Introduction to Neural Networks

Linearity and representations of patterns

Lateral inhibition

Initialize

In[1] = u_1 = \{1, 0, 0, 0, 0, 0, 0, 0\};
 u_2 = \{0, 1, 0, 0, 0, 0, 0, 0\};
 u_3 = \{0, 0, 1, 0, 0, 0, 0, 0\};
 u_4 = \{0, 0, 0, 1, 0, 0, 0, 0\};
 u_5 = \{0, 0, 0, 0, 1, 0, 0, 0\};
 u_6 = \{0, 0, 0, 0, 0, 1, 0, 0\};
 u_7 = \{0, 0, 0, 0, 0, 0, 1, 0\};
 u_8 = \{0, 0, 0, 0, 0, 0, 0, 1\};

In[9] = v_1 = \{1, 1, 1, 1, 1, 1, 1, 1\};
 v_2 = \{1, -1, -1, 1, 1, -1, 1, 1\};
 v_3 = \{1, 1, -1, -1, -1, 1, 1, 1\};
 v_4 = \{1, -1, 1, -1, -1, 1, 1, 1\};
 v_5 = \{1, 1, -1, 1, -1, -1, 1, 1\};
 v_6 = \{1, -1, -1, -1, 1, 1, 1, 1\};
 v_7 = \{1, 1, -1, -1, -1, 1, 1, 1\};
 v_8 = \{1, -1, 1, -1, 1, -1, 1, 1\};

In[17] = w_1 = v_1/\text{Norm}[v_1];
 w_2 = v_2/\text{Norm}[v_2];
 w_3 = v_3/\text{Norm}[v_3];
 w_4 = v_4/\text{Norm}[v_4];
 w_5 = v_5/\text{Norm}[v_5];
 w_6 = v_6/\text{Norm}[v_6];
 w_7 = v_7/\text{Norm}[v_7];
 w_8 = v_8/\text{Norm}[v_8];

Introduction

Last time

Developed a "structure-less, continuous signal, and discrete time" generic neuron model and from there built a network.

Today

We'll first review the question of the representation of patterns of information in neural networks from last time, and then review some basics of linear algebra.
Then are going to look at an explanation of a human perceptual phenomenon called Mach bands, that involves a linear approximation based on a real neural network. This is an example of neural filtering found in early visual coding. We will study two types of network that may play a role in the perception of Mach bands: 1) feedforward; 2) feedback. The feedforward network will be a straightforward elaboration of the linear neural network model -- “applied linear algebra”. The feedback system will provide our first example of a dynamical system. We will also look at how these networks are related to the neural processing in the horseshoe crab (limulus) compound eye. Despite the (apparent) enormous difference between your visual system and that of the horseshoe crab, our visual system shares a fundamental image processing function with that of this lowly crustacean (and virtually all other studied animals that process image patterns).

You will also see how two different mechanisms can produce equivalent input-output behavior.

And how a choice of parameters can produce winner-take-all behavior in a dynamic recurrent network.

Representations of patterns
(continued from previous lecture)

Motivation: representation of visual information

Analyzing image input

In Lecture 4, we noted that the simplest feedforward neural network can often be usefully approximated over a linear regime by a matrix operation:

\[y_i = \sigma \left(\sum_{j=1}^{n} w_{ij} x_j \right) \sim \sum_{j=1}^{n} w_{ij} x_j \]

In vector-matrix notation as: \(y = Wx \), where \(W \) is a matrix and \(x \) and \(y \) are vectors.

It is hard to believe that much can be done with something so simple. The reason is that the complexity lies in the structure of the connections and how they map input patterns to useful and meaningful outputs. We turn to visual coding to motivate this.

To help keep in mind that we are using an image processing example, we’ll change notation so that: \(y_i \rightarrow s_i \) and \(x_i \rightarrow \) flattened representation of \(I(x, y) \). \(I(x, y) \) can be thought of as the intensity (or neural receptor activity) at pixel location \((x, y)\). Then a visual transformation (or filtering) of \(I(x, y) \) can be represented by a mapping of image intensities (or input activities \(I(x,y) \)) to firing rates \(s_i \):

\[s_i = \sum_{x,y} W_i(x,y)I(x,y) \]

\(W_i(x,y) \) represents the effective synaptic weights (or spatial receptive field) of neuron \(i \).

But what does \(W_i(x,y) \) mean? What does it do to the incoming image? One example in vision is that neurons in primary visual cortex can be modeled by a set of receptive field weights, \(W_i(x,y) \) which acts as a spatial filtering operation that amplifies responses to edges of different orientations by \(i \). In fact all the built-in function LaplacianFilter[] does exactly that. Under the hood, it treats the input image
as a vector, and figures out what values to put in a matrix to multiply it with to amplify edges:

```
LaplacianFilter[ ]
```

In other words, switching to a vector representation of input \(I \) and a set of receptive fields \(W \), the activity of the population of neurons can be written:

\[s = W.I. \]

where again \(s \) and \(I \) are vectors, and \(W \) is a matrix. \(s = W.I. \) describes how a set of effective weights (e.g. synaptic weights or "receptive field" weights) turns the image input \(I \) into a pattern of neural responses--a "neural image" \(s \) (equivalent to the notation, where now \(s=y, \) and \(x=I \)).

Synthesizing image input

It is useful to distinguish between 1) the weights \(W_i(x, y) \) that analyze an image to produce a pattern of neural activity \(s_i \), and 2) the "features", call them \(A_i(x, y) \) that explain, generate, or synthesize an input \(I \).

Assume that an input image \(I(x, y) \) can be represented by a linear combination of “feature” or basis vectors consisting of the columns of \(A \):

\[
I(x, y) = \sum_{i=1}^{n} A_i(x, y) s_i
\]

We can think of the \(A \)’s as providing a vocabulary (or features) useful to describe any image in some perhaps restricted set, say “human faces” or “natural images”, in terms of a weighted sum. This is sometime called generative model for the patterns in that set. (The term “generative” is more specifically used in the context where one also has a probabilistic description of generating parameters and the outputs).

Here is a simple example where the features are non-overlapping patches:
Now let's reformulate the example in terms of simple vectors and matrices. We "flatten" \(l(x,y) \) and each \(A_i(x,y) \) to turn them into vectors and then write:

\[
\mathbf{l} = A \cdot \mathbf{s},
\]

where the features \(A_i(x,y) \) are now the "columns" of \(A \), \(\{A_i\} \), and the elements of \(s \), \(\{s_i\} \), represent the activity of the neurons representing how much each of those features contribute to (or explain) \(l \):

\[
\mathbf{l} = A_1^* \cdot \mathbf{s}_1 + A_2^* \cdot \mathbf{s}_2 + ...
\]

We use the word "features" because we think of the input as being made up of combinations of these particular patterns in the world.

(This is related to the machine learning "dictionaries" for a class of patterns where the goal is to find a small set of "words" that can be used to efficiently approximate any of the patterns in the class. Efficiency can be interpreted in terms of "sparseness"—i.e. the number of active features to describe an image on average, but more on this later.)

\[
\begin{pmatrix}
 I_1 \\
 I_2 \\
 I_3 \\
 I_4
\end{pmatrix}
= \begin{pmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
 a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
 a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
 a_{41} & a_{42} & a_{43} & a_{44} & a_{45}
\end{pmatrix}
\cdot
\begin{pmatrix}
 S_1 \\
 S_2 \\
 S_3 \\
 S_4 \\
 S_5
\end{pmatrix}
= S_1 \cdot \begin{pmatrix}
 a_{11} \\
 a_{21} \\
 a_{31} \\
 a_{41}
\end{pmatrix}
+ S_2 \cdot \begin{pmatrix}
 a_{12} \\
 a_{22} \\
 a_{32} \\
 a_{42}
\end{pmatrix}
+ \ldots = S_1 \cdot A_1 + S_2 \cdot A_2 + \ldots
\]

So the actual neural representation of an image \(l \) is only implicit in the firing rates and a definition of what each \(A_i \) means. In other words, the activities \(s \) are a simple "code" for \(l \) which can be recovered using the above formula...IF we know \(A \). Neural models of image representation in the primary visual cortex have been analyzed in terms of whether the high-dimensional images received (at the retina) are projected into lower or higher dimensional spaces in cortex, and what the consequences might be for biological image processing (Hyvärinen, 2010). The notion of a linear representation of features for an input signal class has had a major impact on theories of neural representation in primary visual cortex, as well as image processing more generally.

OK, now let's make some very strong, but greatly simplifying assumptions which will allow us to exploit standard results in linear algebra.

From a linear algebra perspective, if \(l \) and \(s \) have the same number of elements, \(A \) is "square", and if \(A \) is invertible, then \(W = A^{-1} \). (We'll cover the definition of an inverse matrix later, but you can think of it as
analogous to division for scalars, but for matrices-- i.e. for scalars, if \(y=A.x \), then one could solve for \(x \) as \(x=(1/A).y \) or \(x=A^{-1}.y \)

Further, there is a theorem that says if the columns of \(A \) are orthogonal, then \(W \) is just the transpose of \(A \). The transpose \(A^T \) of a matrix \(A \) just turns the rows of \(A \) into columns of \(A^T \). This means that the "features" or basis vectors used to represent \(I \) (columns of \(A \)) are the same as the receptive field weights (rows of \(W \)). Under these assumptions, we can think of the pattern of a receptive field as representing an image feature. Let's now summarize the basic linear algebra of vector representation in terms of basis vectors.

Basis sets

The set of vectors used in a linear weighted sum to represent an \(N \)-dimensional vector pattern is called a basis set for that \(N \)-dimensional space. To be concrete, as earlier, assume our vectors live in an \(8 \)-dimensional space.

It is pretty clear that given any vector whatsoever in \(8 \)-space, you can specify how much of it gets projected in each of the eight directions specified by the cartesian set of unit vectors \(u_1, u_2, \ldots u_8 \). But you can also build back up an arbitrary vector by adding up all the contributions from each of the component vectors. This is a consequence of vector addition and can be easily seen to be true in 2 dimensions.

We can verify it ourselves. Pick an arbitrary vector \(g \), project it onto each of the basis vectors, and then add them back up again:

\[
\text{In[33]} = g = \{2,6,1,7,11,4,13,29\};
\]

\[
\text{In[34]} = \begin{align*}
(g.u1) & \quad u1 + (g.u2) & \quad u2 + (g.u3) & \quad u3 + (g.u4) & \quad u4 + \\
(g.u5) & \quad u5 + (g.u6) & \quad u6 + (g.u7) & \quad u7 + (g.u8) & \quad u8
\end{align*}
\]

\[
\text{Out[34]} = \{2,6,1,7,11,4,13,29\}
\]

Exercise

It also works for other orthogonal basis sets, such as \(\{v1,v2,\ldots v8\} \). What happens if you project \(g \) onto the normalized Walsh basis set defined by \(\{w1,w2,\ldots\} \) above, and then add up all 8 components?
Looks complicated, but if you simplify it:
Representing the output in the column space of the network

Simplify[
{2, 6, 1, 7, 11, 4, 13, 29}\n\n\nyou get back the original vector.
{2, 6, 1, 7, 11, 4, 13, 29}\n
Spectrum

The projections, \{g \cdot w_i\} are sometimes called the spectrum of g. This terminology comes from the Fourier basis set used in Fourier analysis. Also recall white light is composed of a combination of light of different frequencies (colors). A discrete version of a Fourier basis set is similar to the Walsh set, except that the elements fit a sine wave pattern, and so are not binary-valued.

Some more linear algebra terminology

The N=8 dimensional orthonormal set of vectors we’ve defined above is said to be complete, because any vector in 8-space can be expressed as a linear weighted sum of these basis vectors. The weights are just the projections. If we had only 7 vectors in our set, then we would not be able to express all 8-dimensional vectors in terms of this basis set. The seven vector set would be said to be incomplete. Imagine you want to specify the position of a point in your room, but you can only say how far the point is on the floor from two walls. You don’t have enough measurements to also say how high the point is.

A basis set which is orthonormal and complete simplifies the math. Another bit of terminology is that these seven vectors would not span the 8-dimensional space. But they would span some sub-space, that is of smaller dimension, of the 8-space. So you could specify the position of any point on the floor of
your room with just two numbers that represent how far the point is from a corner in your room along one direction, and then how far from the corner it is in an orthogonal direction. The points on the floor span this two-dimensional subspace of your room.

We mentioned that the effective weighting properties of visual neurons in primary visual cortex of higher level mammals (cats, monkeys) can be expressed in terms of a set of feature vectors (cf. Hyvärinen, 2010). One issue is if the input (e.g. an image) is projected (via a collection of receptive fields) onto a set of neurons, is information lost? If the set of weights representing the receptive fields of the collection of neurons is complete, then no information is lost.

Linear dependence

What if we had 9 vectors in our basis set used to represent vectors in 8-space? For the u's, it is easy to see that in a sense we have too many, because we could express the 9th in terms of a sum of the others. This set of nine vectors would be said to be linearly dependent. A set of vectors is linearly dependent if one or more of them can be expressed as a linear combination of some of the others. But this isn’t necessarily band, and there can be advantages to having an "over-complete" basis set (e.g. more than 8 vectors for 8-space; cf. Simoncelli et al., 1992).

There is a theorem that says: A set of mutually orthogonal vectors is linearly independent. However, note it is quite possible to have a linearly independent set of vectors which are not orthogonal to each other. Imagine 3-space and 3 vectors which do not jointly lie on a plane. This set is linearly independent. If we have a linearly independent set, say of 8 vectors for our 8-space, then no member can be dropped without a loss in the dimensionality of the space spanned.

It is useful to think about the meaning of linear independence in terms of geometry. A set of three linearly independent vectors can completely span 3-space. So any vector in 3-space can be represented as a weighted sum of these 3. If one of the members in our set of three can be expressed in terms of the other two, the set is not linearly independent and the set only spans a 2-dimensional subspace. Think about representing points in your room, where in addition to saying how far from the corner the point from two walls, you can also say how far the point is along some arbitrary ruler laying on the floor. The additional measurement from the arbitrary ruler doesn’t give you any information you couldn’t get from the other two measurements. But if you oriented the ruler vertically, you’d now be able to uniquely specify the location of a point anywhere in the room with three measurements, including one from the ruler.

That is, the set can only represent vectors which lay on a plane in 3-space. This can be easily seen to be true for the set of u’s, but is also true for the set of v’s.

Mach bands & perception

Ernst Mach was an Austrian physicist and philosopher. In addition to being well-known today for a unit of speed, and Mach’s Principle in theoretical physics, he is also known for several visual illusions. One illusion is called "Mach bands". Let’s make and experience some.
PlotRange is used to scale the brightness.

What Mach noticed was that the left “knee” of the ramp looked too dark, and the right knee looked too bright to be explained by the light intensity. Objective light intensity did not predict subjective brightness.

Mach’s explanation in terms of lateral inhibition

The idea is that somewhere in the visual system, there are units whose outputs reflect a process in which the light intensity at a point gets replaced by the weighted sum of intensities at nearby points. The weights have a center-surround organization, in which weights are positive near the point of interest, and negative further away. These so-called center-surround filters are illustrated in the above concentric circles, where + indicates positive weights, and - indicates negative weights. This process is called lateral inhibition. If you work through the consequences of a lateral inhibition filtering operation, you will see that there is more inhibition (negative weight contributions) at the left knee, than just to the left. And there is more positive contribution at the right knee, than at the point just to the right. In general, lateral
inhibition increases contrast at edges.

Neural basis?

Early visual neurons (e.g. ommatidia in horseshoe crab, ganglion cells in the mammalian retina and even later cells in the lateral geniculate neurons of the thalamus, and some cells in V1 or primary visual cortex of the monkey) have receptive fields with Mach's center surround organization. I.e. approximately circular excitatory centers and inhibitory surrounds. Or the opposite polarity, inhibitory centers and excitatory surrounds.

Some history:

Limulus (horseshoe crab)--Hartline won the 1967 Nobel prize for this work that began in the 20's with publications up to the 70's.

(See http://hermes.mbl.edu/marine_org/images/animals/Limulus/vision/index.html).

Feedforward model

We'll consider two types of models for lateral inhibition: feedforward and feedback (in our context, "recurrent lateral inhibition"). Let's look at a simple feedforward model. Let

\[f = w^t e \]

where \(e \) is a vector representing the input intensities (the \(e_3 \) or \(y[i] \) values in the above demo), \(w^t \) is a suitably chosen set of weights (i.e. excitatory center and inhibitory surround as shown in the above figure), and \(f \) is the output. The connectivity for two neurons would look like this:

![Diagram of feedforward model](image)

but of course you'd have to add more neurons to get the circularly symmetric weights described by Mach.

Programming implementation

Because changes in the stimulus are one-dimensional, we'll simulate the response in one dimension. We specify the input vector \(e \) as above:
Let's assign weights consistent with Ernst Mach's 19th century hypothesis. Let's model the receptive field for one output unit to be represented by:

5 weights, with a center value of 6, and 4 surround values of -1:

...or we could get a little more sophisticated, and use a common formula to model center-surround organization, the difference of two Gaussian functions with different widths, a so-called "DOG" filter. Here is a specific choice that specifies a wider filter than above:

The plot shows the "center-surround" organization of the filter. Filters of this sort that have an antagonistic center-surround organization are sometimes referred to as "Mexican hat" filters.

Now assume that all units have the same weights, and calculate the response at each point by shifting the weight filter wp right one by one, and taking the dot product with the input pattern e4, each time:

This way we can mimic the response we want:
Note that we cut the rotation short to eliminate boundary effects.

Show that you can do this operation as matrix multiplication, where each subsequent row of a matrix W is the vector w shifted over by one.

Convolution

This kind of operation where the same filter gets applied repeatedly at different positions is common in signal processing. It is called discrete convolution. (Convolution can be defined in the continuous domain as a specific kind of integration. More later.). Convolution is used in neural network modeling whenever 1) a linear model is reasonable; 2) the same filter gets applied repeatedly across space (or time), as one might expect when processing an image. *Mathematica* has a function `ListConvolve[]` that does discrete convolutions. It has additional arguments that allow for handling of the boundaries. What should you do when the filter gets close to the end of the stimulus? A common default is to let the filter wrap around. Another common solution is to "pad" the ends of e with fixed values, such as zero. What does the retina do?

Here's `ListPlot[]` with the simpler center-surround receptive field, $\{-1, -1, 6, -1, -1\}$. In mathematics, the filter vector used in convolution is sometimes called a "kernel".

```
ListPlot[ListConvolve[{-1, -1, 6, -1, -1}, e4], Joined -> True]
```

What is the response to the ramp if the sum of the weights is zero? Build a simple edge detector. Let $kern=\{-1,2,-1\}$ and use `ListConvolve[]`.

Feedback model: Recurrent lateral inhibition

Now we'll develop a different, dynamical model for lateral inhibition that includes time and feedback. There is neurophysiological evidence for an implementation of lateral inhibition via feedback, called *recurrent lateral inhibition*.

Dynamical systems: difference equation for one neuron

State of neuron output f at discrete time k.

```
For one neuron, let the output at time interval $k+1$ be:

$$f[k + 1] = e[k] + w f[k]$$

(1)

Suppose the initial state $f[0]$ is known and $e[k]$ is zero, can you find an expression for $f[k]$? What happens if $w$ is less than one? Greater than one?

**Dynamical systems: Coupled difference equations for interconnected neurons**

Now consider a two neuron system. The formalism will extend naturally to higher dimensions. To keep this simple, the weights for the inputs $e$ are fixed at one, but we will specify weights for the newly added feedback connections:

Let $e$ be the input activity vector to the neurons, $f$ is the $n$-dimensional state vector representing output activity and $W$ is a fixed $nxn$ weight matrix. Then for a two neuron network we have:

$$
\begin{align*}
  f_1[k + 1] &= e_1[k] + w_{12} f_2[k] + w_{11} f_1[k] \\
  f_2[k + 1] &= e_2[k] + w_{21} f_1[k] + w_{22} f_2[k]
\end{align*}
$$

or in terms of vectors and matrices

$$
\begin{bmatrix}
  f_1[k + 1] \\
  f_2[k + 1]
\end{bmatrix} =
\begin{bmatrix}
  e_1[k] \\
  e_2[k]
\end{bmatrix} +
\begin{bmatrix}
  w_{11} & w_{12} \\
  w_{21} & w_{22}
\end{bmatrix}
\begin{bmatrix}
  f_1[k] \\
  f_2[k]
\end{bmatrix}
$$

or in summation notation:

$$
  f_i[k + 1] = e_i[k] + \sum_j w_{i,j} f_j[k]
$$

(2)

or in concise vector-matrix (and *Mathematica*) notation:

$$
  f[k + 1] = e[k] + W . f[k]
$$

(3)

where $W = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix}$

This equation is an example of a simple *dynamical* system, with state vector $f$. As you might imagine, the state of a dynamical system typically changes with time (i.e. iteration $k$).

Are there solutions for which the state does not change with time? If there are, these solutions are called *steady state* solutions.
In contrast to the way we set up the weights for the feedforward matrix (which included the forward excitatory weights), we are going to assume later that all of these weights are inhibitory (because we are modeling lateral *inhibition*). The positive contributions, if any, will come from the input $e$.

**Steady state solution for a discrete system is mathematically equivalent to a linear feedforward model**

The feedforward solution is just a matrix operation on the inputs: $f = W'.e$, where the first row of $W'$ has the center-surround organization of the weights, e.g. $w1 = \{-1,-1,6,-1,-1,0,0,0,0,0,...\}$, and the second row is shifted: $\{0,-1,-1,6,-1,-1,0,0,0,0,...\}$ and so forth.

Let's compare the feedforward model with the recurrent feedback after the latter has “settled down”--i.e. with its stead-state solution.

A steady-state solution simply means that the state vector $f$ doesn't change with time:

$$ f[k + 1] = f[k] $$

or in vector and *Mathematica* notation:

$$ f = e + W.f $$

where we drop the index $k$. Note that by expressing $f$ in terms of $e$, this is equivalent to another linear matrix equation, the feedforward solution:

$$ I.f = e + W.f, $$

$$ (I - W)f = e, $$

$$ f = W'.e, $$

where

$$ W' = (I - W)^{-1} $$

The $-1$ exponent means the inverse of the matrix in brackets. $I$ is the identity matrix, which in two dimensions is:

$$ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $$

We will review more later on how to manipulate matrices, find the inverse of a matrix, etc.. But for the time being, think of an identity matrix as the generalization of unity: $1. 1$ times $x$ returns $x$. And the inverse is the generalization of taking the reciprocal of a number.

The point of the above derivation is that the steady-state solution for recurrent inhibition (i.e. with feedback) which is equivalent to non-recurrent linear network (no feedback, just feedforward).

*In general, there may be more than one underlying neural circuit to explain the external behavior of a network. Telling them apart requires doing the right kind of experiment.*

**Dynamical system -- coupled differential equations ("limulus" equations)**

In our discussion of the different types of neural models, we noted that continuous time is a more realistic assumption for a neural network. So what if time is not modeled in discrete clocked chunks? It is straightforward to extend the discrete time model to a continuous time model. But then to simulate the dynamics, we'll go back to a discrete approximation, but keep in mind that the behavior might depend on the temporal grain of our approximation. Temporal grain refers to how finely we chop up time. The theory for coupled discrete equations
\[ f[k+1] = e[k] + W \cdot f[k] \]

parallels the theory for continuous differential equations where time varies continuously:
\[ \frac{df}{dt} = e[t] + W \cdot f[t] \]

\((W)\) is not the same matrix as \((W)\). If you want to learn more about dynamical systems, a classic text is Luenberger, 1979)

Let's see how this might work.

Let \(e(t)\) be the input activity to the neurons, \(f(t)\) is the \(n\)-dimensional state vector representing output activity, now as a function of time. \(W\) is a fixed \(n\times n\) weight matrix. The equation in the previous section is the steady state solution to the following differential equation:
\[ \frac{df}{dt} = e[t] + W \cdot f[t] - f[t] \]

(You can see this by noting that as before, "steady state" just means that the values of \(f(t)\) are not changing with time, i.e. \(df/dt = 0\)). We are going to develop a solution to this set of equations using a discrete-time approximation.
\[ \frac{df}{dt} \approx \frac{f(t+\Delta t) - f(t)}{\epsilon} \]

The state vector \(f\) at time \(t+\Delta t\) (\(\epsilon = \Delta t\)) can be approximated as:
\[ f(t+\Delta t) = f(t) + \epsilon [e(t) + W \cdot f(t) - f(t)] \]

We will fix or "clamp" the input \(e\), start with arbitrary position of the state vector \(f\), and model how the state vector evolves through time. We'll ask whether it seeks a stable (i.e. steady) state for which \(f(t)\) is no longer changing with time, \(f(t+\Delta t) = f(t)\), i.e. when \(df/dt = 0\). In the limit as \(\Delta t\) (or \(\epsilon\)) approaches zero, the solution is given by the steady state solution of the previous section. But neural systems take time to process their information and for the discrete time approximation, the system may not necessarily evolve to the steady state solution.

**Simulation of recurrent lateral inhibition**

First we will initialize parameters for the number of neurons (size), the space constant of the lateral inhibitory field (spaceconstant), the maximum strength of the inhibitory weights (maxstrength), the number of iterations (iterations), and the feedback delay \(\epsilon\):

\[ \text{The input stimulus} \]

```math
\text{size} = 30; \\
\text{spaceconstant} = 5; \\
\text{maxstrength} = 0.05; \\
\text{iterations} = 10; \\
\epsilon = .3; \\
\]

Now make the stimulus

```math
\text{g0} = \text{ListPlot}[e, \text{PlotRange} -> \{0,30\},\{-0.5,1.1\},\text{PlotStyle}->\{\text{RGBColor}[1,0,0]\}]; \\
\text{picture} = \text{Table}[e,{i,1,30}]; \\
```
We've stored the graphic $g0$ of the input for later use, we can show it later with `Show[g0]`.

Initializing the state vector and specifying the weights

Now we'll initialize the starting values of the output f to be random real numbers between 0 and 1, drawn from a uniform distribution.

```
In[82]:= f = RandomReal[{0, 1}, size];
```

Now let's set up synaptic weights which are negative, but become weaker the further they get from the neuron. We assume that the weights drop off exponentially away from each neuron:

```
In[81]:= W = Table[N[-maxstrength Exp[-Abs[i-j]/spaceconstant],1],
{i,size},{j,size}];
```

```
ListPlot3D[W,ImageSize->Small]
```

Note how the weight structure assumes “self-inhibition” corresponding to the figures of the one and two-neuron models above.

Simulating the response

We are going to use the `Mathematica` function `Nest[]` to iterate through the limulus equations. `Nest[f, expr, n]` gives an expression with f applied n times to $expr$. For example, if we have defined a function $T[]$, `Nest[T,x,4]` produces as output $T[T[T[T[x]]]]$.

Let's express our discrete approximation for the limulus dynamical system in terms of a function, T, which will get applied repeatedly to itself with `Nest`:

```
In[84]:= T[f_] := f + ε (e + W.f - f);
```
iterations = 15;
g1 = ListPlot[Nest[T, f, iterations], PlotJoined -> True,
 PlotRange -> {{0, 30}, {-0.5, 1.0}}, PlotStyle -> {RGBColor[0, 0, 1]}];
Show[g0, g1, Graphics[{Text[iterations "iterations",
 {size/2, -0.4}]}]]

How does the simulation match up to data from the Limulus eye?

Explore the parameter space

The effect of ϵ, strength of inhibition, and number of iterations

Define a function with inputs: ϵ, maxstrength and iterations, and outputs: a plot of response
We can use the `Module[]` function to define a routine with local variables and a set of other functions to define `limulus[ε_, maxstrength_, iterations_]`:

```
In[97]:= limulus[ε_, maxstrength_, spaceconstant_, iterations_] :=
Module[{f, W},
    W = Table[N[-maxstrength e (-Abs[i-j]/spaceconstant), 1], {i, size}, {j, size}];
    f = RandomReal[{0, 1}, size];
    T[f_] := f + ε (e + W.f - f);
    g1 = ListPlot[Nest[T, f, iterations], Joined -> True, PlotRange -> {{0, 30}, {-0.5, 1.}}, PlotStyle -> {RGBColor[0, 0., 1.]}];
    Show[g0, g1, Graphics[Text[iterations "iterations", {size/2, -0.4}]]]]
```

```
In[106]:= Manipulate[limulus[ε, maxstrength, spaceconstant, i], {{ε, .3}, 0, 1},
{maxstrength, .05, 0, .5}, {spaceconstant, 5}, 1, 15, 1}, {i, 1, 15, 1}]
```

```
Out[106]=
```
What does the steady state response look like if the inhibition is small (i.e. small maxstrength)?

What does the steady state response look like if the inhibition is large?

What does the steady state response look like if the spaceconstant is very small or very large?

Modify the simulation to investigate what happens if the iteration step-size, \(\epsilon \), is large (e.g. 1.5). Run it limulus[] several times--i.e. try different initial conditions.

Neural networks as dynamical systems

We've explored a simple linear neural network that is a good model of limulus processing, and seems to provide a possible explanation for human perception of Mach bands. Real neural networks typically have non-linearities. There is no general theory of non-linear systems of difference or differential equations. But the exploration of this linear set does lead us to ask questions which are quite general about dynamical systems:

- What does the trajectory in state-space look like?
- Does it go to a stable point?
- How many stable points or "attractors" are there?

There are non-linear systems which show more interesting behavior in which one sees:

- Stable orbits
- Chaotic trajectories in state-space
- "Strange" attractors

We will return to some of these questions later when we study Hopfield networks.

Recurrent lateral inhibition & Winner-take-all (WTA)

Sometimes one would like to have a network that takes in a range of inputs, but as output would like the neuron with biggest value to remain high, while all others are suppressed. (In computational vision, see "non-maximum suppression", which is sometimes used in edge detection.) In other words, we want the network to make a decision. The limulus equations can be set up to act as such a "winner-take-all" network. We will remove self-inhibition by setting all the diagonal elements of \(W \) to zero. We will also add a non-linear thresholding function ("rectification") to set negative values to zero, and we will increase the spatial extent of the inhibition.

Make a rectifying threshold function

```math
ln[114]:= \text{thresh}[x_] := \text{N[If}[x < 0.0, 0.0, x]]; \\
\text{SetAttributes[thresh, Listable];}
```
Make a "tepee" stimulus and initialize the neural starting values

```
In[116]:= size = 30;
e = Join[{0,0}, Table[0, {i, N[size/4]}], 
        Table[i/N[size/4], {i, N[size/4]}], 
        Table[N[size/4] - i/N[size/4], {i, N[size/4]}], 
        Table[0, {i, N[size/4]}]];
g0 = ListPlot[e, PlotRange -> {{0, size}, {-1, 2.0}}, PlotStyle -> RGBColor[1,0,0], Axes -> False]
```

Out[118]=

Define `winnertakeall[]` as for `limulus[]`, but with no self-inhibition:

```
In[120]:= winnertakeall[\[epsilon\]_, maxstrength_, iterations_, spaceconstant_] :=
    Module[{f, W}, W = Table[N[-maxstrength e^-Abs[i-j]/spaceconstant], {i, size}, {j, size}]; 
        For[i = 1, i <= size, i++, W[[i, i]] = 0.]; 
        f = RandomReal[{0,1}, size]; 
        T[f_] := thresh[f + e (e + W . f - f)]; 
        g1 = ListPlot[Nest[T, f, iterations], Joined -> True, 
            PlotRange -> {{0, size}, {-1, 2.0}}, PlotStyle -> {RGBColor[0,0,1]}]; 
        Show[g0, g1, Graphics[Text[iterations "iterations", {size/2, -0.8}]]]]
```

Use `ListPlot3D[W]` to see the modified structure of the weight matrix

Run simulation: Find a set of parameters that will select the maximum response and suppress the rest

If we think of the number of iterations to steady-state as "reaction time", how is this neural network for

making decisions? How sensitive is its function to the choice of parameters? If you are having a hard time finding a good set of parameters, select the cell below, then go to **Cell-\(\rightarrow\)** **Cell Properties-\(\rightarrow\)** **Cell Open**, and then run it.

\texttt{In[113]= \texttt{winnertakeall[.25, .95, 100, size]}}

\texttt{Out[113]=}

100 iterations

Next time

References

Appendix

Use NestList[] to store all the iterations before showing the results.

\[
T2[f_] := f + e (e + W.f - f);
\]

\[
\text{temp} = \text{NestList}[T2, f, 15];
\]

\[
\text{Animate[}
\quad \text{Show[} g0, \text{ListPlot[} \text{temp[[i]]}, \text{PlotJoined} \to \text{True}, \text{PlotRange} \to \{\{0, 30\}, \{-0.5, 1.0\}\}, \text{PlotStyle} \to \{\text{RGBColor[0, 0, 1]}\}], \text{Graphics[Text[iterations "iterations",}
\quad \{\text{size / 2, -0.4}\}]}}, \{i, 1, 15, 1]\]
\]

\[
\text{Show[} \quad \text{ListPlot[} \text{temp[6]}, \text{PlotJoined} \to \text{True},
\quad \text{PlotRange} \to \{\{0, 30\}, \{-0.5, 1.0\}\}, \text{PlotStyle} \to \{\text{Red}\}], \text{15 iterations}
\]

Exercise: Make a gray-level image of the horizontal luminance pattern shown below.

Does the left uniform gray appear to be the same lightness as the right patch? Can you explain what you see in terms of lateral inhibition?

```math
low = 0.2; hi = 0.8;
left = 0.5; right = 0.5;
y2[x_] := left /; x<40
y2[x_] :=
    ((hi-low)/40) x + (low-(hi-low)) /; x>=40 && x<80
y2[x_] := right /; x>=80
Plot[y2[x], {x, 0, 120}, PlotRange -> {0, 1}]
```

Exercise: Hermann grid

Below is the Hermann Grid. Notice the phantom dark spots where the white lines cross. Can you explain what you see in terms of lateral inhibition?

```math
width2 = 5; gap = 1; nsquares = 6;

hermann = Flatten[Table[{{Rectangle[{x, y}, {x+width2, y+width2}]},
{x, 0, (width2+gap) * (nsquares - 1), width2+gap},
{y, 0, (width2+gap) * (nsquares - 1), width2+gap}], 1];
```
Show[Graphics[{hermann, AspectRatio -> 1}]]