
Introduction to Neural Networks

Daniel Kersten

Lecture 4: The generic neuron and linear models

Introduction

Last time

Slow-potential qualitative neuron model.
Various types of neuron models: Levels of abstraction
McCulloch-Pitts threshold logic: Discrete time, discrete signal, no spatial structure assumed for neuron
Integrate-and-fire model: continuous time, continous signal, no spatial structure assumed for neuron

Today

We continue with the no spatial structure and continuous signal simplification, but discretize time, and
from there build a network.
Review basic linear algebra. Motivate linear algebra concepts from neural networks.

Motivation: What can be done with the linear modeling
tools we cover today and in the next few lectures?

Filter images, filter sounds, model early sensory cortical cells, detect edges, textures, front-end for
motion estimation, describe human sensory thresholds...

We’ll develop tools to understand a range of theories from associative memory and recall to sparse
coding representations of image or sound features.

Modeling one neuron

Three stages: dot product, point-wise non-linearity, additive noise

The generic neuron model abstracts the basic properties of the integrate and fire neuron, and makes
provision for saturation as well. We’ll assume we are concerned about the how the inputs determine the
output at a particular time. We ignore differences in the timing of the inputs and assume no delays
between the input and output. If we are thinking about firing rates, there is an implicit assumption of a
time period over which the rate is relevant. E.g. if we assume 100 msec, then signal rates could vary
between 0 and 50 or so spikes per second.

Stage 1: Linear weighted sum of inputs

The weights correspond to the synaptic efficiency of the inputs to the neuron which model the net effect
on the input current. Sometimes models include a fixed additional bias term at the input, which will
affect how the neuron behaves with the next non-linear term.

Stage 2: Point-wuise non-linearity

Popular forms are “sigmoidal” or approximately so: logistic function, arctan(), semi-linear function
These are sometimes called "point" non-linearities. The non-linearity is a scalar function of a scalar--it
isn't a non-linear combination of interacting inputs. The standard sigmoidal shaped non-linearity cap-
tures both the effects of small signal compression (e.g. recall threshold resulting from the leaky inte-
grate and fire model) and large signal saturation on the output frequency of firing (recall the effect of the
absolute refractory period).

-−4 -−2 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

Stage 3: Noise

The number of spikes in a neuron's discharge is not strictly determined by the input, but varies statisti-
cally. This can be modeled assuming some form of additive (or other) stochastic component to the
neural discharge frequency. Note that putting the noise at the end is just one possibility. Noise can
occur at the input and between Stage 1 and 2.

Much of our intuition and theory about neural networks is based on studies of linear neural
networks. The rationale is that there is an intermediate input regime over which the output is an
approximately linear function of the input.

The advantage of the linear approximation is simplification, and being able to exploit our knowl-
edge of linear algebra and linear systems.

2 Lect_4_GenericModel.nb

Much of our intuition and theory about neural networks is based on studies of linear neural
networks. The rationale is that there is an intermediate input regime over which the output is an
approximately linear function of the input.

The advantage of the linear approximation is simplification, and being able to exploit our knowl-
edge of linear algebra and linear systems.

approximately linear regime

2 4 6 8 10

-−1.0

-−0.5

0.5

1.0

Use Plot to compare two sigmoidal non-linearities:

squash[x_] := N[1 /∕ (1 + Exp[-−x + 4])];
squash2[x_] := (2. /∕ Pi) *⋆ N[ArcTan[x]];

Using Mathematica to make a generic neuron

We are going to do a lot of work with lists, in particular with vectors (a vector is a list of scalar elements)
and matrices (a matrix is a list of vector elements). We already introduced lists when we studied the
McCulloch-Pitts model. Here is a four-dimensional vector which we'll call x. x could represent the input
signals (e.g. firing rates) to a neuron.

x = {2,3,0,1};

Sidenote : While it doesn' t make sense for firing rates frequency, sometimes modelers let the input and
outputs take on negative values, e.g. between - 1 and 1. The rationale is that the symmetry about zero
can simplify the math.

Let’s make another vector, this one will be a list of “weights”, say, representing the efficiency with which
the inputs at the synapses are transmitted to the neuron hillock. Note that negative weights make sense
-- recall that synapses can be excitatory or inhibitory.

w = {2,1,-−2,3};

Dot product (Stage 1)
The output of a model neuron that simply takes a weighted sum of the inputs is the dot product of the
input with the weights:

y = w.x

10

You can also write:

y = Dot[w, x]

This kind of operation is a simple version of what is sometimes referred to as a "cross-correlator" or
matched filter. It takes a signal x, and cross-correlates or tries to matches it with a template, w. In your
homeowrk, you will show that for signals of fixed vector length (or "norm"), the dot product gives the
biggest response to the signal that exactly matches the template. We can see what the dot product
does algebraically by defining the input and weights algebraically:

Lect_4_GenericModel.nb 3

This kind of operation is a simple version of what is sometimes referred to as a "cross-correlator" or
matched filter. It takes a signal x, and cross-correlates or tries to matches it with a template, w. In your
homeowrk, you will show that for signals of fixed vector length (or "norm"), the dot product gives the
biggest response to the signal that exactly matches the template. We can see what the dot product
does algebraically by defining the input and weights algebraically:

Clear[w1, w2, w3, w4, x1, x2, x3, x4];
y = {w1, w2, w3, w4}.{x1, x2, x3, x4}

w1 x1 + w2 x2 + w3 x3 + w4 x4

The sigmoidal non-linearity (Stage 2)
Now define a function to model the non-linearity of Stage 2 (in this case, the “logistic function” men-
tioned earlier):

squash[x_] := N[1/∕(1 + Exp[-−x])];

Recall, that the underscore, x_ is important because it tells Mathematica that x represents a slot, not
an expression. Again, note that we've used a colon followed by equals (:=) instead of just an equals
sign (=). When you use an equals sign, the value is calculated immediately. When there is a colon in
front of the equals, the value is calculated only when called on later. So here we use := because we
need to define the function for later use. Also note that our squashing function was defined with N[].
Why did we do that?

Graphics. Adjust the input scale of squash[] to plot a very steep squashing function for -5<x<5. I.e. it should look like the step function we used when
modeling the McCulloch-Pitts neuron.

Now let's include the non-linear squashing function to complete our model of the first two stages of the
generic neuron:

y = squash[w.x];

Modeling noise (Stage 3)
We'd like to add a Stage 3 to our model of the neuron to take into account the noisiness of neural
transmission. For this, we need the notions of random variable and probability distribution. We’ll cover
just enough here to have some basic tools and concepts. We’ll go over probability theory in greater
depth in later lectures.

The idea is that we want to simulate drawing of a random number to represent the variations in firing
rate. Think of a hat filled with slips of paper whose proportions represent the probabilities of various
deviations of firing rate values--e.g. “an extra few added spikes, or a few subtracted spikes each sec-
ond”. The hat stands for a probability distribution. And the collection of all the values on the slips of
paper represent the random variable associated with the distribution or hat. Once a piece of paper is
drawn, the random variable “takes on” the value written on the paper. The value drawn determines the
noise for that time period.

We could program the routines we need to generate particular types of noise using basic Mathematica
functions. However, many of the probability functions we need are already built into Mathematica. As a
first approximation the maintained action potential discharge can be modeled as a Poisson distribution,
p(a;λ𝜆) This is a discrete distribution that represents the probability of a events (e.g. a action potentials)
given an average rate of λ𝜆. The assumption behind the definition (see below) is that there is an average
number of spikes that occur within a specific time interval, and that the discharge of a spike is indepen-
dent of the time since the last one. Real neuron variability can be more complicated, but this provides a
reasonable initial model. See Rieke et al. (1997).

4 Lect_4_GenericModel.nb

We'd like to add a Stage 3 to our model of the neuron to take into account the noisiness of neural
transmission. For this, we need the notions of random variable and probability distribution. We’ll cover
just enough here to have some basic tools and concepts. We’ll go over probability theory in greater
depth in later lectures.

The idea is that we want to simulate drawing of a random number to represent the variations in firing
rate. Think of a hat filled with slips of paper whose proportions represent the probabilities of various
deviations of firing rate values--e.g. “an extra few added spikes, or a few subtracted spikes each sec-
ond”. The hat stands for a probability distribution. And the collection of all the values on the slips of
paper represent the random variable associated with the distribution or hat. Once a piece of paper is
drawn, the random variable “takes on” the value written on the paper. The value drawn determines the
noise for that time period.

We could program the routines we need to generate particular types of noise using basic Mathematica
functions. However, many of the probability functions we need are already built into Mathematica. As a
first approximation the maintained action potential discharge can be modeled as a Poisson distribution,
p(a;λ𝜆) This is a discrete distribution that represents the probability of a events (e.g. a action potentials)
given an average rate of λ𝜆. The assumption behind the definition (see below) is that there is an average
number of spikes that occur within a specific time interval, and that the discharge of a spike is indepen-
dent of the time since the last one. Real neuron variability can be more complicated, but this provides a
reasonable initial model. See Rieke et al. (1997).

Probability distributions and sampling

Statistical routines are useful for both theoretical aspects of modeling as well as for Monte Carlo simula-
tions where one simulates drawing random samples to use as inputs to an algorithm. So it is worth a
little effort to get acquainted with some fundamental tools and definitions. Let's define a Poisson distribu-
tion with a mean of λ𝜆. And then specify an average of 50 spikes per second, λ𝜆=50.

Discrete distributions

Clear[a];
PDF[PoissonDistribution[λ],a]

ⅇ-−λ λa

a!
a ≥ 0

0 True

Let's specify a Poisson distribution with mean λ𝜆 = 25:

pdist = PoissonDistribution[25];

The probability distribution function is given by:

PDF[pdist,a]

25a

ⅇ25 a!
a ≥ 0

0 True

The output shows Mathematica's definition of the function. You can obtain the mean, variance and
standard deviation (which is the square root of the variance) of the distribution we've defined. Try it:

{Mean[pdist],Variance[pdist],StandardDeviation[pdist]}

{25, 25, 5}

gpdist = DiscretePlot[PDF[pdist, x], {x, -−10, 50}, AxesLabel → {"x", "p"}];

Continuous distributions, probability densities

ndist = NormalDistribution[25.,Sqrt[25.]];

Print[Mean[ndist],", ",Variance[ndist],", ",
StandardDeviation[ndist]]

25., 25., 5.

A plot of the probability distribution function for this normal distribution looks like:

Lect_4_GenericModel.nb 5

gndist = Plot[PDF[ndist, x], {x, -−10, 50},
AxesLabel → {"x", "p"}, PlotStyle → {Orange, Thick}]

-−10 10 20 30 40 50
x

0.02

0.04

0.06

0.08

p

A given ordinate value is a "density", rather than probability. But we can talk about the probability that x
takes on some value in an interval, say a small interval dx. For a small interval, dx, the probability ≃
p(x)dx, i.e. the area under the curve. What is the probability that x takes on some value between +∞
and -∞? What is area under this curve?

The cumulative distribution, f(x2) =p(x<x2), tells us the probability of x being less than a particular value
x2:

Plot[CDF[ndist, x2], {x2, -−0.25, 1.5}, AxesLabel → {"x2", "f"}]

0.5 1.0 1.5
x2

0.2

0.4

0.6

0.8

1.0

f

You can see from the graph that for this distribution, once x2 is greater than 0.7 or so, the probability of
x being less than that is virtually certain, i.e. is essentially 1. If we set the mean = 0, and the standard
deviation, we'd have a graph of the "cumulative normal".
Approximating a Poisson distribution by a Gaussian. As the mean of a Poisson distribution gets
bigger, the form of the distribution gets closer to that of a Gaussian distribution. So sometimes it is
convenient to approximate the noisiness of neural discharge with a Normal (Gaussian) distribution. The
Gaussian distribution is continuous so is represented by a density. It is a fairly good approximation of a
Poisson distribution for large values of the mean, and the math is usually easier. Further, if we repre-
sent the neuron output as a continuous value (e.g. frequency), then it is reasonable to use a continuous-
valued model of noise. We do have to be careful tho', because the Gaussian is defined over negative
numbers too.

As you can see in the graph below, at λ𝜆 = 25, the Gaussian (in orange) is a fairly good fit

6 Lect_4_GenericModel.nb

Show[{gndist, gpdist}]

Statistical Sampling

Having defined the normal distribution, how can we draw samples from it? You are no doubt familiar
with the idea of picking out a colored ball from a jar without looking. If the jar has 100 red balls, and 50
blue balls, the probability of picking a red ball is 2/3rds. That is assuming we are putting the balls back
after each draw. The process of randomly picking a ball is called sampling.

Or let’s go back to a slightly more complicated version of our hat with slips of paper. Fill the hat with
slips that each have a number written on it, say numbers from 1 to 9. Suppose there is 1 slip with the “1”
written on it, 3 slips with “2” written on it, 3 slips with “3” written on it, 4 slips with “4” written on it, 5 slips
with “5” written on it, 4 slips with “6” written on it, 3 slips with “7” written on it, 2 slips with “8” written on it,
and 1 slip with “9 “ written on it. If you randomly pick out a slip of paper, replace it, and do it again and
again, you’d expect that the proportion of samples drawn would come to look like the proportions of
slips of paper in the hat.

Let’s see how to simulate a process in which we fill a hat with slips of paper in such a way that the
proportions for each value mimic what we obtain from a theoretical distribution.

Most standard programming languages come with subroutines for doing this, called pseudo-random
number generation. Unlike the Poisson or Gaussian distribution, the basic function is usually for a
uniformly distributed random variable--that is, the probability of being a certain value (or within a tiny
range) is constant over the entire sampling range of the random variable. This is like filling the hat with
slips of paper where the number of slips is the same for each value. Mathematica comes with standard
functions, RandomReal[] and RandomInteger[], that enable us to generate random numbers that are
uniformly distributed. With the appropriate argument, we can also define Poisson, Normal, and other
kinds of random numbers using these functions:

RandomReal[ndist]

0.603919

But unless the distributions are uniform, it is better to use RandomVariate[] , which avoids you having
to distinguish between discrete, continuous or mixed distributions:
0.591627

Lect_4_GenericModel.nb 7

RandomVariate[ndist]

0.60025

Simulate drawing Poisson distributed integers with a mean value of 25 (See RandomVariate[])

Putting stages 1, 2 and 3 together
We can put the three stages together, producing the output of a generic neuron, with synaptic weights
w, neural noise with a mean of 0.0 and std. dev. 0.1 to an input x:

Clear[x1,w,y];
w = {2,1,-−2,3};
ndist2 = NormalDistribution[0.0,.1];

y[x1_] := N[squash[w.x1] + RandomVariate[ndist2]];

y[{2, 3, 0, 1}]

-−0.170732 + squash[10.]

Note that this is an additive model of noise with constant variance. The noise level doesn't depend on
the activity value of the deterministic part. Although often a good first approximation and starting point
for a model, additive noise is often an over-simplication. Not surprisingly spiking behaves more like a
Poisson where the variance grows with firing rate.

If we invoke the y[] function again, we get a different response:

y[{2,3,0,1}]

-−0.0196075 + squash[10.]

Note that the above noise term can produce negative values. There are various ways of fixing this like
setting samples below zero to zero. Or picking a suituable standard distribution that is only defined for
positive values.

To sum up, the model you should have in mind is that at any given time interval (which is implicit in this
continuous-response, discrete-time model), the neuron computes the sum of its weighted inputs, and
the output signal, y, is a spike rate over this interval. Even with the same input, the spike count can
vary with repeated measurements because of noise. With a sigmoidal non-linearity, there is small-signal
suppression, and large-signal saturation. But there is an near-linear regime.

8 Lect_4_GenericModel.nb

Exercise
Suppose all the inputs except the first are clamped at zero. What does the response, y look like as a function of x for various levels of input signal?
Fill in the argument for Plot[]:

Plot[Null, {x, -−2, 2}, PlotRange → {0, 2},
AxesLabel → {"Input signal, x", "Frequency"}]

-−1.0 -−0.5 0.0 0.5 1.0
Input signal, x

0.5

1.0

1.5

2.0
Frequency

Modeling a simple neural network

Linear matrix model
What if the input

x = {2, 3, 0, 1};

is applied to four neurons, each with a different set of weights? We can represent the weights by a
"weight matrix", which is just a list of the four weight lists or vectors. Here is a 4x4 matrix W:

W = {{2,1,-−2,3}, {3,1,-−2,2}, {4,6,5,-−3},{1,-−2,2,1}}

{{2, 1, -−2, 3}, {3, 1, -−2, 2}, {4, 6, 5, -−3}, {1, -−2, 2, 1}}

Each successive element of the list W is a row of matrix W. Verify this by displaying W in MatrixForm or TraditionalForm

Now what are the outputs of the four neurons? It is just the product of the matrix W times the input
vector x:

Lect_4_GenericModel.nb 9

Now what are the outputs of the four neurons? It is just the product of the matrix W times the input
vector x:

y = W.x

{10, 11, 23, -−3}

In traditional mathematical form, this matrix multiplication is written as:

yi =
j=1

n

wi, j x j

Sumxj wi, j

So to multiply an input vector by a matrix, we take the dot product of the input vector with each succes-
sive row of the matrix. Note that in Mathematica, a dot is used for multiplying vectors by themselves,
vectors by a matrix, or to multiply two matrices together. If you want to multiply a vector or matrix by a
scalar, c, you don't use a dot. For example, to normalize x by its vector length:

c = 1/∕Sqrt[x.x];
x2 = N[c x]

{0.534522, 0.801784, 0., 0.267261}

Take the dot product of x2 above with itself to confirm normalization

Applying the non-linear squashing function
Now let's apply our squashing function to the output y. Note how the big positive values are set close to
one, and the negative value is set close to zero.

y
squash[y]

{10, 11, 23, -−3}

{0.997527, 0.999089, 1., 0.000911051}

By default, our function squash[] is a listable function. This means that even though it was first defined
to operate on a scalar, when applied to a list, it automatically gets applied to each element of the list in
turn.

We can do everything at once in our four-neuron network, producing the four outputs of four generic
neurons to an input x:

y = squash[W.x]

{0.997527, 0.999089, 1., 0.000911051}

There we have it--a model for a simple neural network. It is also "feedforward" in that it maps inputs to
outputs, in contrast to a network in which outputs get fed back to inputs. Variations on this equation will
occur many times in the rest of the course, so it is worth taking some time to understand it.

Most of the time, we will assume the noise is negibilte. But if we want to add noise to the model, we
could add a random number generator. Note that second argument of RandomVariate specifies the
dimensions of the input:

10 Lect_4_GenericModel.nb

y = squash[W.x] +RandomVariate[NormalDistribution[0.0, .1], 4]

Our example has four inputs, and four outputs. Try making a graphical sketch of the net to illustrate what is connected to what, label the inputs

xj.; the weights wij, and the outputs yi.

It is straightforward to turn the model into a function:
 y[x_, W_, μ𝜇_, σ𝜎_] := squash[W.x] + RandomVariate[NormalDistribution[μ𝜇, σ𝜎], Dimensions[x][[1]]]

Mathematica sidenote: Accessing elements of vectors, matrices
You can access the components of vectors. For example here is the second element of y, and the
element in the second row, third column of W:

y[[2]]

0.999089

W[[2,3]]

-−2

W[[2]][[3]]

-−2

W[[1]]

{2, 1, -−2, 3}

You can use Span[] or its shorthand ;; to get rows, columns or submatrices. First two rows of W3x3:

W3x3[[1 ;; 2]] /∕/∕ MatrixForm


w11 w12 w13
w21 w22 w23



Second and third rows of W3x3:

W3x3 = {{w11, w12, w13}, {w21, w22, w23}, {w31, w32, w33}};

W3x3[[;; , 2 ;; 3]] /∕/∕ MatrixForm

w12 w13
w22 w23
w32 w33

Lower right 2x2 of W3x3:

W3x3[[2 ;; 3, 2 ;; 3]] /∕/∕ MatrixForm


w22 w23
w32 w33



In general for a real neural network the number of inputs is highly unlikely to equal the number of out-
puts. In summary, the mapping from inputs to outputs is given by an mxn matrix, where the matrix
output is followed by a sigmoid :

Lect_4_GenericModel.nb 11

yi = σ𝜎 
j=1

n

wij xj for i = 1 to m

Here are three examples with matrices Wmxn, where m = number of rows, and n = number of columns:

Clear[x1, x2, x3];
xin = {x1, x2, x3};
xin2 = {x1, x2};
W2x3 = {{w11, w12, w13}, {w21, w22, w23}};
W3x2 = {{w11, w12}, {w21, w22}, {w31, w32}};
W3x3 = {{w11, w12, w13}, {w21, w22, w23}, {w31, w32, w33}};

More inputs than outputs, more outputs than inputs, and then m = n:

W2x3.xin /∕/∕ MatrixForm
W3x2.xin2 /∕/∕ MatrixForm
W3x3.xin /∕/∕ MatrixForm


w11 x1 + w12 x2 + w13 x3
w21 x1 + w22 x2 + w23 x3



w11 x1 + w12 x2
w21 x1 + w22 x2
w31 x1 + w32 x2

w11 x1 + w12 x2 + w13 x3
w21 x1 + w22 x2 + w23 x3
w31 x1 + w32 x2 + w33 x3

Some neuro-terminology: If one output neuron receives inputs from n neurons, these input neurons
are said to comprise the output neuron’s “receptive field”. If one input neuron feeds into m output neu-
rons, these m output neurons constitute the input neuron’s “projective field”.

12 Lect_4_GenericModel.nb

Vector operations and patterns of neural activity

State space and state vectors.
 In neural networks, we are often concerned with a vector whose components represent the activities of
neurons which are changing in time. So sometimes we will talk about state vectors. There isn't anything
profound about this terminology--it just reflects that we are interested in the value of the vector when the
system is in a particular state at time t. It is often useful to think of an n-dimensional vector as a point in
an n-dimensional space. This space is often referred to as state space. Suppose, we have a 3 neuron
system. We can describe the state of this system as a 3-dimensional vector where each component
represents the activity of the neuron. Further, suppose just as an example to visualize, the activities of
the first, second, and third neurons (i.e. components) of a 3-dimensional vector are given by: y = {Cos[t],
Sin[t], Cos[2*t]}. We can use the Mathematica function, ParametricPlot3D[] to visualize how this state
vector evolves in time through state space:

Lect_4_GenericModel.nb 13

Clear[y];
y[t_] := {Cos[t], Sin[t], Cos[2 *⋆ t]};
Animate[Show[ParametricPlot3D[y[t], {t, 0, 5}, AxesLabel -−> {"x", "y", "z"}],

Graphics3D[{PointSize[.025], Point[y[t]]}]],
{t, 0, 5}, AnimationRunning -−> False]

t

-−1.0

-−0.5

0.0

0.5

1.0

x

-−1.0

-−0.5

0.0

0.5

1.0

y

-−1.0

-−0.5

0.0

0.5

1.0

z

14 Lect_4_GenericModel.nb

Dimension of a vector.

v = {2.1, 3, -−0.45, 4.9};

Dimensions[], will give you the dimensions of a matrix, while Length[] tells you the number of ele-
ments in the list. For example,

M = {{2,4,2}, {1,6,4}};

Length[M]

2

Use Dimensions[] to print the dimensions of v

Compare Length[M] with Dimensions[M]. Compare Length[v] with Dimensions[v].

Transpose of a vector.
The transpose of a column vector is just the same vector arranged in a row. However, because of the
way Mathematica uses lists to represent vectors you don't have to distinguish between row and column

vectors. In standard math notation, transpose of a vector x, is often written xT. You can see a vector in

column form by typing v//MatrixForm, or:

MatrixForm[v]

2.1
3

-−0.45
4.9

Vector addition is accomplished by simply adding the components of each vector
to make a new vector. Note that the vectors all have the same dimension.

a = {3,1,2};
b = {2,4,8};
c = a + b

{5, 5, 10}

Vectors can be multiplied by a constant. We saw an example of this earlier.

2 a

{6, 2, 4}

Euclidean "length" of a vector
 It is unfortunate terminology, but Length[] does NOT give you the metrical or Euclidean length of the
vector, which is the Euclidean distance from the origin to the end of the vector. But Norm[] does. To get
the length of a vector, you calculate the Euclidean distance from the origin to the end-point of the
vector. squaring each component, adding up the squares, and taking the square root.

Lect_4_GenericModel.nb 15

Remove[x1, x2, x3]
Norm[{x1, x2, x3}]

Abs[x1]2 + Abs[x2]2 + Abs[x3]2

To get a little more practice with Mathematica, you can also do this with the Apply[] function, where the
Plus operation is applied to all the elements of the list. Note that the operation of exponentiation (raising
to the power of 2) is "listable", that is it is applied to each element of the vector:

{x1,x2,x3}^2
Sqrt[Apply[Plus, {x1,x2,x3}^2]]

x12, x22, x32

x12 + x22 + x32

Norm[expr] generalizes to Norm[expr, p]. The second argument says that you want the vector 2-norm
(i.e. Euclidean length). Norm[x,1] would return the "city-block" norm.

Norm[u,1]/∕/∕TraditionalForm

#u$1

Compare: {x1,x2,x3} {x1,x2,x3}, {x1,x2,x3}*{x1,x2,x3}, {x1,x2,x3}^2, {x1,x2,x3}.{x1,x2,x3}

The norm or vector length of a vector a is often written as |a| in standard math notation. In the next
section, we use the inner or dot product to calculate the Euclidean length of a vector.

Dot or Inner product
We just saw this. To calculate the dot product of two vectors, you multiply the corresponding compo-
nents and add them up:

Clear[u1,u2,u3,u4,v1,v2,v3,v4];
u = {u1,u2,u3,u4};
v = {v1,v2,v3,v4};
u.v

u1 v1 + u2 v2 + u3 v3 + u4 v4

The dot product is also called the inner product. Later we will see what is meant by outer product.
The inner product between two vectors a and b is traditionally written either as:

 a.b or [a,b], or aTb
Mathematica uses the dot notation.

One use of the inner product is to calculate the length of a vector. a.a is just the sum of the squares of
the elements of a, so gives us another way of calculating the vector length of a vector.

N[Sqrt[a.a]]

3.74166

Sqrt[u.u]

u12 + u22 + u32 + u42

16 Lect_4_GenericModel.nb

Define your own function that will return the L2-norm (regular Euclidean length of a vector) x: Vectorlength[x_] := N[Sqrt[x.x]]

Projection
Projection is an important concept in linear algebra, and linear neural networks. When a pattern of
activity, x, is input to a linear neural network, the weight matrix W transforms the input pattern to a new
output pattern y of activities. This linear transformation works by "projecting" the input onto a new set of
dimensions by taking the dot product of the input vector with each row of the weight matrix.

In programming assignment 1, you calculate the output of a linear neuron model as the dot product
between an input vector and a weight vector. Both the weight and input lists can be thought of as
vectors in an n-dimensional space. Suppose the weight vector has unit length, so w.w = 1. Recall that
you can normalize any vector to unit length by dividing by its length:

vn = v/∕Sqrt[v.v] ;

or using the bult-in function Normalize[]:

vn = Normalize[v]


v1

Abs[v1]2 + Abs[v2]2 + Abs[v3]2 + Abs[v4]2
,

v2

Abs[v1]2 + Abs[v2]2 + Abs[v3]2 + Abs[v4]2
,

v3

Abs[v1]2 + Abs[v2]2 + Abs[v3]2 + Abs[v4]2
,

v4

Abs[v1]2 + Abs[v2]2 + Abs[v3]2 + Abs[v4]2


The dot product, a.b, is equal to:
 |a| |b| cos(angle between a and b)

Geometrically, we can think of the output of a neuron as the projection of the activity of the neuron input
activity vector onto the weight vector direction. Suppose the input vector is perpendicular (orthogonal) to
the weight vector, then the output of the neuron is zero, because the cosine of 90 degrees is zero. As
you found or will find with the dot product exercise of Problem Set 1, the further the input pattern is
away from the weight vector, as measured by the cosine between them, the poorer the "match"
between input and weight vectors, and the lower the response. This kind of comparison between input
and the weight vector is also sometimes called “template matching”, where the weight vector represents
a “template” stored in memory. As mentioned earlier, you may also see the phrase “matched filter”.

Consider the simple case of a 2-dimensional input onto one neuron. The output lives in a 1-dimensonal
space, i.e. a line pointing in the direction of the weight vector w. Here are three lines of code that calcu-
late the two-dimensional vector z in the direction of w, with a length determined by "how much of x
projects in the w direction". The magnitude of vector z, represents the output activity level of the neuron.

x = .85*⋆{1,2};
w = N[{2/∕Sqrt[5],1/∕Sqrt[5]}];
z = (x.w) w

{1.36, 0.68}

Projection is a fundamental concept, and Mathematica provides a function for it:

z = Projection[x, w]

{1.36, 0.68}

Lect_4_GenericModel.nb 17

Show[Graphics[{Tooltip[Arrow[{{0, 0}, x}], "x"], Tooltip[Arrow[{{0, 0}, z}], "z"],
Tooltip[{Arrowheads[Large], Arrow[{{0, 0}, w}]}, "w"],
Tooltip[Arrow[{x, z}], "z-−x"]}],

PlotRange → {{-−1, 3}, {-−1, 3}}, Axes → True, AspectRatio → 1]

-−1 1 2 3

-−1

1

2

3

 Try moving your mouse over the arrows above. Tooltips[] provides rollover labels for x, w, z, and z - x
on the graph.

Similarity measures between patterns: Angle between two vectors and
orthogonality
Often we will want some measure of the similarity between two patterns, and more specifically two
patterns of neural firing frequencies in a neural network. As we have just seen, one measure of compari-
son is the degree to which the two state vectors point in the same direction. Thus the cosine of the
angle between two vectors is one possible measure:

cosine[x_,y_] := x.y/∕(Norm[x] Norm[y])

Note that if two vectors point in the same direction, the angle between them is zero, and the cosine of
the angle is 1:

a = {2,1,3,6};
b = {6, 3, 9, 18};
VectorAngle[a, b]
cosine[a,b]

0

1

Try verifying that w and z from the previous section point in the same direction.

If two vectors point in the opposite directions, the cosine of the angle between them is -1:

a = {-−2,-−1,-−3,-−6};
b = {6, 3, 9, 18};
VectorAngle[a, b]
cosine[a,b]

π

-−1

And if the vectors a2, b2, are orthogonal, then:

18 Lect_4_GenericModel.nb

a = {-−2, -−1, -−3, -−6};
b = {6, 3, 9, 12};
{a2, b2} = Orthogonalize[{a, b}];
cosine[a2, b2]
VectorAngle[a2, b2]

0

π

2

Similarity measures between patterns: Euclidean distance between two vectors
Two vectors may point in the same direction, but could be quite different because they have different
lengths. Another measure of similarity is the Euclidean length of the difference between two vectors, or
the "distance between the tips of their vectors":

N[Norm[a -− b]]

23.4094

Or you can use:

EuclideanDistance[a, b]

2 137

Later on, we’ll consider other measures of similarity, such as the normalized cross-correlation, Mathe-
matica’s CorrelationDistance[], among others.

By thinking about the geometry, what is the Norm of [{3,0}-{0,4}]?

Orthogonality
The case where a collection of vectors are at right angles to each other is an important special case
that is worth spending a little time on. (As reminder, this is the same as being “perpendicular to each
other”, or “orthogonal to each other”.) Consider an 8-dimensional space. One very familiar set of orthogo-
nal vectors is the following:

u1 = {1,0,0,0,0,0,0,0};
u2 = {0,1,0,0,0,0,0,0};
u3 = {0,0,1,0,0,0,0,0};
u4 = {0,0,0,1,0,0,0,0};
u5 = {0,0,0,0,1,0,0,0};
u6 = {0,0,0,0,0,1,0,0};
u7 = {0,0,0,0,0,0,1,0};
u8 = {0,0,0,0,0,0,0,1};

Each vector has unit length, and it is easy to see just by inspection that the inner product between any
two is zero. This is the familiar Cartesian set.

On the other hand, here is another set of 8 vectors in 8-space for which it is not immediately obvious
that they are all orthogonal. This second set is a discrete representation from the set of Walsh functions:

Lect_4_GenericModel.nb 19

v1 = {1, 1, 1, 1, 1, 1, 1, 1};
v2 = {1,-−1,-−1, 1, 1,-−1,-−1, 1};
v3 = {1, 1,-−1,-−1,-−1,-−1, 1, 1};
v4 = {1,-−1, 1,-−1,-−1, 1,-−1, 1};
v5 = {1, 1, 1, 1,-−1,-−1,-−1,-−1};
v6 = {1,-−1,-−1, 1,-−1, 1, 1,-−1};
v7 = {1, 1,-−1,-−1, 1, 1,-−1,-−1};
v8 = {1,-−1, 1,-−1, 1,-−1, 1,-−1};

The above example is just one of an infinite number of possible orthogonal sets.

You can calculate the inner products between any two Walsh vectors, and you will find out that they are

all zero. Note that with the first set of vectors, {ui}, you can tell which vector it is just by looking for

where the 1 is. For the second set, {vi}, you can't tell by looking at just one component. For example,

the first component of all of the Walsh functions has a 1. You have to look at the pattern to tell which
Walsh function you are looking at.

Sidenote: See example section in the UnitStep[] Mathematica reference for general code for Walsh
functions defined on a continuum:

Walsh[{n_, k_}, y_] :=
Module[{li = Split[Extract[Nest[Sequence @@@ {Join[Riffle[#, #] & /∕@ #],

Join[Riffle[#, -−#] & /∕@ Reverse[#]]} &, {{1}}, n], {k}]]},
-−1 -− 2 Total[MapIndexed[(-−1)^#2 UnitStep[Mod[y, 2^n] -− #1] &,

Most[FoldList[Plus, 0, Length /∕@ li]]], Infinity]]

A brief digression into the “neural code”: Grandmother cell coding
Later on, we’ll spend considerable time thinking about the problem of neural representation and the
neural code. What is the relationship between a pattern of activity and what it means or represents?
Let's pursue this further. Suppose we have a pattern of activity, represented by a vector, at the output
stage of a neural network. Let’s assume that the network has done a good job of learning to distinguish
a discrete categories of inputs. We might expect then that there is a small set of patterns, i.e. set of
vectors, that are “far apart” that map onto the categories. One pattern can be identified with “category
A”, another with “category B” and so forth.
To be concrete, suppose there are 8 neurons in my brain that can fire in response to me viewing one of
my relatives. Let’s assign specific meanings to each of the patterns--each pattern is a code for some
thing, like "grandma Tompkins", "grandma Wilke", "uncle Heine", "aunt Mabel", and so forth. If we
consider the u's, the Cartesian set, then to decide who I'm looking at (to "read my mind"), one could
look for the one neuron that lights up to find out which relative it is representing--then the neuron activity
represented, for example, by the third element of the pattern could mean "grandma Wilke". The third

unit u3[3] is 1 if and only if it is grandma Wilke.

This strategy wouldn't work if we encoded a collection of relatives using the v's. Suppose relatives are
represented by coding in the Walsh set, and that grandma Wilke is represented by the third pattern of

activity v3, then although grandma Wilke implies that v3[3] is -1 (or in general that v3[i] is a particular

value for any of the is), the reverse isn't true--the activity level of any single neuron does not uniquely
specify which relative I'm looking at.
The mapping of v's to labels representing my 8 relatives give us a simple example of what is sometimes
referred to as a distributed code. The u's are examples of a grandmother cell code. The reason for
this obscure terminology can be traced to debates on whether there may be single cells in the brain
whose firing uniquely determines the recognition of one's grandmother.

20 Lect_4_GenericModel.nb

Later on, we’ll spend considerable time thinking about the problem of neural representation and the
neural code. What is the relationship between a pattern of activity and what it means or represents?
Let's pursue this further. Suppose we have a pattern of activity, represented by a vector, at the output
stage of a neural network. Let’s assume that the network has done a good job of learning to distinguish
a discrete categories of inputs. We might expect then that there is a small set of patterns, i.e. set of
vectors, that are “far apart” that map onto the categories. One pattern can be identified with “category
A”, another with “category B” and so forth.
To be concrete, suppose there are 8 neurons in my brain that can fire in response to me viewing one of
my relatives. Let’s assign specific meanings to each of the patterns--each pattern is a code for some
thing, like "grandma Tompkins", "grandma Wilke", "uncle Heine", "aunt Mabel", and so forth. If we
consider the u's, the Cartesian set, then to decide who I'm looking at (to "read my mind"), one could
look for the one neuron that lights up to find out which relative it is representing--then the neuron activity
represented, for example, by the third element of the pattern could mean "grandma Wilke". The third

unit u3[3] is 1 if and only if it is grandma Wilke.

This strategy wouldn't work if we encoded a collection of relatives using the v's. Suppose relatives are
represented by coding in the Walsh set, and that grandma Wilke is represented by the third pattern of

activity v3, then although grandma Wilke implies that v3[3] is -1 (or in general that v3[i] is a particular

value for any of the is), the reverse isn't true--the activity level of any single neuron does not uniquely
specify which relative I'm looking at.
The mapping of v's to labels representing my 8 relatives give us a simple example of what is sometimes
referred to as a distributed code. The u's are examples of a grandmother cell code. The reason for
this obscure terminology can be traced to debates on whether there may be single cells in the brain
whose firing uniquely determines the recognition of one's grandmother.

Orthonormality
The Walsh set is orthogonal, but the vectors in the set are not each of unit length. We have already
seen some of the advantages of working with unit length vectors. The general issue of normalization
comes up all the time in neural networks both in terms of limiting overall neural activity, and limiting
synaptic weights. So it is sometimes convenient to normalize an orthogonal set, producing what is
known as an orthonormal set of vectors:

w1 = v1/∕Norm[v1];
w2 = v2/∕Norm[v2];
w3 = v3/∕Norm[v3];
w4 = v4/∕Norm[v4];
w5 = v5/∕Norm[v5];
w6 = v6/∕Norm[v6];
w7 = v7/∕Norm[v7];
w8 = v8/∕Norm[v8];

Representations of patterns
The issue of how information is to be represented is fundamental in the information sciences generally,
as well as for neural network theory. A pattern of activity over a set of neurons is presumed to mean
something. In vision, one worries about the relationship between a pattern of firing and the various ways
the image information could be represented in terms of features. What is the meaning of the pattern in
terms of how it relates to what is in the world and how the pattern is to be used?

This will be our first introduction to the notion of a generative model which is a description of how pat-
terns are made or “encoded”. This is in contrast to a description of how
patterns are analyzed or “decoded”. Generative models specify how to synthesize patterns. And later
we’ll see how discriminative models specify how to analyze a pattern.

This section continues with our review of the basics of vector and linear algebra by going a little more
deeply into the subject. The pay-off will be some mathematics that provides intuition about issues of
neural representation.

Motivation: representation of visual information
The idea in linear algebra of a “basis set” has provided insight into how populations of neurons might
represent high-dimensional information, such as “an image” transmitted to cortex.

We first build some informal intuitions to distinguish between “features” A that explain or generate an
input I, and the weights W that produce a pattern of neural activity s.

Let’s assume that an input image I can be represented by a linear combination of “feature” or basis
vectors consisting of the columns of A:

Lect_4_GenericModel.nb 21

Now imagine the A’s provide a vocabulary (or featrures) useful to describe any image (perhaps in a
restricted set, say “human faces”) in terms of a weighted sum. This is a generative model for the pat-
terns in that set.

See: Hyvärinen, A. (2010). Statistical Models of Natural Images and Cortical Visual Representation.
Topics in Cognitive Science, 2(2), 251–264. doi:10.1111/j.1756-8765.2009.01057.x

Here is a simple example where the features are non-overlapping patches:

= s1 + s2 + s3 + s4 + s5 +

s6 + s7 + s8 + s9 + s10 + s11 +

s12 + s13 + s14 + s15 + s16

Now let’s reformulate the example in terms of simple vectors and matrices. We could “flatten” I(x,y) and
each Ai(x,y) to turn them into vectors and then write:

I = A.s,

where the features Ai(x,y) are now the "columns" of A, {Aj}, and the elements of s, {sj}, represent the
activity of the neurons representing how much each of those features contribute to (or explain) I:

I = A1*s1 + A2 *s2 +...

We use the word "features" because we think of the input as being made up of combinations of these
particular patterns in the world.

(This is related to the machine learning “dictionaries” for a class of patterns. In this case, the goal is to
find a small set of “words” that can be used to efficiently approximate any of the patterns in the class.
Efficiency can be interpreted in terms of “sparseness”, but more on this later.)

So the actual neural representation of an image I is only implicit in the firing rates and a definition of
what each Aj means. In other words, the activities s are a simple "code" for I which can be recovered
using the above formula...IF we know A.

The problem "inverse" to the above, is given an image I(x,y) and a set of receptive fields {Wi(x,y)},
determine the activity of the population of neurons.

22 Lect_4_GenericModel.nb

So the actual neural representation of an image I is only implicit in the firing rates and a definition of
what each Aj means. In other words, the activities s are a simple "code" for I which can be recovered
using the above formula...IF we know A.

The problem "inverse" to the above, is given an image I(x,y) and a set of receptive fields {Wi(x,y)},
determine the activity of the population of neurons.

Now we are analyzing rather than synthesizing an image. Again, switching to a vector representation of
input I and a set of receptive fields W, the activity of the population of neurons can be written:

s = W.I.

where again s and I are vectors, and W is a matrix. W.I describes how a set of effective weights (e.g.
synaptic weights or "receptive field" weights) turns the image input I into a pattern of neural responses--
a "neural image" s.

OK, now let’s make some very strong, but greatly simplifying assumptions.

From a linear algebra perspective, if I and s have the same number of elements, A is "square", and if A
is invertible, then W = A-−1.

Further, there is a theorem that says if the columns of A are orthogonal, then W is just the transpose of
A. This means that the "features" or basis vectors used to represent I (columns of A) are the same as
the receptive field weights (rows of W). Under these assumptions, we can think of the pattern of a
receptive field as representing an image feature. Let’s now summarize the basic linear algebra of vector
representation in terms of basis vectors.

Basis sets
To be concrete, as earlier, assume our vectors live in an 8-dimensional space.

It is pretty clear that given any vector whatsoever in 8-space, you can specify how much of it gets
projected in each of the eight directions specified by the unit vectors v1, v2, ...v8. But you can also build
back up an arbitrary vector by adding up all the contributions from each of the component vectors. This
is a consequence of vector addition and can be easily seen to be true in 2 dimensions. We can verify it
ourselves. Pick an arbitrary vector g, project it onto each of the basis vectors, and then add them back
up again:

g = {2,6,1,7,11,4,13, 29};

(g.u1) u1 + (g.u2) u2 +(g.u3) u3 +(g.u4) u4 +
(g.u5) u5 +(g.u6) u6 +(g.u7) u7 +(g.u8) u8

{2, 6, 1, 7, 11, 4, 13, 29}

Exercise

What happens if you project g onto the normalized Walsh basis set defined by {w1,w2,...} above, and
then add up all 8 components?

Lect_4_GenericModel.nb 23

What happens if you project g onto the normalized Walsh basis set defined by {w1,w2,...} above, and
then add up all 8 components?

(g.w1) w1 + (g.w2) w2 +(g.w3) w3 +(g.w4) w4 +
(g.w5) w5 +(g.w6) w6 +(g.w7) w7 +(g.w8) w8



-− 37

2 2
-− 2

2 2
+

-− 15

2 2
-− 2

2 2
+

29

2 2
-− 2

2 2
+

31

2 2
-− 2

2 2
+

-− 31

2 2
+ 2

2 2
+

-− 25

2 2
+ 2

2 2
+

-− 5

2 2
+ 2

2 2
+

69

2 2
+ 2

2 2
,

-− 37

2 2
-− 2

2 2
-−

-− 15

2 2
-− 2

2 2
-−

29

2 2
-− 2

2 2
+

31

2 2
-− 2

2 2
+

-− 31

2 2
+ 2

2 2
-−

-− 25

2 2
+ 2

2 2
-−

-− 5

2 2
+ 2

2 2
+

69

2 2
+ 2

2 2
,

-− 37

2 2
-− 2

2 2
+

-− 15

2 2
-− 2

2 2
-−

29

2 2
-− 2

2 2
-−

31

2 2
-− 2

2 2
-−

-− 31

2 2
+ 2

2 2
-−

-− 25

2 2
+ 2

2 2
+

-− 5

2 2
+ 2

2 2
+

69

2 2
+ 2

2 2
,

-− 37

2 2
-− 2

2 2
-−

-− 15

2 2
-− 2

2 2
+

29

2 2
-− 2

2 2
-−

31

2 2
-− 2

2 2
-−

-− 31

2 2
+ 2

2 2
+

-− 25

2 2
+ 2

2 2
-−

-− 5

2 2
+ 2

2 2
+

69

2 2
+ 2

2 2
,

-−

-− 37

2 2
-− 2

2 2
+

-− 15

2 2
-− 2

2 2
+

29

2 2
-− 2

2 2
-−

31

2 2
-− 2

2 2
+

-− 31

2 2
+ 2

2 2
-−

-− 25

2 2
+ 2

2 2
-−

-− 5

2 2
+ 2

2 2
+

69

2 2
+ 2

2 2
, -−

-− 37

2 2
-− 2

2 2
-−

-− 15

2 2
-− 2

2 2
-−

29

2 2
-− 2

2 2
-−

31

2 2
-− 2

2 2
+

-− 31

2 2
+ 2

2 2
+

-− 25

2 2
+ 2

2 2
+

-− 5

2 2
+ 2

2 2
+

69

2 2
+ 2

2 2
,

-−

-− 37

2 2
-− 2

2 2
+

-− 15

2 2
-− 2

2 2
-−

29

2 2
-− 2

2 2
+

31

2 2
-− 2

2 2
-−

-− 31

2 2
+ 2

2 2
+

-− 25

2 2
+ 2

2 2
-−

-− 5

2 2
+ 2

2 2
+

69

2 2
+ 2

2 2
, -−

-− 37

2 2
-− 2

2 2
-−

-− 15

2 2
-− 2

2 2
+

29

2 2
-− 2

2 2
+

31

2 2
-− 2

2 2
-−

-− 31

2 2
+ 2

2 2
-−

-− 25

2 2
+ 2

2 2
+

-− 5

2 2
+ 2

2 2
+

69

2 2
+ 2

2 2


24 Lect_4_GenericModel.nb

Looks complicated, but if you simplify it:

Simplify[%]

{2, 6, 1, 7, 11, 4, 13, 29}

you get back the original vector.
{2, 6, 1, 7, 11, 4, 13, 29}

Spectrum

The projections, {g.wi} are sometimes called the spectrum of g. This terminology comes from the

Fourier basis set used in Fourier analysis. Also recall white light is composed of a combination of light of
different frequencies (colors). A discrete version of a Fourier basis set is similar to the Walsh set, except
that the elements fit a sine wave pattern, and so are not binary-valued.

Representing the output in the column space of the network
We’ve seen that the output can be represented as the projections of the input onto each of the row
vectors of the weight matrix:

{{w11, w12, w13}, {w21, w22, w23}}.{x1, x2, x3} /∕/∕ MatrixForm


w11 x1 + w12 x2 + w13 x3
w21 x1 + w22 x2 + w23 x3



Our image dictionary example showed that it is also useful to think of the output in terms of its of the
column vectors. Suppose we have 3 inputs and 2 outputs to our network as above. Inputs to the net-
work live in a 3-dimensional space. Outputs live in 2 dimensions.

With a 3-dimensional vector that represents the 3 inputs onto each of 2 neurons, one can visualize the
output as a 2-dimensional vector whose length and direction is determined by the 2-dimensional vector

sum of three column weight vectors: 
w11
w21

, 
w12
w22

, 
w13
w23

, where the amplitude of each vector is scaled

by the input activity levels x1, x2, x3, to give: 
w11
w21

 x1 + 
w12
w22

 x2 + 
w13
w23

 x3.

Neural models of image representation in the primary visual cortex have been analyzed in terms of
whether the high-dimensional images received (at the retina) are projected into lower or higher dimen-
sional spaces in cortex, and what the consequences might be for biological image processing
(Hyvärinen, 2010).

Show that : 
w11
w21

w12
w22

w13
w23

.
x1
x2
x3

= 
w11
w21

 x1 + 
w12
w22

 x2 + 
w13
w23

 x3

Some more linear algebra terminology
The orthonormal set of vectors we’ve defined above is said to be complete, because any vector in 8-
space can be expressed as a linear weighted sum of these basis vectors. The weights are just the
projections. If we had only 7 vectors in our set, then we would not be able to express all 8-dimensional
vectors in terms of this basis set. The seven vector set would be said to be incomplete. Imagine you
want to specify the position of a point in your room, but you can only say how far the point is on the floor
from two walls. You don’t have enough measurements to also say how high the point is.

A basis set which is orthonormal and complete is very nice from a mathematical point of view. Another
bit of terminology is that these seven vectors would not span the 8-dimensional space. But they would
span some sub-space, that is of smaller dimension, of the 8-space. So you could specify the position of
any point on the floor of your room with just two numbers that represent how far the point is from a
corner in your room along one direction, and then how far from the corner it is in an orthogonal direc-
tion. The points on the floor span this two-dimensional subspace of your room.
There has been much interest in describing the effective weighting properties of visual neurons in
primary visual cortex of higher level mammals (cats, monkeys) in terms of basis vectors (cf. Hyvärinen,
2010). One issue is if the input (e.g. an image) is projected (via a collection of receptive fields) onto a
set of neurons, is information lost? If the set of weights representing the receptive fields of the collection
of neurons is complete, then no information is lost.

Lect_4_GenericModel.nb 25

The orthonormal set of vectors we’ve defined above is said to be complete, because any vector in 8-
space can be expressed as a linear weighted sum of these basis vectors. The weights are just the
projections. If we had only 7 vectors in our set, then we would not be able to express all 8-dimensional
vectors in terms of this basis set. The seven vector set would be said to be incomplete. Imagine you
want to specify the position of a point in your room, but you can only say how far the point is on the floor
from two walls. You don’t have enough measurements to also say how high the point is.

A basis set which is orthonormal and complete is very nice from a mathematical point of view. Another
bit of terminology is that these seven vectors would not span the 8-dimensional space. But they would
span some sub-space, that is of smaller dimension, of the 8-space. So you could specify the position of
any point on the floor of your room with just two numbers that represent how far the point is from a
corner in your room along one direction, and then how far from the corner it is in an orthogonal direc-
tion. The points on the floor span this two-dimensional subspace of your room.
There has been much interest in describing the effective weighting properties of visual neurons in
primary visual cortex of higher level mammals (cats, monkeys) in terms of basis vectors (cf. Hyvärinen,
2010). One issue is if the input (e.g. an image) is projected (via a collection of receptive fields) onto a
set of neurons, is information lost? If the set of weights representing the receptive fields of the collection
of neurons is complete, then no information is lost.

Linear dependence
What if we had 9 vectors in our basis set used to represent vectors in 8-space? For the u's, it is easy to
see that in a sense we have too many, because we could express the 9th in terms of a sum of the
others. This set of nine vectors would be said to be linearly dependent. A set of vectors is linearly
dependent if one or more of them can be expressed as a linear combination of some of the others.
Sometimes there is an advantage to having an "over-complete" basis set (e.g. more than 8 vectors for 8-
space; cf. Simoncelli et al., 1992).
Theorem: A set of mutually orthogonal vectors is linearly independent.
However, note it is quite possible to have a linearly independent set of vectors which are not orthogonal
to each other. Imagine 3-space and 3 vectors which do not jointly lie on a plane. This set is linearly
independent.
If we have a linearly independent set, say of 8 vectors for our 8-space, then no member can be dropped
without a loss in the dimensionality of the space spanned.
It is useful to think about the meaning of linear independence in terms of geometry. A set of three
linearly independent vectors can completely span 3-space. So any vector in 3-space can be repre-
sented as a weighted sum of these 3. If one of the members in our set of three can be expressed in
terms of the other two, the set is not linearly independent and the set only spans a 2-dimensional
subspace. Think about representing points in your room, where in addition to saying how far from the
corner the point is along two walls, you can also say how far the point is along some arbitrary ruler
laying on the floor. The additional measurement from the arbitrary ruler doesn’t give you any information
you couldn’t get from the other two measurements.
That is, the set can only represent vectors which lay on a plane in 3-space. This can be easily seen to
be true for the set of u's, but is also true for the set of v's.

Thought exercise

Suppose there are three inputs feeding into three neurons in the simple linear network such as defined
at the beginning of this lecture. If the weight vectors of the three neurons are not linearly independent,
do we lose information?

Linearity, real neural networks, and what's up next time?
We’ve just spent quite a bit of time focusing on linear neural networks. Linear neural network models
are identical to discrete linear systems models, and thus provide the advantage of bringing a large body
of knowledge from mathematics and signal processing to bear on their behaviors. Later in Lecture 6,
we’ll learn more about linear systems and systems analysis.

We’ve noted that more realistic models take into account the properties than neurons have thresholds
and a limited range of firing, which we modeled using the above squashing function.
From a computational standpoint, the squashing function has both advantages and disadvantages. It is
what makes our simple linear neural network model non-linear. We will see later that this non-linearity
enables networks to compute functions, solve problems, that can't be computed with a linear network.
On the other hand, non-linearities make the analysis more complicated because we leave the well-
understood domain of linear algebra. However, there are cases for which most of the neural activities
are in the mid-range of the squashing function, and here one can approximate the network as a purely
linear one--just matrix operations on vector inputs, and the analysis becomes simpler.

26 Lect_4_GenericModel.nb

We’ve just spent quite a bit of time focusing on linear neural networks. Linear neural network models
are identical to discrete linear systems models, and thus provide the advantage of bringing a large body
of knowledge from mathematics and signal processing to bear on their behaviors. Later in Lecture 6,
we’ll learn more about linear systems and systems analysis.

We’ve noted that more realistic models take into account the properties than neurons have thresholds
and a limited range of firing, which we modeled using the above squashing function.
From a computational standpoint, the squashing function has both advantages and disadvantages. It is
what makes our simple linear neural network model non-linear. We will see later that this non-linearity
enables networks to compute functions, solve problems, that can't be computed with a linear network.
On the other hand, non-linearities make the analysis more complicated because we leave the well-
understood domain of linear algebra. However, there are cases for which most of the neural activities
are in the mid-range of the squashing function, and here one can approximate the network as a purely
linear one--just matrix operations on vector inputs, and the analysis becomes simpler.

Compared to the complexity of real neurons and networks, assuming linearity might seem to be just too
simple. But we will see in the next lecture, that a linear model can be quite good model for some biologi-
cal subsystems. We will apply the techniques of linear vector algebra to model a network discovered in
the visual system of the horseshoe crab. Later we'll see how some aspects of associative memory can
be modeled using linear systems.

References
 A mathematica-based linear algebra course. http://library.wolfram.com/infocenter/MathSource/4611/
Olver, Peter J. and Shakiban, Chehrzad (2005) Applied Linear Algebra, Prentice-Hall, Upper Saddle
River, N.J., 2005
http://www.math.umn.edu/~olver/ala.html
Hyvärinen, A. (2010). Statistical Models of Natural Images and Cortical Visual Representation. Topics in
Cognitive Science, 2(2), 251–264. doi:10.1111/j.1756-8765.2009.01057.
Rieke, F. et al. (1997). Spikes : exploring the neural code. Cambridge, Mass., MIT Press.
Simoncelli, E. P., Freeman, W. T., Adelson, E. H., & Heeger, D. J. (1992). Shiftable Multi-scale Trans-
forms. IEEE Trans. Information Theory, 38(2), 587--607.
Strang, G. (1988). Linear Algebra and Its Applications (3rd ed.). Saunders College Publishing Harcourt
Brace Jovanovich College Publishers.
Also, take a look at Strang's lecture notes on youtube, which are nicely organized here: http://web.mit.e-
du/18.06/www/videos.shtml

© 1998, 2001, 2003, 2005, 2007, 2009, 2011, 2012, 2014 Daniel Kersten, Computational Vision Lab, Department of Psychology, University
of Minnesota.

Lect_4_GenericModel.nb 27

