contrasted the cost 
function minimization, similar to that above, with a probablistic formulation solved through belief-
propagation.
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2,  which discourages rapid spatial changes in the optic flow vectors. The notation 

above is: ∂f
∂x
⟷fx.

Yuille, A. L., & Grzywacz, N. M. (1988) proposed including all derivatives, which would include this, as 
well as the “slow” and “smooth” assumptions in the work by Weiss et al. (2002).

Above we looked at the one-dimensional analog of surface reconstruction where we contrasted the cost 
function minimization, similar to that above, with a probablistic formulation solved through belief-
propagation.

A key point  is that the maximum a posteriori solution based on equations 1 and 2 above is linear. Thus 
given the “right” representation, a broad range of estimation problems can be modeled as simple linear 
networks. However, we noted early on that there are also severe limitations to linear estimation. 

An example of an extension to piece-wise smooth interpolation
Many natural processes are smooth within limited domains, then make a jump to another domain. The 
depths of surfaces, and colors of surfaces have this property. Here’s a 1D example:

Plot[Piecewise[{{x^2, x < 0}, {x^2 + 1, x > 0}}], {x, -1, 1}]
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How can we estimate piecewise functions from data? Suppose our data is represented by a set of noisy 
measurements I at locations x, and we want to estimate a function J(x). We  we will also want to esti-
mate the locations of the discontinuities, represented by l(x) which is one at points of discontuity--and it 
is at these points that we don’t want to encourage nearby values of J to be similar--i.e. we want to 
discourage J(x+1) from being close to J(x). These constraints suggest posterior and energy functions 
below.

See the “Line Process Model” section of: http://gandalf.psych.umn.edu/users/kersten//kersten-lab/paper-
s/YuilleKerstenFinalChapter2016.pdf

Next time
Discrete Bayes
Graphical models

References
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