
Introduction to Neural Networks

Linearity and representations of patterns
Lateral inhibition

Initialize

In[1]:= u1 = {1,0,0,0,0,0,0,0};
u2 = {0,1,0,0,0,0,0,0};
u3 = {0,0,1,0,0,0,0,0};
u4 = {0,0,0,1,0,0,0,0};
u5 = {0,0,0,0,1,0,0,0};
u6 = {0,0,0,0,0,1,0,0};
u7 = {0,0,0,0,0,0,1,0};
u8 = {0,0,0,0,0,0,0,1};

In[9]:= v1 = {1, 1, 1, 1, 1, 1, 1, 1};
v2 = {1,-−1,-−1, 1, 1,-−1,-−1, 1};
v3 = {1, 1,-−1,-−1,-−1,-−1, 1, 1};
v4 = {1,-−1, 1,-−1,-−1, 1,-−1, 1};
v5 = {1, 1, 1, 1,-−1,-−1,-−1,-−1};
v6 = {1,-−1,-−1, 1,-−1, 1, 1,-−1};
v7 = {1, 1,-−1,-−1, 1, 1,-−1,-−1};
v8 = {1,-−1, 1,-−1, 1,-−1, 1,-−1};

In[17]:= w1 = v1/∕Norm[v1];
w2 = v2/∕Norm[v2];
w3 = v3/∕Norm[v3];
w4 = v4/∕Norm[v4];
w5 = v5/∕Norm[v5];
w6 = v6/∕Norm[v6];
w7 = v7/∕Norm[v7];
w8 = v8/∕Norm[v8];

Introduction

Last time

Developed a "structure-less, continuous signal, and discrete time" generic neuron 
model and from there built a network.  

Basic linear algebra review. Motivated linear algebra concepts from neural 
networks.

Today

We’ll first review the question of the representation of patterns of information in neural networks  from 
last time, and then review some basics of linear algebra.

Then are going to look at an explanation of a human perceptual phenomenon called Mach bands, that 
involves a linear approximation based on a real neural network.  This is an example of neural filtering 
found in early visual coding. We will study two types of network that may play a role in the perception of 
Mach bands: 1) feedforward; 2) feedback. The feedforward network will be a straightforward elaboration 
of the linear neural network model -- “applied linear algebra”. The feedback system will provide our first 
example of a dynamical system. We will also look at how these networks are related to the neural 
processing in the horseshoe crab (limulus) compound eye. Despite the (apparent) enormous difference 
between your visual system and that of the horseshoe crab, our visual system shares a fundamental 
image processing function with that of this lowly crustacean (and virtually all other studied animals that 
process image patterns).

You will also see how two different mechanisms can produce equivalent input-output behavior.

And how a choice of parameters can produce winner-take-all behavior in a dynamic recurrent network.
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Representations of patterns
(continued from previous lecture)

Motivation: representation of visual information

Analyzing image input
In Lecture 4, we noted that the simplest feedforward neural network can often be usefully approximated 
over a linear regime by a matrix operation:

yi = σ 
j=1

n

wij x j ~∼ 
j=1

n

wij x j

In vector-matrix notation as: y = W.x, where W is a matrix and x and y are vectors.

It is hard to believe that much can be done with something so simple. The reason is that the complexity 
lies in the structure of the connections and how they map input patterns to useful and meaningful 
outputs. We turn to visual coding to motivate this. 

To help keep in mind that we are using an image processing example, we’ll change notation so that: 
yi → si and xi → flattened representation of I(x, y).  I(x, y) can be thought of as the intensity (or neural 
receptor activity) at pixel location (x,y). Then a visual transformation (or filtering) of I(x,y) can be repre-
sented by a mapping of image intensities  (or  input activities I(x,y)) to firing rates si:

Wi(x,y) represents the effective synaptic weights (or spatial receptive field) of neuron i. 

But what does Wi(x,y) mean? What does it do to the incoming image? One example in vision is that 
neurons in primary visual cortex can be modeled by a set of receptive field weights, Wi(x,y) which acts 
as a spatial filtering operation that amplifies responses to edges of different orientations indexed by i. In 
fact all the built-in function LaplacianFilter[] does exactly that. Under the hood, it treats the input image 
as a vector, and figures out what values to put in a matrix to multiply it with to amplify edges:
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LaplacianFilter , 1

In other words, switching to a vector representation of input I and a set of receptive fields W,  the activity 
of the population of neurons can be written:

s = W.I.

where again s and I are vectors, and W is a matrix. s= W.I describes how a set of effective weights (e.g. 
synaptic weights or "receptive field" weights) turns the image input I into a pattern of neural responses-- 
a "neural image" s (equivalent to the notation, where now s=y, and x=I).

Synthesizing image input
It is useful to distinguish between 1) the weights Wi(x, y) that analyze an image to produce a pattern of 
neural activity si and 2) the “features”, call them Ai(x, y) that explain, generate, or synthesize an input I.

Assume that an input image I(x,y) can be represented by a linear combination of “feature” or basis 
vectors consisting of the columns of A:

We can think of the A’s as providing a vocabulary (or features) useful to describe any image in some 
perhaps restricted set, say “human faces” or “natural images”, in terms of a weighted sum. This is 
sometime called generative model for the patterns in that set. (The term “generative” is more specifically 
used in the context where one also has a probablistic description of generating parameters and the 
outputs). 

See: Hyvärinen, A. (2010). Statistical Models of Natural Images and Cortical Visual Representation. 
Topics in Cognitive Science, 2(2), 251–264. doi:10.1111/j.1756-8765.2009.01057.x

Here is a simple example where the features are non-overlapping patches:
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= s1 + s2 + s3 + s4 + s5 +

s6 + s7 + s8 + s9 + s10 + s11 +

s12 + s13 + s14 + s15 + s16

Now let’s reformulate the example in terms of simple vectors and matrices. We  “flatten” I(x,y) and each 
Ai(x,y) to turn them into vectors and then write:

I = A.s, 

where the features Ai(x,y) are now the "columns" of A,  {Aj}, and the elements of s, {sj}, represent the 
activity of the neurons representing how much each of those features contribute to (or explain) I: 

I = A1*s1 + A2 *s2 +...

We use the word "features" because we think of the input as being made up of combinations of these 
particular patterns in the world. 

(This is related to the machine learning “dictionaries” for a class of patterns where the goal is to find a small set of “words” 
that can be used to efficiently approximate any of the patterns in the class. Efficiency can be interpreted in terms of 
“sparseness”--i.e. the number of active features to describe an image on average, but more on this later.)

I1
I2
I3
I4

=

a11 a12
a21
a31
a41

a22
a32
a42

a13
a23
a33
a43

a14
a24
a34
a44

a15
a25
a35
a45

.

s1
s2
s3
s4
s5

= s1.

a11
a21
a31
a41

+ s2.

a12
a22
a32
a42

+ ... = s1.A1 + s2.A2 + ...

So the actual neural representation of an image I is only implicit in the firing rates and a definition of 
what each Aj means.  In other words, the activities s are a simple "code" for I which can be recovered 
using the above formula...IF we know A.  Neural models of image representation in the primary visual 
cortex have been analyzed in terms of whether the high-dimensional images received (at the retina) are 
projected into lower or higher dimensional spaces in cortex, and what the consequences might be for 
biological image processing (Hyvärinen, 2010). The notion of a linear representation of features for an 
input signal class has had a major impact on theories of neural represention in primary visual cortex, as 
well as image processing more generally.

OK, now let’s make some very strong, but greatly simplifying assumptions which will allow us to exploit 
standard results in linear algebra.

From a linear algebra perspective, if I and s have the same number of elements, A is "square", and if A 
is invertible, then W = A-−1. (We’ll cover the definition of an inverse matrix later, but you can think of it as 
analogous to division for scalars, but for matrices-- i.e. for scalars, if y=A.x, then one could solve for x as 
x=(1/A).y or x=A-−1.y)

Further, there is a theorem that says if the columns of A are orthogonal, then W is just the transpose of 
A. The transpose ATof a matrix A just turns the rows of A into columns of AT . This means that the 
"features" or basis vectors used to represent I (columns of A) are the same as the receptive field 
weights (rows of W). Under these assumptions, we can think of the pattern of a receptive field as repre-
senting an image feature. Let’s now summarize the basic linear algebra of vector representation in 
terms of basis vectors.
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A. The transpose ATof a matrix A just turns the rows of A into columns of AT . This means that the 
"features" or basis vectors used to represent I (columns of A) are the same as the receptive field 
weights (rows of W). Under these assumptions, we can think of the pattern of a receptive field as repre-
senting an image feature. Let’s now summarize the basic linear algebra of vector representation in 
terms of basis vectors.

Basis sets
The set of vectors used in a linear weighted sum to represent an N-dimensional vector pattern is called 
a basis set for that N-dimensional space. To be concrete, as earlier, assume our vectors live in an 8-
dimensional space.

It is pretty clear that given any vector whatsoever in 8-space, you can specify how much of it gets 
projected in each of the eight directions specified by the cartesion set of unit vectors u1, u2, ...u8. But 
you can also build back up an arbitrary vector by adding up all the contributions from each of the compo-
nent vectors. This is a consequence of vector addition and can be easily seen to be true in 2 dimen-
sions. 

We can verify it ourselves. Pick an arbitrary vector g, project it onto each of the basis vectors, and then 
add them back up again:

In[33]:= g = {2,6,1,7,11,4,13, 29};

In[34]:= (g.u1) u1 + (g.u2) u2 + (g.u3) u3 + (g.u4) u4 +
(g.u5) u5 + (g.u6) u6 + (g.u7) u7 + (g.u8) u8

Out[34]= {2, 6, 1, 7, 11, 4, 13, 29}

Exercise

It also works for other orthogonal basis sets, such as {v1,v2,...v8}. What happens if you project g onto 
the normalized Walsh basis set defined by {w1,w2,...}  above, and then add up all 8 components?
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(g.w1) w1  + (g.w2) w2  +(g.w3) w3  +(g.w4) w4  +
(g.w5) w5  +(g.w6) w6  +(g.w7) w7  +(g.w8) w8
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Looks complicated, but if you simplify it:
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Simplify[%]

{2, 6, 1, 7, 11, 4, 13, 29}

you get back the original vector. 
{2, 6, 1, 7, 11, 4, 13, 29}

Spectrum

The projections, {g.wi} are sometimes called the spectrum of g. This terminology comes from the 

Fourier basis set used in Fourier analysis. Also recall white light is composed of a combination of light of 
different frequencies (colors). A discrete version of a Fourier basis set is similar to the Walsh set, except 
that the elements fit a sine wave pattern, and so are not binary-valued.

Representing the output in the column space of the network

We’ve seen that the output can be represented as the projections of the input onto each of the row 
vectors of the weight matrix:

{{w11, w12, w13}, {w21, w22, w23}}.{x1, x2, x3} /∕/∕ MatrixForm


w11 x1 + w12 x2 + w13 x3
w21 x1 + w22 x2 + w23 x3



Our image dictionary example showed that it is also useful to think of the output in terms of its of the 
column vectors. Suppose we have 3 inputs and 2 outputs to our network as above. Inputs to the net-
work live in a 3-dimensional space. Outputs live in 2 dimensions.

With a 3-dimensional vector that represents the 3 inputs onto each of 2 neurons, one can visualize the 
output as a 2-dimensional vector whose length and direction is determined by the 2-dimensional vector 

sum of three column weight vectors: 
w11
w21

, 
w12
w22

, 
w13
w23

, where the amplitude of each vector is scaled 

by the input activity levels x1, x2, x3, to give: 
w11
w21

 x1 + 
w12
w22

 x2 + 
w13
w23

 x3. 

For practice, show that: 
w11
w21

w12
w22

w13
w23

.
x1
x2
x3

= 
w11
w21

 x1 + 
w12
w22

 x2 + 
w13
w23

 x3

Some more linear algebra terminology
The N=8 dimensional orthonormal set of vectors we’ve defined above  is said to be complete, because 
any vector in 8-space can be expressed as a linear weighted sum of these basis vectors. The weights 
are just the projections. If we had only 7 vectors in our set, then we would not be able to express all 8-
dimensional vectors in terms of this basis set. The seven vector set would be said to be incomplete. 
Imagine you want to specify the position of a point in your room, but you can only say how far the point 
is on the floor from two walls. You don’t have enough measurements to also say how high the point is.

A basis set which is orthonormal and complete simplifies the math. Another bit of terminology is that 
these seven vectors would not span the 8-dimensional space. But they would span some sub-space, 
that is of smaller dimension, of the 8-space. So you could specify the position of any point on the floor of 
your room with just two numbers that represent how far the point is from a corner in your room along 
one direction, and then how far from the corner it is in an orthogonal direction. The points on the floor 
span this two-dimensional subspace of your room. 

We mentioned that the effective weighting properties of visual neurons in primary visual cortex of higher 
level mammals (cats, monkeys) can be expressed in terms of a set of feature vectors (cf. Hyvärinen, 
2010). One issue is if the input (e.g. an image) is projected (via a collection of  receptive fields) onto a 
set of neurons, is information lost? If the set of weights representing the receptive fields of the collection 
of neurons is complete, then no information is lost. 
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We mentioned that the effective weighting properties of visual neurons in primary visual cortex of higher 
level mammals (cats, monkeys) can be expressed in terms of a set of feature vectors (cf. Hyvärinen, 
2010). One issue is if the input (e.g. an image) is projected (via a collection of  receptive fields) onto a 
set of neurons, is information lost? If the set of weights representing the receptive fields of the collection 
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Linear dependence
What if we had 9 vectors in our basis set used to represent vectors in 8-space? For the u's,  it is easy to 
see that in a sense we have too many, because we could express the 9th in terms of a sum of the 
others. This set of nine vectors would be said to be linearly dependent. A set of vectors is linearly 
dependent if one or more of them can be expressed as a linear combination of some of the others.  But 
this isn’t necessarily band, and there can be advantages to having an "over-complete" basis set (e.g. 
more than 8 vectors for 8-space; cf. Simoncelli et al., 1992).

There is a theorem that says: A set of mutually orthogonal vectors is linearly independent. 
However, note it is quite possible to have a linearly independent set of vectors which are not orthogonal 
to each other.  Imagine 3-space and 3 vectors which do not jointly lie on a plane. This set is linearly 
independent. If we have a linearly independent set, say of 8 vectors for our 8-space, then no member 
can be dropped without a loss in the dimensionality of the space spanned.

It is useful to think about the meaning of linear independence in terms of geometry. A set of three 
linearly independent vectors can completely span 3-space. So any vector in 3-space can be repre-
sented as a weighted sum of these 3. If one of the members in our set of three can be expressed in 
terms of the other two, the set is not linearly independent and the set only spans a 2-dimensional 
subspace. Think about representing points in your room, where in addition to saying how far from the 
corner the point from two walls, you can also say how far the point is along some arbitrary ruler laying 
on the floor. The additional measurement from the arbitrary ruler doesn’t give you any information you 
couldn’t get from the other two measurements. But if you oriented the ruler vertically, you’d now be able 
to uniquely specify the location of a point anywhere in the room with three measurements, including one 
from the ruler.

That is, the set can only represent vectors which lay on a plane in 3-space. This can be easily seen to 
be true for the set of u's, but is also true for the set of v's.

Mach bands & perception
Ernst Mach was an Austrian physicist and philosopher. In addition to being well-known today for a unit 
of speed, and Mach's Principle in theoretical physics, he is also known for several visual illusions. One 
illusion is called "Mach bands". Let's make and experience some.
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In[35]:= width = 256;
y[x_, hix_] := Module[{low, hi, lowx},

low = 0.2; hi = 0.8;
lowx = .35 *⋆ width; Piecewise[{{low , x < lowx}, {((hi -− low) /∕ (hix -− lowx)) x -−

((hi -− low) lowx) /∕ (hix -− lowx) + low , x >= lowx && x < hix}, {hi, x >= hix}}]];

In[37]:= Manipulate[
e3 = Table[y[i, hix], {i, 1, width}];
picture2 = Table[e3, {i, 1, 60}];
GraphicsGrid[{{Graphics[Raster[picture2, {{1, 1}, {120, 60}}, {0, 1}]], Plot[y[x,

hix], {x, 1, width}, PlotRange → {0, 1}]}}], {{hix, 87}, width /∕ 3., width *⋆ 3 /∕ 4}]

Out[37]=

hix

0 50 100 150 200 250

0.2
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 PlotRange is used to scale the brightness.

What Mach noticed was that the left “knee” of the ramp looked too dark, and the right knee looked too 
bright to be explained by the light intensity. Objective light intensity did not predict subjective brightness.

(Perceptual psychologists sometimes distinguish between “brightness” and “lightness, cf. Boyaci et al., 
2007 and Knill and Kersten, 1994. Lightness and related phenomena involve visual “filling-in”, believed 
to involve cortical processes, cf. Komatsu et al., 2006. We’ll look at models for filling-in later.)

Mach's explanation in terms of lateral inhibition

The idea is that somewhere in the visual system, there are units whose outputs reflect a process in 
which the light intensity at a point gets replaced by the weighted sum of intensities at nearby points. The 
weights have a center-surround organization, in which weights are positive near the point of interest, 
and negative further away. These so-called center-surround filters are illustrated in the above concentric 
circles, where + indicates positive weights, and - indicates negative weights. This process is called 
lateral inhibition. If you work throught the consequences of a lateral inhibition filtering operation, you will 
see that there is more inhibition (negative weight contributions) at the left knee, than just to the left. And 
there is more positive contribution at the right knee, than at the point just to the right. In general, lateral 
inhibition increases contrast at edges.

Neural basis?
Early visual neurons (e.g. ommatidia in horseshoe crab, ganglion cells in the mammalian retina and 
even later cells in the lateral geniculate neurons of the thalamus, and some cells in V1 or primary visual 
cortex of the monkey) have receptive fields with Mach's center surround organization. I.e. approximately 
circular excitatory centers and inhibitory surrounds. Or the opposite polarity, inhibitory centers and 
excitatory surrounds.
Some history:

Limulus (horseshoe crab)--Hartline won the 1967 Nobel prize for this work that began in the 
20's with publications up to the 70's. 
(See  http://hermes.mbl.edu/marine_org/images/animals/Limulus/vision/index.html).

Frog -- Barlow, H. B. (1953). Summation and inhibition in the frog's retina. J Physiol, 119, 69-88. 
Cat --S. W. Kuffler (1953). Discharge patterns and functional organization of mammalian retina . 

Journal of Neurophysiology, 16:37--68.
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and negative further away. These so-called center-surround filters are illustrated in the above concentric 
circles, where + indicates positive weights, and - indicates negative weights. This process is called 
lateral inhibition. If you work throught the consequences of a lateral inhibition filtering operation, you will 
see that there is more inhibition (negative weight contributions) at the left knee, than just to the left. And 
there is more positive contribution at the right knee, than at the point just to the right. In general, lateral 
inhibition increases contrast at edges.

Neural basis?
Early visual neurons (e.g. ommatidia in horseshoe crab, ganglion cells in the mammalian retina and 
even later cells in the lateral geniculate neurons of the thalamus, and some cells in V1 or primary visual 
cortex of the monkey) have receptive fields with Mach's center surround organization. I.e. approximately 
circular excitatory centers and inhibitory surrounds. Or the opposite polarity, inhibitory centers and 
excitatory surrounds.
Some history:

Limulus (horseshoe crab)--Hartline won the 1967 Nobel prize for this work that began in the 
20's with publications up to the 70's. 
(See  http://hermes.mbl.edu/marine_org/images/animals/Limulus/vision/index.html).

Frog -- Barlow, H. B. (1953). Summation and inhibition in the frog's retina. J Physiol, 119, 69-88. 
Cat --S. W. Kuffler (1953). Discharge patterns and functional organization of mammalian retina . 

Journal of Neurophysiology, 16:37--68.

Feedforward model
We’ll consider two types of models for lateral inhibition: feedforward and feedback (in our context, 
"recurrent lateral inhibition"). Let’s look at a simple feedforward model. Let
f = w ′.e
where e is a vector representing the input intensities (the e3 or y[] values in the above demo), w ′ is a 
suitably chosen set of weights (i.e. excitatory center and inhibitory surround as shown in the above 
figure), and f is the output. The connectivity for two neurons would look like this:

but of course you’d have to add more neurons to get the circularly symmetric weights described by 
Mach.

Programming implementation
Because changes in the stimulus are one-dimensional, we'll simulate the response in one dimension. 
We specify the input vector e as above:
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In[38]:= e4 := Table[y[i, 170], {i, 1, width}];
ListPlot[e4]

Out[39]=
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Let's assign weights consistent with Ernst Mach's 19th century hypothesis. Let’s model the receptive 
field for one output unit to be represented by:

 5 weights, with a center value of 6, and 4 surround values of -1:

In[40]:= wp = Table[0, {i, 1, Length[e4]}]; wp〚1〛 = -−1; wp〚2〛 = -−1; wp〚3〛 = 6; wp〚4〛 = -−1;
wp〚5〛 = -−1; ListPlot[wp, Joined → True, PlotRange → {{0, 10}, {-−2, 7}}, Filling → Axis]

Out[40]=

...or we could get a little more sophisticated, and use a common formula to model center-surround 
organization, the difference of two Gaussian functions with different widths,  a so-called “DOG” filter. 
Here is a specific choice that specifies a wider filter than above:

In[41]:= wp = Table[2.5 *⋆ Exp[-−((i -− 15) /∕ 4)^2] -− Exp[-−((i -− 15) /∕ 8)^2], {i, 1, Length[e4]}];
ListPlot[wp, Joined → True, PlotRange → {{0, width /∕ 8}, {-−2, 2}}, Filling → Axis]

Out[42]=

The plot shows the "center-surround" organization of the filter.  Filters of this sort that have an antagonis-
tic center-surround organization are sometimes refered to as "Mexican hat" filters.

Now assume that all units have the same weights, and calculate the response at each point by shifting 
the weight filter wp right one by one, and taking the dot product with the input pattern e4,  each time:

In[43]:= response = Table[RotateRight[wp,i].e4,{i,1,width-−30}];

This way we can mimic the response we want:
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In[44]:= ListPlot[response, Joined → True, Axes → False]

Out[44]=

Note that we cut the rotation short to eliminate boundary effects.

Show that you can do this operation as matrix multiplication, where each subsequent row of a matrix W is the vector wp shifted over by one. 

Convolution
This kind of operation where the same filter gets applied repeatedly at different positions is common in 
signal processing. It is called discrete convolution. (Convolution can be defined in the continuous 
domain as a specific kind of integration. More later.). Convolution is used in neural network modeling 
whenever 1) a linear model is reasonable; 2) the same filter gets applied repeatedly across space (or 
time), as one might expect when processing an image.  Mathematica has a function ListConvolve[ ] 
that does discrete convolutions. It has additional arguments that allow for handling of the boundaries. 
What should you do when the filter gets close to the end of the stimulus? A common default is to let the 
filter wrap around. Another common solution is to "pad" the ends of e with fixed values, such as zero. 
What does the retina do?

Here's ListPlot[] with the simpler center-surround receptive field, {-1, -1, 6, -1, -1}. In mathematics, the 
filter vector used in convolution is sometimes called a "kernel”.
ListPlot[ListConvolve[{-−1, -−1, 6, -−1, -−1}, e4], Joined → True]

50 100 150 200 250

0.5

1.0

1.5

What is the response to the ramp if the sum of the weights is zero? Build a simple edge detector. Let kern={-1,2,-1} and use ListConvolve[ ].

Feedback model: Recurrent lateral inhibition
Now we'll develop a different, dynamical model for lateral inhibition that includes time and feedback. 
There is  neurophysiological evidence for an implementation of lateral inhibition via feedback, called 
recurrent lateral inhibition.

Dynamical systems: difference equation for one neuron
State of neuron output f at discrete time k.
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For one neuron, let the output at time interval k+1 be:
f[k + 1] = e[k] + w f[k] (1)

Suppose the initial state f[0] is known and e[k] is zero, can you find an expression for f[k]? What happens if w is less than one? Greater than one?

Dynamical systems: Coupled difference equations for interconnected neurons
Now consider a two neuron system. The formalism will extend naturally to higher dimensions. To keep 
this simple, the weights for the inputs e are fixed at one, but we will specify weights for the newly added 
feedback connections:

Let e be the input activity vector to the neurons,  f is the n-dimensional state vector representing output 
activity and W is a fixed nxn weight matrix. Then for a two neuron network we have:

f1[k + 1] = e1[k] + w 12 f2[k] + w 11 f1[k]
f2[k + 1] = e2[k] + w 21 f1[k] + w 22 f2[k]

or in terms of vectors and matrices


f1[k + 1]
f2[k + 1]

 = 
e1[k]
e2[k]

 + 
w11 w12
w21 w22

 
f1[k]
f2[k]



or in summation notation:

fi[k + 1] = ei[k] + 
j

wij.fj[k] (2)

or in concise vector-matrix (and Mathematica) notation:
f[k + 1] = e[k] + W .f[k] (3)

where W = 
w11 w12

w21 w22

This equation is an example of a simple dynamical system, with state vector f. As you might imagine, 
the state of a dynamical system typically changes with time (i.e. iteration k). 

Are there solutions for which the state does not change with time? If there are, these solutions are 
called steady state solutions.
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This equation is an example of a simple dynamical system, with state vector f. As you might imagine, 
the state of a dynamical system typically changes with time (i.e. iteration k). 

Are there solutions for which the state does not change with time? If there are, these solutions are 
called steady state solutions.

In contrast to the way we set up the weights for the feedforward matrix (which included the forward 
excitatory weights), we are going to assume later that all of these weights are inhibitory (because we 
are modeling lateral inhibition). The positive contributions, if any, will come from the input e.

Steady state solution for a discrete system is mathematically equivalent to a linear 
feedforward model
The feedforward solution is just a matrix operation on the inputs: f = W’.e, where the first row of W’ has 
the center-surround organization of the weights, e.g. w1 = {-1,-1,6,-1,-1,0,0,0,0,0,...}, and the second 
row is shifted:  {0,-1,-1,6,-1,-1,0,0,0,0,,...} and so forth.

Let’s compare the feedforward model with the recurrent feedback after the latter has “settled down”--i.e. 
with its stead-state solution.

A steady-state solution simply means that the state vector f doesn't change with time:
f[k + 1] = f[k]

or in vector and Mathematica  notation:
                                                           f = e + W.f
where we drop the index k. Note that by expressing f in terms of e, this is equivalent to another linear 
matrix equation, the feedforward solution:

                                                           I.f = e + W.f,
                                                           (I - W)f = e,
                                                           f = W'.e,
where

                                                           W' = (I - W)-1  
The -1 exponent means the inverse of the matrix in brackets. I is the identity matrix, which in two dimen-

sions is: 1 0
0 1



We will review more later on how to manipulate matrices, find the inverse of a matrix, etc.. But for the 
time being, think of an identity matrix as the generalization of unity: 1. 1 times x returns x. And the 
inverse is the generalization of taking the reciprocal of a number.

The point of the above derivation is that the steady-state solution for recurrent inhibition (i.e. with feed-
back) which is equivalent to non-recurrent linear network (no feedback, just feedforward). 

In general, there may be more than one underlying neural circuit to explain the external behavior of a 
network. Telling them apart requires doing the right kind of experiment.

Dynamical system -- coupled differential equations ("limulus" equations)
In our discussion of the different types of neural models, we noted that continuous time is a more 
realistic assumption for a neural network. So what if time is not modeled in discrete clocked chunks? It 
is straightforward to extend the discrete time model to a continuous time model. But then to simulate the 
dynamics, we'll go back to a discrete approximation, but keep in mind that the behavior might depend 
on the temporal grain of our approximation. Temporal grain refers to how finely we chop up time. 
The theory for coupled discrete equations
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f[k + 1] = e[k] + W .f[k]

parallels the theory for continuous differential equations where time varies continuously:
df

dt
= e[t] + W″ .f[t]

(W ″ is not the same matrix asW .) If you want to learn more about dynamical systems, a classic text is 
Luenberger, 1979)

Let's see how this might work.

Let e(t) be the input activity to the neurons,  f(t) is the n-dimensional state vector representing output 
activity, now as a function of time.   W is a fixed nxn weight matrix. The equation in the previous section 
is the steady state solution to the following differential equation:

df

dt
= e[t] + W .f[t] -− f[t]

(You can see this by noting that as before, "steady state" just means that the values of f(t) are not 
changing with time, i.e. df/dt = 0). We are going to develop a solution to this set of equations using a 
discrete-time approximation.

df
dt

 ~   f (t+Δt)-−f (t)
ϵ𝜀

The state vector f at time t+Δt  (ϵ = Δt) can be approximated as:

We will fix or "clamp" the input e, start with arbitrary position of the state vector f, and model how the 
state vector evolves through time. We'll ask whether it seeks a stable (i.e. steady) state for which f(t) is 
no longer changing with time, f(t + Δt) = f(t), i.e. when df/dt = 0. In the limit as  Δt (or ϵ) approaches zero, 
the solution is given by the steady state solution of the previous section. But neural systems take time to 
process their information and for the discrete time approximation,  the system may not necessarily 
evolve to the steady state solution. 

Simulation of recurrent lateral inhibition
First we will initialize parameters for the number of neurons (size), the space constant of the lateral 
inhibitory field (spaceconstant), the maximum strength of the inhibitory weights (maxstrength), the 
number of iterations (iterations), and the feedback delay ϵ𝜀:

The input stimulus
In[71]:= size = 30;

spaceconstant =5;
maxstrength = 0.05;
iterations = 10;
ϵ = .3;

Now make the stimulus

In[76]:= e = Join[Table[0,{i,N[size/∕3]}],Table[i/∕N[size/∕3],
{i,N[size/∕3]}], Table[1,{i,N[size/∕3]}]];

g0 = ListPlot[e, PlotRange -−> {{0,30},{-−0.5,1.1}},PlotStyle-−>{RGBColor[1,0,0]}];
picture = Table[e,{i,1,30}];
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In[79]:= ListPlot[e]

Out[79]=
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We've stored the graphic g0 of the input for later use, we can show it later with Show[g0].

Initializing the state vector and specifying the weights
Now we'll initialize the starting values of the output f to be random real numbers between 0 and 1, 
drawn from a uniform distribution.

In[80]:= f = RandomReal[{0, 1}, size];

Now let's set up synaptic weights which are negative, but become weaker the further they get from the 
neuron. We assume that the weights drop off exponentially away from each neuron:

In[81]:= W =
Table[N[-−maxstrength Exp[-−Abs[i-−j]/∕spaceconstant],1],

{i,size},{j,size}];

ListPlot3D[W,ImageSize-−>Small]

Out[83]=

Note how the weight structure assumes “self-inhibition” corresponding to the figures of the one and two-
neuron models above.

Simulating the response
We are going to use the Mathematica  function Nest[ ] to iterate through the limulus equations. 
Nest[f, expr, n] gives an expression with f applied n times to expr. For example, if we have defined a 
function T[ ], Nest[T,x,4] produces as output T[T[T[T[x]]]].
Let's express our discrete approximation for the limulus dynamical system in terms of a function, T, 
which will get applied repeatedly to itself with Nest:

In[84]:= T[f_] := f + ϵ (e + W.f -− f);
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In[85]:= iterations = 15;
g1 = ListPlot[Nest[T, f, iterations],PlotJoined-−>True,

PlotRange -−> {{0,30},{-−.5,1.0}},PlotStyle-−>{RGBColor[0,0,1]}];
Show[g0,g1, Graphics[Text[iterations "iterations",

{size/∕2,-−0.4}]]]

Out[87]=

15 iterations
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How does the simulation match up to data from the Limulus eye?

From Hartline's Nobel lecture http://www.nobel.se/medicine/laureates/1967/hartline-lecture.pdf. Figure 
from: F. Ratliff and H.K. Hartline, J. Gen. Physiol., 42 (1959) 1241.

Google limulus

Explore the parameter space

The effect of ϵ𝜀, strength of inhibition, and number of iterations

Define a function with inputs: ϵ𝜀, maxstrength and iterations, and outputs: a plot of 
response
We can use the Module[ ] function to define a routine with local variables and a set of other functions to 
define limulus[ϵ𝜀_,maxstrength_,iterations_]:
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We can use the Module[ ] function to define a routine with local variables and a set of other functions to 
define limulus[ϵ𝜀_,maxstrength_,iterations_]:

In[97]:= limulus[ϵ_, maxstrength_, spaceconstant_, iterations_] :=

Module{f, W}, W = TableN-−maxstrength ⅇ
-−

Absi-−j

spaceconstant, 1, {i, size}, {j, size};

f = RandomReal[{0, 1}, size];
T[f_] := f + ϵ (e + W.f -− f);
g1 = ListPlot[Nest[T, f, iterations], Joined → True,

PlotRange → {{0, 30}, {-−.5, 1.}}, PlotStyle → {RGBColor[0, 0, 1]}];

Showg0, g1, GraphicsTextiterations "iterations", 
size

2
, -−0.4

In[106]:= Manipulate[limulus[ϵ, maxstrength, spaceconstant, i], {{ϵ, .3}, 0, 1},
{{maxstrength, .05}, 0, .5}, {{spaceconstant, 5}, 1, 15, 1}, {i, 1, 15, 1}]

Out[106]=

ϵ𝜀

1.

maxstrength

spaceconstant

i

8 iterations
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What does the steady state response look like if the inhibition is small (i.e. small maxstrength)?

What does the steady state response look like if the inhibition is large?

What does the steady state response look like if the spaceconstant is very small or very  large?

Modify the simulation to investigate what happens if the iteration step-size, ϵ, is large (e.g. 1.5). Run it limulus[ ] several times--i.e. try different 
initial conditions.

Neural networks as dynamical systems

We've explored a simple linear neural network that is a good model of limulus processing, and seems to 
provide a possible explanation for human perception of Mach bands. Real neural networks typically 
have non-linearities. There is no general theory of non-linear systems of difference or differential equa-
tions. But the exploration of this linear set does lead  us to ask questions which are quite general about 
dynamical systems:
  What does the trajectory in state-space look like?
  Does it go to a stable point?
  How many stable points or "attractors" are there?
 There are non-linear systems which show more interesting behavior in  which one sees:
 Stable orbits

 Chaotic trajectories in state-space
 "Strange" attractors
 We will return to some of these questions later when we study Hopfield networks.

Recurrent lateral inhibition & Winner-take-all (WTA)

Sometimes one would like to have a network that takes in a range of inputs, but as output would like the 
neuron with biggest value to remain high, while all others are suppressed. (In computational vision, see 
“non-maximum suppression”, which is sometimes used in edge detection.) In other words, we want the 
network to make a decision. The limulus equations can be set up to act as such a "winner-take-all" 
network. We will remove self-inhibition by setting all the diagonal elements of W to zero. We will also 
add a non-linear thresholding function ("rectification") to set negative values to zero, and we will 
increase the spatial extent of the inhibition.

Make a rectifying threshold function

In[114]:= thresh[x_] := N[If[x < 0.0, 0.0, x]];
SetAttributes[thresh, Listable];
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Make a "tepee" stimulus and initialize the neural starting values
In[116]:= size = 30;

e = Join[{0,0},Table[0,{i,N[size/∕4]}],
Table[i/∕N[size/∕4],{i,N[size/∕4]}],
Table[(N[size/∕4]-−i)/∕N[size/∕4],{i,N[size/∕4]}],
Table[0,{i,N[size/∕4]}]];

g0 = ListPlot[e, PlotRange -−> {{0,size},{-−1,2.0}},PlotStyle→{RGBColor[1,0,0]},Axes→False]

Out[118]=

Define winnertakeall[ ] as for limulus[ ], but with no self-inhibition:
In[120]:= winnertakeall[ϵ_, maxstrength_, iterations_, spaceconstant_] :=

Module{f, W}, W = TableN-−maxstrength ⅇ
-−

Absi-−j

spaceconstant, 1, {i, size}, {j, size};

For[i = 1, i ≤ size, i++, W〚i, i〛 = 0.`];
f = RandomReal[{0, 1}, size];
T[f_] := thresh[f + ϵ (e + W.f -− f)];
g1 = ListPlot[Nest[T, f, iterations], Joined → True,

PlotRange → {{0, size}, {-−1, 2.`}}, PlotStyle → {RGBColor[0, 0, 1]}];

Showg0, g1, GraphicsTextiterations "iterations", 
size

2
, -−0.8`

Use ListPlot3D[W] to see the modified structure of the weight matrix

Run simulation: Find a set of parameters that will select the maximum response and suppress the rest

5 10 15 20 25 30

-1

-0.5

0.5

1

1.5

2

100 iterations

If we think of the number of iterations to steady-state as "reaction time", how is this neural network for 
making decisions? How sensitive is its function to the choice of parameters?
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If we think of the number of iterations to steady-state as "reaction time", how is this neural network for 
making decisions? How sensitive is its function to the choice of parameters?

If you are having a hard time finding a good set of parameters, select the cell below, then go to Cell-
>Cell Properties->Cell Open, and then run it.

In[113]:= winnertakeall[.25, .95, 100, size]

Out[113]=

100 iterations

Next time

Review matrices. Representations of neural network weights.
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Appendix

Use NestList[ ] to store all the iterations before showing the results.

T2[f_] := f + ϵ (e + W.f -− f);
temp = NestList[T2, f, 15];
Animate[
Show[g0, ListPlot[temp[[i]], PlotJoined → True, PlotRange → {{0, 30}, {-−.5, 1.0}},

PlotStyle → {RGBColor[0, 0, 1]}], Graphics[Text[iterations "iterations",
{size /∕ 2, -−0.4}]]], {i, 1, 15, 1}]

i

Show , ListPlottemp〚6〛, PlotJoined → True,

PlotRange → {{0, 30}, {-−0.5, 1.}}, PlotStyle →  , 15 iterations 
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Exercise: Make a gray-level image of the  horizontal luminance pattern shown below.

Does the left uniform gray appear to be the same lightness as the right patch? Can you explain what 
you see in terms of lateral inhibition?

low = 0.2; hi = 0.8;
left = 0.5; right = 0.5;
y2[x_] := left /∕; x<40
y2[x_] :=

((hi-−low)/∕40) x + (low-−(hi-−low)) /∕; x>=40 && x<80
y2[x_] := right /∕; x>=80

Plot[y2[x], {x, 0, 120}, PlotRange → {0, 1}]
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Exercise: Hermann grid

Below is the Hermann Grid. Notice the phantom dark spots where the white lines cross. Can you 
explain what you see in terms of lateral inhibition?

width2 = 5; gap = 1; nsquares = 6;

hermann = Flatten[Table[{Rectangle[{x, y}, {x + width2, y + width2}]},
{x, 0, (width2 + gap) *⋆ (nsquares -− 1), width2 + gap},

{y, 0, (width2 + gap) *⋆ (nsquares -− 1), width2 + gap}], 1];
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Show[Graphics[hermann, AspectRatio → 1]]
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