
Introduction to Neural Networks

Daniel Kersten

Lecture 4: The generic neuron and linear models

Introduction

Last time

Slow-potential qualitative neuron model. 
Various types of neuron models: Levels of abstraction
McCulloch-Pitts threshold logic: Discrete time, discrete  signal, no spatial structure assumed for neuron
Integrate-and-fire model: continuous time, continous signal, no spatial structure assumed for neuron

Today

We continue with the no spatial structure and continuous signal simplification, but discretize time, and 
from there build a network.  
Review basic linear algebra. Motivate linear algebra concepts from neural networks.

Motivation: What can be done with the linear modeling 
tools we cover today and in the next few lectures?

Filter images, filter sounds, model early sensory cortical cells, detect edges, textures, front-end for 
motion estimation, describe human sensory thresholds...

We’ll develop tools to understand a range of theories from associative memory and recall to sparse 
coding representations of image or sound features.



Modeling one neuron

Three stages: dot product, point-wise non-linearity, additive noise

The generic neuron model abstracts the basic properties of the integrate and fire neuron, and makes 
provision for saturation as well. We’ll assume we are concerned about the how the inputs determine the 
output at a particular time. We ignore differences in the timing of the inputs and assume no delays 
between the input and output. If we are thinking about firing rates, there is an implicit assumption of a 
time period over which the rate is relevant. E.g. if we assume 100 msec, then signal rates could vary 
between 0 and 50 or so spikes per second.

Stage 1: Linear weighted sum of inputs

The weights correspond to the synaptic efficiency of the inputs to the neuron which model the net effect 
on the input current. Sometimes models include a fixed additional bias term at the input, which will 
affect how the neuron behaves with the next non-linear term.

Stage 2: Point-wuise non-linearity

Popular forms are “sigmoidal” or approximately so: logistic function, arctan(), semi-linear function
These are sometimes called "point" non-linearities. The non-linearity is a scalar function of a scalar--it 
isn't a non-linear combination of interacting inputs. The standard sigmoidal shaped non-linearity cap-
tures both the effects of small signal compression (e.g. recall threshold resulting from the leaky inte-
grate and fire model) and large signal saturation on the output frequency of firing (recall the effect of the 
absolute refractory period).
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Stage 3: Noise

The number of spikes in a neuron's discharge is not strictly determined by the input, but varies statisti-
cally. This can be modeled assuming some form of additive (or other) stochastic component to the 
neural discharge frequency. Note that putting the noise at the end is just one possibility. Noise can 
occur at the input and between Stage 1 and 2. 

Much of our intuition and theory about neural networks is based on studies of linear neural 
networks. The rationale is that there is an intermediate input regime over which the output is an 
approximately linear function of the input.

The advantage of the linear approximation is simplification, and being able to exploit our knowl-
edge of linear algebra and linear systems.
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Use Plot to compare two sigmoidal non-linearities:

squash[x_] := N[1 /∕ (1 + Exp[-−x + 4])];
squash2[x_] := (2. /∕ Pi) *⋆ N[ArcTan[x]];

Using Mathematica to make a generic neuron

We are going to do a lot of work with lists, in particular with vectors (a vector is a list of scalar elements) 
and matrices (a matrix is a list of vector elements). We already introduced lists when we studied the 
McCulloch-Pitts model. Here is a four-dimensional vector which we'll call x. x could represent the input 
signals (e.g. firing rates) to a neuron.

x = {2,3,0,1};

Sidenote : While it doesn' t make sense for firing rates frequency, sometimes modelers let the input and 
outputs take on negative values, e.g. between - 1 and 1. The rationale is that the symmetry about zero 
can simplify the math. 

Let’s make another vector, this one will be a list of “weights”, say, representing the efficiency with which 
the inputs at the synapses are transmitted to the neuron hillock. Note that negative weights make sense 
-- recall that synapses can be excitatory or inhibitory.  

w = {2,1,-−2,3};

Dot product (Stage 1) 
The output of a model neuron that simply takes a weighted sum of the inputs is the dot product of the 
input with the weights:

y = w.x

10

You can also write: 

y = Dot[w, x]

This kind of operation is a simple version of what is sometimes referred to as a "cross-correlator" or 
matched filter. It takes a signal x, and cross-correlates or tries to matches it with a template, w. In your 
homeowrk, you will show that for signals of fixed vector length (or "norm"), the dot product gives the 
biggest response to the signal that exactly matches the template. We can see what the dot product 
does algebraically by defining the input and weights algebraically:
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This kind of operation is a simple version of what is sometimes referred to as a "cross-correlator" or 
matched filter. It takes a signal x, and cross-correlates or tries to matches it with a template, w. In your 
homeowrk, you will show that for signals of fixed vector length (or "norm"), the dot product gives the 
biggest response to the signal that exactly matches the template. We can see what the dot product 
does algebraically by defining the input and weights algebraically:

Clear[w1, w2, w3, w4, x1, x2, x3, x4];
y = {w1, w2, w3, w4}.{x1, x2, x3, x4}

w1 x1 + w2 x2 + w3 x3 + w4 x4

The sigmoidal non-linearity (Stage 2) 
Now define a function to model the non-linearity of Stage 2 (in this case, the “logistic function” men-
tioned earlier):

squash[x_] := N[1/∕(1 + Exp[-−x])];

Recall, that the underscore, x_ is important because it tells Mathematica that x represents a slot, not 
an expression. Again, note that we've used a colon followed by equals ( := ) instead of just an equals 
sign (=). When you use an equals sign, the value is calculated immediately. When there is a colon in 
front of the equals, the value is calculated only when called on later. So here we use := because we 
need to define the function for later use. Also note that our squashing function was defined with N[]. 
Why did we do that?

Graphics. Adjust the input scale of squash[ ] to plot a very steep squashing function for -5<x<5. I.e. it should look like the step function we used when 
modeling the McCulloch-Pitts neuron. 

Now let's include the non-linear squashing function to complete our model of the first two stages of the 
generic neuron:

y = squash[w.x];

Modeling noise (Stage 3)
We'd like to add a Stage 3 to our model of the neuron to take into account the noisiness of neural 
transmission. For this, we need the notions of random variable and  probability distribution. We’ll cover 
just enough here to have some basic tools and concepts. We’ll go over probability theory in greater 
depth in later lectures. 

The idea is that we want to simulate drawing of a random number to represent the variations in firing 
rate. Think of a hat filled with slips of paper whose proportions represent the probabilities of various 
deviations of firing rate values--e.g. “an extra few added spikes, or a few subtracted spikes each sec-
ond”. The hat stands for a probability distribution. And the collection of all the values on the slips of 
paper represent the random variable associated with the distribution or hat. Once a piece of paper is 
drawn, the random variable “takes on” the value written on the paper. The value drawn determines the 
noise for that time period.

We could program the routines we need to generate particular types of noise using basic Mathematica  
functions. However, many of the probability functions we need are already built into Mathematica. As a  
first approximation the maintained action potential discharge can be modeled as a Poisson distribution, 
p(a;λ𝜆) This is a discrete distribution that represents the probability of a events (e.g. a action potentials) 
given an average rate of λ𝜆. The assumption behind the definition (see below) is that there is an average 
number of spikes that occur within a specific time interval, and that the discharge of a spike is indepen-
dent of the time since the last one. Real neuron variability can be more complicated, but this provides a 
reasonable initial model. See Rieke et al. (1997).
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dent of the time since the last one. Real neuron variability can be more complicated, but this provides a 
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Probability distributions and sampling

Statistical routines are useful for both theoretical aspects of modeling as well as for Monte Carlo simula-
tions where one simulates drawing random samples to use as inputs to an algorithm. So it is worth a 
little effort to get acquainted with some fundamental tools and definitions. Let's define a Poisson distribu-
tion with a mean of λ𝜆. And then specify an average of 50 spikes per second, λ𝜆=50.

Discrete distributions

Clear[a];
PDF[PoissonDistribution[λ],a]

ⅇ-−λ λa

a!
a ≥ 0

0 True

Let's specify a Poisson distribution with mean λ𝜆 = 25:

pdist = PoissonDistribution[25];

The probability distribution function is given by: 

PDF[pdist,a]

25a

ⅇ25 a!
a ≥ 0

0 True

The output shows Mathematica's  definition of the function. You can obtain the mean, variance and 
standard deviation (which is the square root of the variance) of the distribution we've defined. Try it:

{Mean[pdist],Variance[pdist],StandardDeviation[pdist]}

{25, 25, 5}

gpdist = DiscretePlot[PDF[pdist, x], {x, -−10, 50}, AxesLabel → {"x", "p"}];

Continuous distributions, probability densities

ndist = NormalDistribution[25.,Sqrt[25.]];

Print[Mean[ndist],", ",Variance[ndist],", ",
StandardDeviation[ndist]]

25., 25., 5.

A plot of the probability distribution function for this normal distribution looks like:
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gndist = Plot[PDF[ndist, x], {x, -−10, 50},
AxesLabel → {"x", "p"}, PlotStyle → {Orange, Thick}]
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A given ordinate value is a "density", rather than probability. But we can talk about the probability that x 
takes on some value in an interval, say a small interval dx. For a small interval, dx, the  probability ≃ 
p(x)dx, i.e. the area under the curve. What is the probability that x takes on some value between +∞ 
and -∞? What is area under this curve? 

The cumulative distribution, f(x2) =p(x<x2), tells us the probability of x being less than a particular value 
x2:

Plot[CDF[ndist, x2], {x2, -−0.25, 1.5}, AxesLabel → {"x2", "f"}]
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You can see from the graph that for this distribution, once x2 is greater than 0.7 or so, the probability of 
x being less than that is virtually certain, i.e. is essentially 1. If we set the mean = 0, and the standard 
deviation, we'd have a graph of the "cumulative normal".
Approximating a Poisson distribution by a Gaussian. As the mean of a Poisson distribution gets 
bigger, the form of the distribution gets closer to that of a Gaussian distribution. So sometimes it is 
convenient to approximate the noisiness of neural discharge with a Normal (Gaussian) distribution. The 
Gaussian distribution is continuous so is represented by a density. It is a fairly good approximation of a 
Poisson distribution for large values of the mean, and the math is usually easier. Further, if we repre-
sent the neuron output as a continuous value (e.g. frequency), then it is reasonable to use a continuous-
valued model of noise. We do have to be careful tho', because the Gaussian is defined over negative 
numbers too.

As you can see in the graph below, at λ𝜆 = 25, the Gaussian (in orange) is a fairly good fit
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Show[{gndist, gpdist}]

Statistical Sampling

Having defined the normal distribution, how can we draw samples from it? You are no doubt familiar 
with the idea of picking out a colored ball from a jar without looking. If the jar has 100 red balls, and 50 
blue balls, the probability of picking a red ball is 2/3rds. That is assuming we are putting the balls back 
after each draw. The process of randomly picking a ball is called sampling. 

Or  let’s go back to a slightly more complicated version of our hat with slips of paper.  Fill the hat with 
slips that each have a number written on it, say numbers from 1 to 9. Suppose there is 1 slip with the “1” 
written on it, 3 slips with “2” written on it, 3 slips with “3” written on it, 4 slips with “4” written on it, 5 slips 
with “5” written on it, 4 slips with “6” written on it, 3 slips with “7” written on it, 2 slips with “8” written on it, 
and 1 slip with “9 “ written on it. If you randomly pick out a slip of paper, replace it, and do it again and 
again, you’d expect that the proportion of samples drawn would come to look like the proportions of 
slips of paper in the hat.

Let’s see how to simulate a process in which we fill a hat with slips of paper in such a way that the 
proportions for each value mimic what we obtain from a theoretical  distribution.

Most standard programming languages come with subroutines for doing this, called pseudo-random 
number generation. Unlike the Poisson or Gaussian distribution, the basic function is usually for a 
uniformly distributed random variable--that is, the probability of being a certain value (or within a tiny 
range) is constant over the entire sampling range of the random variable. This is like filling the hat with 
slips of paper where the number of slips is the same for each value.  Mathematica  comes with standard 
functions, RandomReal[] and RandomInteger[],   that enable us to generate random numbers that are 
uniformly distributed. With the appropriate argument, we can also define Poisson, Normal, and other 
kinds of random numbers using these functions:

RandomReal[ndist]

0.603919

But unless the distributions are uniform, it is better to use RandomVariate[] , which avoids you having 
to distinguish between discrete, continuous or mixed distributions:
0.591627
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RandomVariate[ndist]

0.60025

Simulate drawing Poisson distributed integers with a mean value of 25 (See RandomVariate[])

Putting stages 1, 2 and 3 together
We can put the three stages together, producing the output of a generic neuron, with synaptic weights 
w,  neural noise with a mean of 0.0 and std. dev. 0.1 to an input x:

Clear[x1,w,y];
w = {2,1,-−2,3};
ndist2 = NormalDistribution[0.0,.1];

y[x1_] := N[squash[w.x1] + RandomVariate[ndist2]];

y[{2, 3, 0, 1}]

-−0.170732 + squash[10.]

Note that this is an additive model of noise with constant variance. The noise level doesn't depend on 
the activity value of the deterministic part. Although often a good first approximation and starting point 
for a model, additive noise is often an over-simplication. Not surprisingly spiking behaves more like a 
Poisson where the variance grows with firing rate.

If we invoke the y[] function again, we get a different response:

y[{2,3,0,1}]

-−0.0196075 + squash[10.]

Note that the above noise term can produce negative values. There are various ways of fixing this like 
setting samples below zero to zero. Or picking a suituable standard distribution that is only defined for 
positive values. 

To sum up, the model you should have in mind is that at any given time interval (which is implicit in this 
continuous-response, discrete-time model), the neuron computes the sum of its weighted inputs, and 
the output signal, y,  is a spike rate over this interval. Even with the same input, the spike count can 
vary with repeated measurements because of noise. With a sigmoidal non-linearity, there is small-signal 
suppression, and large-signal saturation. But there is an near-linear regime.
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Exercise
Suppose all the inputs except the first are clamped at zero. What does the response, y look like as a function of x for various levels of input signal? 
Fill in the argument for Plot[]:

Plot[Null, {x, -−2, 2}, PlotRange → {0, 2},
AxesLabel → {"Input signal, x", "Frequency"}]
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Modeling a simple neural network

Linear matrix model
What if the input 

x = {2, 3, 0, 1};

is applied to four neurons, each with a different set of weights? We can represent the weights by a 
"weight matrix", which is just a list of the four weight lists or vectors. Here is a 4x4 matrix W:

W = {{2,1,-−2,3}, {3,1,-−2,2}, {4,6,5,-−3},{1,-−2,2,1}}

{{2, 1, -−2, 3}, {3, 1, -−2, 2}, {4, 6, 5, -−3}, {1, -−2, 2, 1}}

Each successive element of the list W is a row of matrix W. Verify this by displaying W in MatrixForm or TraditionalForm

Now what are the outputs of the four neurons? It is just the product of the matrix W times the input 
vector x:

Lect_4_GenericModel.nb     9



Now what are the outputs of the four neurons? It is just the product of the matrix W times the input 
vector x:

y = W.x

{10, 11, 23, -−3}

In traditional mathematical form, this matrix multiplication is written as:

yi =
j=1

n

wi, j x j

Sumxj wi, j

So to multiply an input vector by a matrix, we take the dot product of the input vector with each succes-
sive row of the matrix.  Note that in Mathematica,  a dot is used for multiplying vectors by themselves, 
vectors by a matrix, or to multiply two matrices together. If you want to multiply a vector or matrix by a 
scalar, c, you don't use a dot. For example, to normalize x by its vector length:

c = 1/∕Sqrt[x.x];
x2 = N[c x]

{0.534522, 0.801784, 0., 0.267261}

Take the dot product of x2 above with itself to confirm normalization

Applying the non-linear squashing function
Now let's apply our squashing function to the output y. Note how the big positive values are set close to 
one, and the negative value is set close to zero.

y
squash[y]

{10, 11, 23, -−3}

{0.997527, 0.999089, 1., 0.000911051}

By default, our function squash[] is a listable function. This means that even though it was first defined 
to operate on a scalar, when applied to a list, it automatically gets applied to each element of the list in 
turn.

We can do everything at once in our four-neuron network, producing the four outputs of four generic 
neurons to an input x:

y = squash[W.x]

{0.997527, 0.999089, 1., 0.000911051}

There we have it--a model for a simple neural network. It is also "feedforward" in that it maps inputs to 
outputs, in contrast to a network in which outputs get fed back to inputs. Variations on this equation will 
occur many times in the rest of the course, so it is worth taking some time to understand it. 

Most of the time, we will assume the noise is negibilte. But if we want to add noise to the model, we 
could add a random number generator. Note that second argument of RandomVariate specifies the 
dimensions of the input:
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y = squash[W.x] +RandomVariate[NormalDistribution[0.0, .1], 4]

Our example has four inputs, and four outputs. Try making a graphical sketch of the net to illustrate what is connected to what, label the inputs 

xj.; the weights wij, and the outputs yi. 

It is straightforward to turn the model into a function:
 y[x_, W_, μ𝜇_, σ𝜎_] := squash[W.x] + RandomVariate[NormalDistribution[μ𝜇, σ𝜎], Dimensions[x][[1]]]

Mathematica sidenote: Accessing elements of vectors, matrices
You can access the components of vectors. For example here is the second element of y, and the 
element in the second row, third column of W:

y[[2]]

0.999089

W[[2,3]]

-−2

W[[2]][[3]]

-−2

W[[1]]

{2, 1, -−2, 3}

You can use Span[] or its shorthand ;; to get rows, columns or submatrices. First two rows of W3x3:

W3x3[[1 ;; 2]] /∕/∕ MatrixForm


w11 w12 w13
w21 w22 w23



Second and third rows of W3x3:

W3x3 = {{w11, w12, w13}, {w21, w22, w23}, {w31, w32, w33}};

W3x3[[ ;; , 2 ;; 3]] /∕/∕ MatrixForm

w12 w13
w22 w23
w32 w33

Lower right 2x2 of W3x3:

W3x3[[2 ;; 3, 2 ;; 3]] /∕/∕ MatrixForm


w22 w23
w32 w33



In general for a real neural network the number of inputs is highly unlikely to equal the number of out-
puts. In summary, the mapping from inputs to outputs is given by an mxn matrix, where the matrix 
output is followed by a sigmoid :
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yi = σ𝜎 
j=1

n

wij xj for i = 1 to m

Here are three examples with matrices Wmxn, where m = number of rows, and n = number of columns:

Clear[x1, x2, x3];
xin = {x1, x2, x3};
xin2 = {x1, x2};
W2x3 = {{w11, w12, w13}, {w21, w22, w23}};
W3x2 = {{w11, w12}, {w21, w22}, {w31, w32}};
W3x3 = {{w11, w12, w13}, {w21, w22, w23}, {w31, w32, w33}};

More inputs than outputs, more outputs than inputs, and then m = n:

W2x3.xin /∕/∕ MatrixForm
W3x2.xin2 /∕/∕ MatrixForm
W3x3.xin /∕/∕ MatrixForm


w11 x1 + w12 x2 + w13 x3
w21 x1 + w22 x2 + w23 x3



w11 x1 + w12 x2
w21 x1 + w22 x2
w31 x1 + w32 x2

w11 x1 + w12 x2 + w13 x3
w21 x1 + w22 x2 + w23 x3
w31 x1 + w32 x2 + w33 x3

Some neuro-terminology: If one output neuron receives inputs from n neurons, these input neurons 
are said to comprise the output neuron’s “receptive field”. If one input neuron feeds into m output neu-
rons, these m output neurons constitute the input neuron’s “projective field”.
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Vector operations and patterns of neural activity

State space and state vectors.
 In neural networks, we are often concerned with a vector whose components represent the activities of 
neurons which are changing in time. So sometimes we will talk about state vectors. There isn't anything 
profound about this terminology--it just reflects that we are interested in the value of the vector when the 
system is in a particular state at time t. It is often useful to think of an n-dimensional vector as a point in 
an n-dimensional space. This space is often referred to as state space. Suppose, we have a 3 neuron 
system. We can describe the state of this system as a 3-dimensional vector where each component 
represents the activity of the neuron. Further, suppose just as an example to visualize, the activities of 
the first, second, and third neurons (i.e. components) of a 3-dimensional vector are given by: y = {Cos[t], 
Sin[t], Cos[2*t]}. We can use the  Mathematica function, ParametricPlot3D[] to visualize how this state 
vector evolves in time through state space:
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Clear[y];
y[t_] := {Cos[t], Sin[t], Cos[2 *⋆ t]};
Animate[Show[ParametricPlot3D[y[t], {t, 0, 5}, AxesLabel -−> {"x", "y", "z"}],

Graphics3D[{PointSize[.025], Point[y[t]]}]],
{t, 0, 5}, AnimationRunning -−> False]
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Dimension of a vector.

v = {2.1, 3, -−0.45, 4.9};

Dimensions[], will give you the dimensions of a matrix, while  Length[] tells you the number of ele-
ments in the list. For example, 

M = {{2,4,2}, {1,6,4}}; 

Length[M]

2

Use  Dimensions[ ] to print the dimensions of v

Compare Length[M] with Dimensions[M]. Compare Length[v] with Dimensions[v].

Transpose of a vector. 
The transpose of a column vector is just the same vector arranged in a row. However, because of the 
way Mathematica uses lists to represent vectors you don't have to distinguish between row and column 

vectors. In standard math notation, transpose of a vector x, is often written xT. You can see a vector in 

column form by typing v//MatrixForm, or:

MatrixForm[v]

2.1
3

-−0.45
4.9

Vector addition is accomplished by simply adding the components of each vector 
to make a new vector. Note that the vectors all have the same dimension.

a = {3,1,2};
b = {2,4,8};
c = a + b

{5, 5, 10}

Vectors can be multiplied by a constant. We saw an example of this earlier.

2 a

{6, 2, 4}

Euclidean "length" of a vector
 It is unfortunate terminology, but Length[ ] does NOT give you the metrical or Euclidean length of the 
vector, which is the Euclidean distance from the origin to the end of the vector. But Norm[] does. To get 
the length of a vector, you calculate the Euclidean distance from the origin to the end-point of the 
vector. squaring each component, adding up the squares, and taking the square root. 
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Remove[x1, x2, x3]
Norm[{x1, x2, x3}]

Abs[x1]2 + Abs[x2]2 + Abs[x3]2

To get a little more practice with Mathematica, you can also do this with the Apply[ ] function, where the 
Plus operation is applied to all the elements of the list. Note that the operation of exponentiation (raising 
to the power of 2) is "listable", that is it is applied to each element of the vector:

{x1,x2,x3}^2
Sqrt[Apply[Plus, {x1,x2,x3}^2]]

x12, x22, x32

x12 + x22 + x32

Norm[expr] generalizes to Norm[expr, p]. The second argument says that you want the  vector 2-norm 
(i.e. Euclidean length). Norm[x,1]  would return the "city-block" norm.

Norm[u,1]/∕/∕TraditionalForm

#u$1

Compare: {x1,x2,x3} {x1,x2,x3},  {x1,x2,x3}*{x1,x2,x3}, {x1,x2,x3}^2, {x1,x2,x3}.{x1,x2,x3}

The norm or vector length of a vector a is often written as |a| in standard math notation. In the next 
section, we use the inner or dot product to calculate the Euclidean length of a vector.

Dot or Inner product
We just saw this.  To calculate the dot product of two vectors, you multiply the corresponding compo-
nents and add them up:

Clear[u1,u2,u3,u4,v1,v2,v3,v4];
u = {u1,u2,u3,u4};
v = {v1,v2,v3,v4};
u.v

u1 v1 + u2 v2 + u3 v3 + u4 v4

The dot product is also called the inner product. Later we will see what is meant by outer product. 
The inner product between two vectors a and b is traditionally written either as:

                                                   a.b or [a,b], or aTb
Mathematica  uses the dot notation. 

One use of the inner product is to calculate the length of a vector. a.a  is just the sum of the squares of 
the elements of a, so gives us another way of calculating the vector length of a vector.

N[Sqrt[a.a]]

3.74166

Sqrt[u.u]

u12 + u22 + u32 + u42
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Define your own function that will return the L2-norm (regular Euclidean length of a vector) x: Vectorlength[x_] := N[Sqrt[x.x]]

Projection
Projection is an important concept in linear algebra, and linear neural networks. When a pattern of 
activity, x, is input to a linear neural network, the weight matrix W transforms the input pattern to a new 
output pattern y of activities. This linear transformation works by "projecting" the input onto a new set of 
dimensions by taking the dot product of the input vector with each row of the weight matrix. 

In programming assignment 1, you calculate the output of a linear neuron model as the dot product 
between an input vector and a weight vector. Both the weight and input lists can be thought of as 
vectors in an n-dimensional space. Suppose the weight vector has unit length, so w.w = 1.  Recall that 
you can normalize any vector to unit length by dividing by its length:

vn = v/∕Sqrt[v.v] ;

or using the bult-in function Normalize[]:

vn = Normalize[v]


v1

Abs[v1]2 + Abs[v2]2 + Abs[v3]2 + Abs[v4]2
,

v2

Abs[v1]2 + Abs[v2]2 + Abs[v3]2 + Abs[v4]2
,

v3

Abs[v1]2 + Abs[v2]2 + Abs[v3]2 + Abs[v4]2
,

v4

Abs[v1]2 + Abs[v2]2 + Abs[v3]2 + Abs[v4]2


The dot product, a.b, is equal to:
                                                   |a| |b| cos(angle between a and b)

Geometrically, we can think of the output of a neuron as the projection of the activity of the neuron input 
activity vector onto the weight vector direction. Suppose the input vector is perpendicular (orthogonal) to 
the weight vector, then the output of the neuron is zero, because the cosine of 90 degrees is zero. As 
you found or will find with the dot product exercise of Problem Set 1, the further the input pattern is 
away from the weight vector, as measured by the cosine between them, the poorer the "match" 
between input and weight vectors, and the lower the response. This kind of comparison between input 
and the weight vector is also sometimes called “template matching”, where the weight vector represents 
a “template” stored in memory. As mentioned earlier, you may also see the phrase “matched filter”. 

Consider the simple case of a 2-dimensional input onto one neuron. The output lives in a 1-dimensonal 
space, i.e. a line pointing in the direction of the weight vector w. Here are three lines of code that calcu-
late the two-dimensional vector z in the direction of w,  with a length determined by "how much of x 
projects in the w direction". The magnitude of vector z, represents the output activity level of the neuron.

x = .85*⋆{1,2};
w = N[{2/∕Sqrt[5],1/∕Sqrt[5]}];
z = (x.w) w 

{1.36, 0.68}

Projection is a fundamental concept, and Mathematica  provides a function for it:

z = Projection[x, w]

{1.36, 0.68}
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Show[Graphics[{Tooltip[Arrow[{{0, 0}, x}], "x"], Tooltip[Arrow[{{0, 0}, z}], "z"],
Tooltip[{Arrowheads[Large], Arrow[{{0, 0}, w}]}, "w"],
Tooltip[Arrow[{x, z}], "z-−x"]}],

PlotRange → {{-−1, 3}, {-−1, 3}}, Axes → True, AspectRatio → 1]

-−1 1 2 3

-−1

1

2

3

 Try moving your mouse over the arrows above. Tooltips[] provides rollover labels for x, w, z, and z - x 
on the graph.

Similarity measures between patterns: Angle between two vectors and 
orthogonality
Often we will want some measure of the similarity between two patterns, and more specifically two 
patterns of neural firing frequencies in a neural network. As we have just seen, one measure of compari-
son is the degree to which the two state vectors point in the same direction. Thus the cosine of the 
angle between two vectors is one possible measure:

cosine[x_,y_] := x.y/∕(Norm[x] Norm[y])

Note that if two vectors point in the same direction, the angle between them is zero, and the cosine of 
the angle is 1:

a = {2,1,3,6};
b = {6, 3, 9, 18};
VectorAngle[a, b]
cosine[a,b]

0

1

Try verifying that w and z from the previous section point in the same direction.

If two vectors point in the opposite directions, the cosine of the angle between them is -1:

a = {-−2,-−1,-−3,-−6};
b = {6, 3, 9, 18};
VectorAngle[a, b]
cosine[a,b]

π

-−1

And if the vectors a2, b2, are orthogonal, then:
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a = {-−2, -−1, -−3, -−6};
b = {6, 3, 9, 12};
{a2, b2} = Orthogonalize[{a, b}];
cosine[a2, b2]
VectorAngle[a2, b2]

0

π

2

Similarity measures between patterns: Euclidean distance between two vectors
Two vectors may point in the same direction, but could be quite different because they have different 
lengths. Another measure of similarity is the Euclidean length of the difference between two vectors, or 
the "distance between the tips of their vectors":

N[Norm[a -− b]]

23.4094

Or you can use:

EuclideanDistance[a, b]

2 137

Later on, we’ll consider other measures of similarity, such as the normalized cross-correlation,  Mathe-
matica’s CorrelationDistance[], among others. 

By thinking about the geometry, what is the Norm of [{3,0}-{0,4}]?

Orthogonality
The case where  a collection of vectors are at right angles to each other is an important special case 
that is worth spending a little time on. (As reminder, this is the same as being “perpendicular to each 
other”, or “orthogonal to each other”.) Consider an 8-dimensional space. One very familiar set of orthogo-
nal vectors is the following:

u1 = {1,0,0,0,0,0,0,0};
u2 = {0,1,0,0,0,0,0,0};
u3 = {0,0,1,0,0,0,0,0};
u4 = {0,0,0,1,0,0,0,0};
u5 = {0,0,0,0,1,0,0,0};
u6 = {0,0,0,0,0,1,0,0};
u7 = {0,0,0,0,0,0,1,0};
u8 = {0,0,0,0,0,0,0,1};

Each vector has unit length, and it is easy to see just by inspection that the inner product between any 
two is zero.  This is the familiar Cartesian set. 

On the other hand, here is another set of 8 vectors in 8-space for which it is not immediately obvious 
that they are all orthogonal. This second set is a discrete representation from the set of Walsh functions:
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v1 = {1, 1, 1, 1, 1, 1, 1, 1};
v2 = {1,-−1,-−1, 1, 1,-−1,-−1, 1};
v3 = {1, 1,-−1,-−1,-−1,-−1, 1, 1};
v4 = {1,-−1, 1,-−1,-−1, 1,-−1, 1};
v5 = {1, 1, 1, 1,-−1,-−1,-−1,-−1};
v6 = {1,-−1,-−1, 1,-−1, 1, 1,-−1};
v7 = {1, 1,-−1,-−1, 1, 1,-−1,-−1};
v8 = {1,-−1, 1,-−1, 1,-−1, 1,-−1};

The above example is just one of an infinite number of possible orthogonal sets. 

You can calculate the inner products between any two Walsh vectors, and you will find out that they are 

all zero. Note that with the first set of vectors, {ui}, you can tell which vector it is just by looking for 

where the 1 is. For the second set, {vi}, you can't tell by looking at just one component. For example, 

the first component of all of the Walsh functions has a 1. You have to look at the pattern to tell which 
Walsh function you are looking at. 

Sidenote: See example section in the UnitStep[] Mathematica reference for general code for Walsh 
functions defined on a continuum:

Walsh[{n_, k_}, y_] :=
Module[{li = Split[Extract[Nest[Sequence @@@ {Join[Riffle[#, #] & /∕@ #],

Join[Riffle[#, -−#] & /∕@ Reverse[#]]} &, {{1}}, n], {k}]]},
-−1 -− 2 Total[MapIndexed[(-−1)^#2 UnitStep[Mod[y, 2^n] -− #1] &,

Most[FoldList[Plus, 0, Length /∕@ li]]], Infinity]]

A brief digression into the “neural code”: Grandmother cell coding
Later on, we’ll spend considerable time thinking about the problem of neural representation and the 
neural code. What is the relationship between a pattern of activity and what it means or represents?
Let's pursue this further. Suppose we have a pattern of activity, represented by a vector,  at the output 
stage of a neural network. Let’s assume that the network has done a good job of learning to distinguish 
a discrete categories of inputs. We might expect then that there is a small set of patterns, i.e. set of 
vectors,  that are “far apart” that map onto the categories. One pattern can be identified with “category 
A”, another with “category B” and so forth. 
To be concrete, suppose there are 8 neurons in my brain that can fire in response to me viewing one of 
my relatives. Let’s assign specific meanings to each of the patterns--each pattern is a code for some 
thing, like "grandma Tompkins", "grandma Wilke", "uncle Heine", "aunt Mabel", and so forth. If we 
consider the u's, the Cartesian set, then to decide who I'm looking at (to "read my mind"), one could 
look for the one neuron that lights up to find out which relative it is representing--then the neuron activity 
represented, for example, by the third element of the pattern could mean "grandma Wilke". The third 

unit u3[3] is 1 if and only if it is grandma Wilke.

This strategy wouldn't work if we encoded a collection of relatives using the v's. Suppose relatives are 
represented by coding in the Walsh set, and that grandma Wilke is represented by the third pattern of 

activity v3, then although grandma Wilke implies that  v3[3] is -1 (or in general that v3[i] is a particular 

value for any of the is), the reverse isn't true--the activity level of any single neuron does not uniquely 
specify which relative I'm looking at.
The mapping of v's to labels representing my 8 relatives give us a simple example of what is sometimes 
referred to as a distributed code. The u's are examples of a grandmother cell code. The reason for 
this obscure terminology can be traced to debates on whether there may be single cells in the brain 
whose firing uniquely determines the recognition of one's grandmother.
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Later on, we’ll spend considerable time thinking about the problem of neural representation and the 
neural code. What is the relationship between a pattern of activity and what it means or represents?
Let's pursue this further. Suppose we have a pattern of activity, represented by a vector,  at the output 
stage of a neural network. Let’s assume that the network has done a good job of learning to distinguish 
a discrete categories of inputs. We might expect then that there is a small set of patterns, i.e. set of 
vectors,  that are “far apart” that map onto the categories. One pattern can be identified with “category 
A”, another with “category B” and so forth. 
To be concrete, suppose there are 8 neurons in my brain that can fire in response to me viewing one of 
my relatives. Let’s assign specific meanings to each of the patterns--each pattern is a code for some 
thing, like "grandma Tompkins", "grandma Wilke", "uncle Heine", "aunt Mabel", and so forth. If we 
consider the u's, the Cartesian set, then to decide who I'm looking at (to "read my mind"), one could 
look for the one neuron that lights up to find out which relative it is representing--then the neuron activity 
represented, for example, by the third element of the pattern could mean "grandma Wilke". The third 

unit u3[3] is 1 if and only if it is grandma Wilke.

This strategy wouldn't work if we encoded a collection of relatives using the v's. Suppose relatives are 
represented by coding in the Walsh set, and that grandma Wilke is represented by the third pattern of 

activity v3, then although grandma Wilke implies that  v3[3] is -1 (or in general that v3[i] is a particular 

value for any of the is), the reverse isn't true--the activity level of any single neuron does not uniquely 
specify which relative I'm looking at.
The mapping of v's to labels representing my 8 relatives give us a simple example of what is sometimes 
referred to as a distributed code. The u's are examples of a grandmother cell code. The reason for 
this obscure terminology can be traced to debates on whether there may be single cells in the brain 
whose firing uniquely determines the recognition of one's grandmother.

Orthonormality
The Walsh set is orthogonal, but the vectors in the set are not each of unit length. We have already 
seen some of the advantages of working with unit length vectors. The general issue of normalization 
comes up all the time in neural networks both in terms of limiting overall neural activity, and limiting 
synaptic weights. So it is sometimes convenient to normalize an orthogonal set, producing what is 
known as an orthonormal set of vectors:

w1 = v1/∕Norm[v1];
w2 = v2/∕Norm[v2];
w3 = v3/∕Norm[v3];
w4 = v4/∕Norm[v4];
w5 = v5/∕Norm[v5];
w6 = v6/∕Norm[v6];
w7 = v7/∕Norm[v7];
w8 = v8/∕Norm[v8];

Representations of patterns
The issue of how information is to be represented is fundamental in the information sciences generally, 
as well as for neural network theory.  A pattern of activity over a set of neurons is presumed to mean 
something. In vision, one worries about the relationship between a pattern of firing and the various ways 
the image information could be represented in terms of features.  What is the meaning of the pattern in 
terms of how it relates to what is in the world and how the pattern is to be used? 

This will be our first introduction to the notion of a generative model which is a description of how pat-
terns are made or “encoded”. This is in contrast to a description of how
patterns are analyzed or “decoded”. Generative models specify how to synthesize patterns. And later 
we’ll see how discriminative models specify how to analyze a pattern.

This section continues with our review of the basics of vector and linear algebra by going a little more 
deeply into the subject. The pay-off will be some mathematics that provides intuition about issues of 
neural representation. 

Motivation: representation of visual information
The idea in linear algebra of a “basis set” has provided insight into how populations of neurons might 
represent high-dimensional information, such as “an image” transmitted to cortex. 

We first build some informal intuitions to distinguish between “features” A that explain or generate an 
input I, and the weights W  that produce a pattern of neural activity s.

Let’s assume that an input image I can be represented by a linear combination of “feature” or basis 
vectors consisting of the columns of A:
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Now imagine the A’s provide a vocabulary (or featrures) useful to describe any image (perhaps in a 
restricted set, say “human faces”) in terms of a weighted sum. This is a generative model for the pat-
terns in that set.

See: Hyvärinen, A. (2010). Statistical Models of Natural Images and Cortical Visual Representation. 
Topics in Cognitive Science, 2(2), 251–264. doi:10.1111/j.1756-8765.2009.01057.x

Here is a simple example where the features are non-overlapping patches:

= s1 + s2 + s3 + s4 + s5 +

s6 + s7 + s8 + s9 + s10 + s11 +

s12 + s13 + s14 + s15 + s16

Now let’s reformulate the example in terms of simple vectors and matrices. We could “flatten” I(x,y) and 
each Ai(x,y) to turn them into vectors and then write:

I = A.s, 

where the features Ai(x,y) are now the "columns" of A,  {Aj}, and the elements of s, {sj}, represent the 
activity of the neurons representing how much each of those features contribute to (or explain) I: 

I = A1*s1 + A2 *s2 +...

We use the word "features" because we think of the input as being made up of combinations of these 
particular patterns in the world. 

(This is related to the machine learning “dictionaries” for a class of patterns. In this case, the goal is to 
find a small set of “words” that can be used to efficiently approximate any of the patterns in the class. 
Efficiency can be interpreted in terms of “sparseness”, but more on this later.)

So the actual neural representation of an image I is only implicit in the firing rates and a definition of 
what each Aj means.  In other words, the activities s are a simple "code" for I which can be recovered 
using the above formula...IF we know A. 

The problem "inverse" to the above, is given an image I(x,y) and a set of receptive fields {Wi(x,y)}, 
determine the activity of the population of neurons. 
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So the actual neural representation of an image I is only implicit in the firing rates and a definition of 
what each Aj means.  In other words, the activities s are a simple "code" for I which can be recovered 
using the above formula...IF we know A. 

The problem "inverse" to the above, is given an image I(x,y) and a set of receptive fields {Wi(x,y)}, 
determine the activity of the population of neurons. 

Now we are analyzing rather than synthesizing an image. Again, switching to a vector representation of 
input I and a set of receptive fields W,  the activity of the population of neurons can be written:

s = W.I.

where again s and I are vectors, and W is a matrix. W.I describes how a set of effective weights (e.g. 
synaptic weights or "receptive field" weights) turns the image input I into a pattern of neural responses-- 
a "neural image" s. 

OK, now let’s make some very strong, but greatly simplifying assumptions.

From a linear algebra perspective, if I and s have the same number of elements, A is "square", and if A 
is invertible, then W = A-−1. 

Further, there is a theorem that says if the columns of A are orthogonal, then W is just the transpose of 
A. This means that the "features" or basis vectors used to represent I (columns of A) are the same as 
the receptive field weights (rows of W). Under these assumptions, we can think of the pattern of a 
receptive field as representing an image feature. Let’s now summarize the basic linear algebra of vector 
representation in terms of basis vectors.

Basis sets
To be concrete, as earlier, assume our vectors live in an 8-dimensional space.

It is pretty clear that given any vector whatsoever in 8-space, you can specify how much of it gets 
projected in each of the eight directions specified by the unit vectors v1, v2, ...v8. But you can also build 
back up an arbitrary vector by adding up all the contributions from each of the component vectors. This 
is a consequence of vector addition and can be easily seen to be true in 2 dimensions. We can verify it 
ourselves. Pick an arbitrary vector g, project it onto each of the basis vectors, and then add them back 
up again:

g = {2,6,1,7,11,4,13, 29};

(g.u1) u1  + (g.u2) u2  +(g.u3) u3  +(g.u4) u4  +
(g.u5) u5  +(g.u6) u6  +(g.u7) u7  +(g.u8) u8

{2, 6, 1, 7, 11, 4, 13, 29}

Exercise

What happens if you project g onto the normalized Walsh basis set defined by {w1,w2,...}  above, and 
then add up all 8 components?
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What happens if you project g onto the normalized Walsh basis set defined by {w1,w2,...}  above, and 
then add up all 8 components?

(g.w1) w1  + (g.w2) w2  +(g.w3) w3  +(g.w4) w4  +
(g.w5) w5  +(g.w6) w6  +(g.w7) w7  +(g.w8) w8


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Looks complicated, but if you simplify it:

Simplify[%]

{2, 6, 1, 7, 11, 4, 13, 29}

you get back the original vector. 
{2, 6, 1, 7, 11, 4, 13, 29}

Spectrum

The projections, {g.wi} are sometimes called the spectrum of g. This terminology comes from the 

Fourier basis set used in Fourier analysis. Also recall white light is composed of a combination of light of 
different frequencies (colors). A discrete version of a Fourier basis set is similar to the Walsh set, except 
that the elements fit a sine wave pattern, and so are not binary-valued.

Representing the output in the column space of the network
We’ve seen that the output can be represented as the projections of the input onto each of the row 
vectors of the weight matrix:

{{w11, w12, w13}, {w21, w22, w23}}.{x1, x2, x3} /∕/∕ MatrixForm


w11 x1 + w12 x2 + w13 x3
w21 x1 + w22 x2 + w23 x3



Our image dictionary example showed that it is also useful to think of the output in terms of its of the 
column vectors. Suppose we have 3 inputs and 2 outputs to our network as above. Inputs to the net-
work live in a 3-dimensional space. Outputs live in 2 dimensions.

With a 3-dimensional vector that represents the 3 inputs onto each of 2 neurons, one can visualize the 
output as a 2-dimensional vector whose length and direction is determined by the 2-dimensional vector 

sum of three column weight vectors: 
w11
w21

, 
w12
w22

, 
w13
w23

, where the amplitude of each vector is scaled 

by the input activity levels x1, x2, x3, to give: 
w11
w21

 x1 + 
w12
w22

 x2 + 
w13
w23

 x3. 

Neural models of image representation in the primary visual cortex have been analyzed in terms of 
whether the high-dimensional images received (at the retina) are projected into lower or higher dimen-
sional spaces in cortex, and what the consequences might be for biological image processing 
(Hyvärinen, 2010).

Show that : 
w11
w21

w12
w22

w13
w23

.
x1
x2
x3

= 
w11
w21

 x1 + 
w12
w22

 x2 + 
w13
w23

 x3

Some more linear algebra terminology
The orthonormal set of vectors we’ve defined above  is said to be complete, because any vector in 8-
space can be expressed as a linear weighted sum of these basis vectors. The weights are just the 
projections. If we had only 7 vectors in our set, then we would not be able to express all 8-dimensional 
vectors in terms of this basis set. The seven vector set would be said to be incomplete. Imagine you 
want to specify the position of a point in your room, but you can only say how far the point is on the floor 
from two walls. You don’t have enough measurements to also say how high the point is.

A basis set which is orthonormal and complete is very nice from a mathematical point of view. Another 
bit of terminology is that these seven vectors would not span the 8-dimensional space. But they would 
span some sub-space, that is of smaller dimension, of the 8-space. So you could specify the position of 
any point on the floor of your room with just two numbers that represent how far the point is from a 
corner in your room along one direction, and then how far from the corner it is in an orthogonal direc-
tion. The points on the floor span this two-dimensional subspace of your room. 
There has been much interest in describing the effective weighting properties of visual neurons in 
primary visual cortex of higher level mammals (cats, monkeys) in terms of basis vectors (cf. Hyvärinen, 
2010). One issue is if the input (e.g. an image) is projected (via a collection of  receptive fields) onto a 
set of neurons, is information lost? If the set of weights representing the receptive fields of the collection 
of neurons is complete, then no information is lost. 
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Linear dependence
What if we had 9 vectors in our basis set used to represent vectors in 8-space? For the u's, it is easy to 
see that in a sense we have too many, because we could express the 9th in terms of a sum of the 
others. This set of nine vectors would be said to be linearly dependent. A set of vectors is linearly 
dependent if one or more of them can be expressed as a linear combination of some of the others.  
Sometimes there is an advantage to having an "over-complete" basis set (e.g. more than 8 vectors for 8-
space; cf. Simoncelli et al., 1992).
Theorem: A set of mutually orthogonal vectors is linearly independent. 
However, note it is quite possible to have a linearly independent set of vectors which are not orthogonal 
to each other.  Imagine 3-space and 3 vectors which do not jointly lie on a plane. This set is linearly 
independent.
If we have a linearly independent set, say of 8 vectors for our 8-space, then no member can be dropped 
without a loss in the dimensionality of the space spanned.
It is useful to think about the meaning of linear independence in terms of geometry. A set of three 
linearly independent vectors can completely span 3-space. So any vector in 3-space can be repre-
sented as a weighted sum of these 3. If one of the members in our set of three can be expressed in 
terms of the other two, the set is not linearly independent and the set only spans a 2-dimensional 
subspace. Think about representing points in your room, where in addition to saying how far from the 
corner the point is along two walls, you can also say how far the point is along some arbitrary ruler 
laying on the floor. The additional measurement from the arbitrary ruler doesn’t give you any information 
you couldn’t get from the other two measurements. 
That is, the set can only represent vectors which lay on a plane in 3-space. This can be easily seen to 
be true for the set of u's, but is also true for the set of v's.

Thought exercise

Suppose there are three inputs feeding into three neurons in the simple linear network such as defined 
at the beginning of this lecture. If the weight vectors of the three neurons are not linearly independent, 
do we lose information?

Linearity, real neural networks, and what's up next time?
We’ve just spent quite a bit of time focusing on linear neural networks. Linear neural network models 
are identical to discrete linear systems models, and thus provide the advantage of bringing a large body 
of knowledge from mathematics and signal processing to bear on their behaviors. Later in Lecture 6, 
we’ll learn more about linear systems and systems analysis.

We’ve noted that more realistic models take into account the properties than neurons have thresholds 
and a limited range of firing, which we modeled using the above squashing function.
From a computational standpoint, the squashing function has both advantages and disadvantages. It is 
what makes our simple linear neural network model non-linear. We will see later that this non-linearity 
enables networks to compute functions, solve problems,  that can't be computed with a linear network. 
On the other hand, non-linearities make the analysis more complicated because we leave the well-
understood domain of linear algebra. However, there are cases for which most of the neural activities 
are in the mid-range of the squashing function, and here one can approximate the network as a purely 
linear one--just matrix operations on vector inputs, and the analysis becomes simpler.
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what makes our simple linear neural network model non-linear. We will see later that this non-linearity 
enables networks to compute functions, solve problems,  that can't be computed with a linear network. 
On the other hand, non-linearities make the analysis more complicated because we leave the well-
understood domain of linear algebra. However, there are cases for which most of the neural activities 
are in the mid-range of the squashing function, and here one can approximate the network as a purely 
linear one--just matrix operations on vector inputs, and the analysis becomes simpler.

Compared to the complexity of real neurons and networks, assuming linearity might seem to be just too 
simple. But we will see in the next lecture, that a linear model can be quite good model for some biologi-
cal subsystems. We will apply the techniques of linear vector algebra to model a network discovered in 
the visual system of the horseshoe crab. Later we'll see how some aspects of associative memory can 
be modeled using linear systems.
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