Bidirectional processing:

feedfoward & feedback
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Inferences about the
image involve various
inferences:

* types of features &
attributes (shapes,
material)

recognition over
levels of

abstraction (parts,
objects, actions,
scenes)

* spatial scales

* relationships




Descriptions are inferences of object properties and relationships
— i.e. causes of image intensities, not of image intensity patterns

A crucial assumption is that these inferences are based on
deep, generative knowledge of how virtually any natural
image could be producec




computational problems

Need to model uncertainty

vision is concerned with causes of image intensity patterns, but the
causes of behavioral relevance are encrypted and confounded

many hypotheses about cause can be consistent with the same
local image evidence

local variations in image evidence can be consistent with the same
cause

accurate perceptual decisions resolve these ambiguities by
combining lots of image evidence with built-in knowledge



computational problems

Need to solve scalability

Solving toy (low-dimensional) problems rarely
scales up to deal with the complexity of natural
images.

Humans have the capacity to quickly deal with
an enormous space of possible objects (30 to
300K) as they appear in different contexts in
natural images for different tasks.




computational problems

Need to solve task flexibility

Vision stimulates and support answers to a
limitless range of questions. Human vision doesn't
just recognize, it interprets scenes.

e.qg. description of the fox

“One can see that there is an animal, a fox—in fact a baby fox. It is emerging from behind the base of a tree not too far from the
viewer, is heading right, high-stepping through short grass, and probably moving rather quickly. Its body fur is fluffy, reddish-brown,
relatively light in color, but with some variation. It has darker colored front legs and a dark patch above the mouth. Most of the body
hairs flow from front to back...and what a cute smile, like a dolphin.”
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Feedfoward
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“standard” feedtforward model

for V1
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convolution — similar filtering operations repeated over space

Similar filtering operations repeateo between subsequent Levels
Vi -> Vi+z

deep convolutlonal networks



Hierarchical models
of object recognition

primary visual
cortex (V1)

LGN

A

retina

-

IT = inferior temporal cortex

bread and butter of ventral
stream modeling

Hegde and Felleman, 2007



Hierarchical models
for feature extraction for recognition

Local features progressively grouped into more
structured representations

* edges => contours => fragments => parts =>
objects

Selectivity/invariance trade-offt
* Increased selectivity for object/pattern type

 Decreased sensitivity to view-dependent variations
of translation, scale and illumination



Recall simple & complex
cells in V1

Simple cells

e “template matching’, i.e. detect conjunctions,
logical “AND”

Complex cells

e insensitivity to small changes in position, detect
disjunctions, logical “OR”

Recognition as the hierarchical detection of
“disjunctions of conjunctions”



Recognize the letter “1”

1" Is represented by the conjunction _
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recognition in the ventral pathway
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Increase in complexity (number of subunits), RF size and invariance



What determines feature hierarchies?

Grouping to form more abstract features, given image regularities that support tasks

— “hand - wire” (Riesenhuber and Poggio, ...)

— unsupervised learning based on based on successive discovery of image regularities
(Barlow)

» detecting “suspicious coincidences”:
- Is p(feature A, feature B) >> p(feature A) p(feature B)

- if so, recode to remove dependence. E.g. contingent adaptation example

- advantage of general features. but perhaps mainly useful at lower levels of the hierarchy

— supervised learning
« — “20 questions” approach (Ephstein et al.)

- find diagnostic features that distinguish the categories for the most important tasks to
determine the top level

- repeat at a lower level of abstract to find sub-features that distinguish the diagnostic
features

- ...and so forth

e deep convolutional networks



What determines feature hierarchies?
An example for one level of abstraction

Need features for rapid, accurate generalization, given
a visual task requirement.

Find features of “intermediate complexity”, i.e.
Image “fragments”, that are most informative for
category distinctions

Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate
complexity and their use in classification. Nature Neuroscience



Object recognition in the context of a task
requirement

What do
these
scenes
have in
common?




"Up” curbs-- requiring a step up

UNIVERSITY OF MINNESOTA




Distinguish
from non “up
curps”

...that do not
require a step
up and require
different actions




Learning based on informative
fragments for the task

Algorithm finds
fragments that maximize
mutual information

Detect “up curbs” from
an approach angle that
requires a step.

Hit Rate

View-specific
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Works well

False Positive Rate
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Experimentally tractable
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Do people learn to use fragments of
predicted “intermediate complexity”

Virtual morphogenesis

Brady, M. J., & Kersten, D. (2003).
Bootstrapped learning of novel objects.
Journal of Vision, 3(6), 413-422.



Generating naturalistic object classes

Virtual Phylogenesis
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Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object
Categories. Curr Biol. 18, 597-601



Training

Member of category A or B?
A B




Results

Features of intermediate complexity (local image
patches) predicted human observers ability to classify
new objects from learned categories

Main Fragments

5 9

Control Fragments

5 6 7 8 9

Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object
Categories. Curr Biol. 18, 597-601




Puzzle”

How to learn when objects aren’t experienced
in isolation?

This is the bootstrapping problem
(Brady & Kersten)



Feedback
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Current Biology

Shipp, S. (2007). Structure and function of the cerebral cortex. CURBIO, 17(12), R443-9. doi:10.1016/j.cub.2007.03.044




Two computational strategies

L . p(object | image)
Discriminative mechanisms feedforward

e Computational/behavioral speed and accuracy requires
effective diagnostic features to deal with the enormous
variation within a pattern/object category

VanRullen, R., & Thorpe, S. J. (2001). The time course of visual processing:
from early perception to decision-making. Journal of Cognitive
Neuroscience, 13(4), 454—461.

Generative mechanisms p(image | object) X p(object)*
feedback

® Provide flexibility, generalization

* recall bayes: p(object | image) = p(image | object) X p(object)



Feedback functions

Disambiguation
* suppress explained input
* enhance explained input
The executive metaphor

* expertise at various levels of abstraction



motivation:
missing data

Top-down, generative models!?



missing data & occlusion




Perceptual “explaining away”
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Extraneous data: recognition despite cast shadows
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Cavanagh P (1991) What's up in top-down processing? In: Representations of Vision: Trends and tacit assumptions in
vision research (Gorea A, ed), pp 295-304. Cambridge, UK: Cambridge University Press.



Object variations that haven't
been seen before

can recognize as scissors AND
estimate an articulation




Image

IS 2 more com
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Doesn’t mean that feedback is necessary for
recognition (Thorpe et al.)

But top-down feedback may be important for

® achieving high-performance given uncertainty,
noise, clutter

® task flexibility

® |earning new object models



feedback functions?
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® Eg. isitafox! If so,where is its nose!

Ambiguity reduction through top-down
prediction

Hierarchically organized representations
& expertise
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perceptual organization reduces
activity in V|
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Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., & Woods, D. L.
(2002).; Fang, F., Kersten, D., & Murray, S. O. (2008).

...but non-retinotopic voxels are also suppressed (Wit et al.,2012)

Behavioral evidence for top-down reduction of early activity!? Use
perceptual adaptation--the psychophysicist’s electrode



Disambiguation®

Predictive coding: suppress lower-level features that
are consistent with a confident high-level
interpretation. Reduce metabolic costs, signal new
unexplained incoming information.

Analysis-by-synthesis. Bind lower-level information
that might be required for executive tasks, e.g. fine-
grain. : enhance lower-level consistent features and/or
suppress inconsistent ones. Useful for representation
and interpretation of novel patterns’ Dealing with
clutter?



“predictive coding” |
through suppression of consistent gl

Feedback
prediction

e.g. Rao, R. P., & Ballard, D. H. (1997). Dynamic model of visual recognition predicts
neural response properties in the visual cortex. Neural Comput, 9(4), 721-763.



Feedback
prediction



Feedback
prediction
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Feedforward
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global suppression?

Initially, we interpreted the diamond results as local suppression
of consistent features. ...but both our subsequent measurements
and those of others showed suppression of voxels not in
retinotopic correspondence with the line segments during
perceptual coherence (e.g. Wit et al., 2012). The suppression
was not necessarily localized to the features being “explained”
by high-level hypotheses.

Further, we now know that “the degree of perceptual
organization” doesn'’t always measurably modulate V1 MR
activity even at a coarse global level.

For example...



V1

0 33 66 100

Mannion, Kersten, D. J., & Olman, C. A. (2013). Consequences of polar form coherence for fMRI responses in
human visual cortex. Neurolmage.

Why no significant modulation of V17

Distracting attentional task

Area V3, dorsal and ventral mid-level areas, and the human MT complex do
show increased response with increasing coherence. (No effect on LOC.



Shape vs. orientation
adaptation
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We found opposite modulation of high- and low-level visual
aftereffects as a conseqguence of perceptual grouping

diamond oriented patches
perceived perceived
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Perceptual grouping (“diamond percept”) reduces the strength of
adaptation to local tilt, while amplifying the effect of adaptation to a whole
shape, consistent with localized lower-level, feature-specific modulation.

He, D, Kersten, D., & Fang, F. (2012). Opposite modulation of high- and low-level visual aftereffects by perceptual
grouping. Current Biology, 22(1 1), 1040—1045.



Tilt after-effect Shape after-effect
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Perceptual grouping (“Diamond”) reduces the strength of adaptation to local
tilt, while amplifying the effect of adaptation to a whole shape

Consistent with predictive coding interpretation

...but more studies are needed



| ocal enhancement?

Perceptual organization of scenes

Damien Mannion, Daniel Kersten & Cheryl Olman



Damien Mannion, Daniel Kersten & Cheryl Olman
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Feedback

The executive metaphor
« Attention, hierarchically organized expertise.
- E.g. V1: Feature-specific tasks, Huk & Heeger, 2000; Working
memory (Harrison & Tong, 2009); Perceptual learning (Hochstein &
Ahissar,2002); Foveal V1 as a high-resolution spatial buffer (Lee et

al. 1998,; Williams et al., 2008); Task-dependent changes in early
receptive fields (McManus et al., 2011);

» Use of built-in generative knowledge”?

- The “perceived size and V1" puzzle



recall global organization of V|

global: hypercolumns arranged retinotopically

neurons receiving information from nearby
points in the world are near on cortical surface




Feedback: Executive metaphor?

Fang, Boyaci, Kersten, & Murray, S. O. (2008). Attention-dependent
representation of a size illusion in human V1. Current Biology



Feedback: Executive metaphor?

Left hemisphere Right hemisphere

Fang, Boyaci, Kersten, & Murray, S. O. (2008). Attention-dependent
representation of a size illusion in human V1. Current Biology



