
Bidirectional processing: 
feedfoward & feedback 

circuits



A. B.

D.

C.
Inferences about the 
image involve various 
inferences:

• types of features & 
attributes (shapes, 
material)

• recognition over 
levels of 
abstraction (parts, 
objects, actions, 
scenes)

• spatial scales

• relationships



Descriptions are inferences of object properties and relationships
— i.e. causes of image intensities, not of image intensity patterns

A crucial assumption is that these inferences are based on 
deep, generative knowledge of how virtually any natural 
image could be produced



computational problems

vision is concerned with causes of image intensity patterns, but the 
causes of behavioral relevance are encrypted and confounded 

many hypotheses about cause can be consistent with the same 
local image evidence 

local variations  in image evidence can be consistent with the same 
cause 

accurate perceptual decisions resolve these ambiguities by 
combining lots of image evidence with built-in knowledge

Need to model uncertainty



computational problems

Solving toy (low-dimensional) problems rarely 
scales up to deal with the complexity of natural 
images. 

Humans have the capacity to quickly deal with 
an enormous space of possible objects (30 to 
300K) as they appear in different contexts in 
natural images for different tasks.

Need to solve scalability



computational problems

Vision stimulates and support answers to a 
limitless range of questions. Human vision doesn’t 
just recognize, it interprets scenes. 

e.g. description of the fox

Need to solve task flexibility

“One can see that there is an animal, a fox--in fact a baby fox. It is emerging from behind the base of a tree not too far from the 
viewer, is heading right, high-stepping through short grass, and probably moving rather quickly. Its body fur is fluffy, reddish-brown, 
relatively light in color, but with some variation. It has darker colored front legs and a dark patch above the mouth. Most of the body 
hairs flow from front to back...and what a cute smile, like a dolphin.”



graphical models
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Feedfoward



Wallisch, P., & Movshon, J. A. (2008). Structure and Function Come Unglued in the Visual Cortex. 

dorsal

ventral

feedforward

dorsal

ventral

from monkey

What determines the different selectivities 
for pathways and areas?

image information required for different basic tasks

intrinsic object properties 
for identification

object-viewer properties 
for spatial and motor actions

…but lots of tasks



“standard” feedforward model
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Figure 1: Standard model of V1 simple cell responses. The neuron computes a weighted
sum of the image over space and time, and this result is normalized by the responses of
neighboring units, and passed through a pointwise non-linearity (see e.g., Carandini et al.,
1997

It may seem surprising to some that we should take such a stance. V1 does
afterall have a seemingly ordered appearance—a clear topographic map, and an or-
derly arrangement of ocular dominance and orientation columns. Many neurons are
demonstrably tuned for stimulus features such as orientation, spatial-frequency, color,
direction of motion, and disparity. And there has even emerged a fairly well agreed
upon “standard model” for V1 in which simple-cells compute a linearly weighted sum
of the input over space and time (usually a Gabor-like function) and the output is
passed through a pointwise nonlinearity, in addition to being subject to contrast gain
control to avoid response saturation (Figure 1). Complex cells are similarly explained
in terms of summing the outputs of a local pool of simple-cells with similar tuning
properties but di�erent positions or phases. The net result is to think of V1 roughly
as a “Gabor filter bank.” There are now many papers showing that this basic model
fits much of the existing data well, and many scientists have come to accept this as a
working model of V1 function (see e.g., Lennie, 2003a)

But behind this picture of apparent orderliness, there lies an abundance of un-
explained phenomena, a growing list of untidy findings, and an increasingly uncom-
fortable feeling among many about how the experiments that have led to our current
view of V1 were conducted in the first place. The main problem stems from the
fact that cortical neurons are highly nonlinear—i.e., they emit all-or-nothing action
potentials, not analog values. They also adapt, so their response properties depend
upon the history of activity. Cortical pyramidal cells have highly elaborate dendritic
trees, and realistic biophysical models suggest that each thin branch could act as a
non-linear subunit, so that any one neuron could be computing many di�erent non-
linear combinations of its inputs (Hausser & Mel, 2003), in addition to being sensitive
to coincidences (Softky & Koch, 1993; Azouz & Gray, 2000, 2003). Everyone knows
that neurons are non-linear, but few have acknowledged the implications for studying
cortical function. Unlike linear systems, where there exist mathematically tractable,
textbook methods for system identification, non-linear systems can not be teased
apart using some straightforward, reductionist approach. In other words, there is no
general method for characterizing non-linear systems.2

2The Volterra series expansion is often touted as a general approach for characterizing non-linear

2

convolution — similar filtering operations repeated over space

Similar filtering operations repeated between subsequent levels 
Vn -> Vn+1

for V1

deep convolutional networks



Hegde and Felleman, 2007

Hierarchical models 
of object recognition

bread and butter of ventral 
stream modeling



Hierarchical models 
for feature extraction for recognition

Local features progressively grouped into more 
structured representations 

• edges => contours => fragments => parts => 
objects 

Selectivity/invariance trade-off 

• Increased selectivity for object/pattern type 

• Decreased sensitivity to view-dependent variations 
of translation, scale and illumination



Recall simple & complex 
cells in V1

Simple cells 

• “template matching”, i.e. detect conjunctions, 
logical “AND” 

Complex cells 

• insensitivity to small changes in position, detect 
disjunctions, logical “OR” 

Recognition as the hierarchical detection of 
“disjunctions of conjunctions”



Recognize the letter “t”

i=1 i= 2 i=3 i=1 i= 2 i=3 i=1 i= 2 i=3

i=9

“t” is represented by the conjunction 
of a vertical and horizontal bar: AND

OR OR ...

= t

which can occur at any one of many locations i

“t”:  h1 && v1  || h2 && v2  || h3 && v3...



increasingly invariant to 2D transformations (position and scale) by
combining afferents (S units) with the same selectivity (e.g., a
vertical bar) but slightly different positions and scales.

The present theory significantly extends an earlier model (5). It
follows the same general architecture and computations. The
simple S units perform a bell-shaped tuning operation over their
inputs. That is, the response y of a simple unit receiving the pattern
of synaptic inputs (x1, . . . , xnSk

) from the previous layer is given by

y ! exp "
1

2#2 !
j!1

nsk

"wj " xj#
2 , [1]

where # defines the sharpness of the tuning around the preferred
stimulus of the unit corresponding to the weight vector w ! (w1,
. . . . , wnSk

). That is, the response of the unit is maximal (y ! 1) when
the current pattern of input x matches exactly the synaptic weight

vector w and decreases with a bell-shaped tuning profile as the
pattern of input becomes more dissimilar. Conversely, the pooling
operation at the complex C level is a max operation. That is, the
response y of a complex unit corresponds to the response of the
strongest of its afferents (x1, . . . , xnCk

) from the previous Sk layer:

y ! max
j!1. . . nCk

x j. [2]

Details about the two key operations can be found in SI Text (see
also ref. 23).

This class of models seems to be qualitatively and quantitatively
consistent with [and in some cases actually predicts (23)] several
properties of subpopulations of cells in V1, V4, IT, and PFC (25)
as well as fMRI and psychophysical data. For instance, the model
predicts (23), at the C1 and C2 levels, respectively, the max-like
behavior of a subclass of complex cells in V1 (26) and V4 (27). It
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Fig. 1. Sketch of the model. Tentative mapping between the ventral stream in the primate visual system (Left) and the functional primitives of the feedforward
model (Right). The model accounts for a set of basic facts about the cortical mechanisms of recognition that have been established over the last decades: From
V1 to IT, there is an increase in invariance to position and scale (1, 2, 4–6), and in parallel, an increase in the size of the receptive fields (2, 4) as well as in the
complexity of the optimal stimuli for the neurons (2, 3, 7). Finally, adult plasticity and learning are probably present at all stages and certainly at the level of IT
(6) and PFC. The theory assumes that one of the main functions of the ventral stream, just a part of the visual cortex, is to achieve a tradeoff between selectivity
and invariance within a hierarchical architecture. As in ref. 5, stages of simple (S) units with Gaussian tuning (plain circles and arrows) are loosely interleaved
with layers of complex (C) units (dotted circles and arrows), which perform a max operation on their inputs and provide invariance to position and scale (pooling
over scales is not shown). The tuning of the S2, S2b, and S3 units (corresponding to V2, V4, and the posterior inferotemporal cortex) is determined here by a prior
developmental-like unsupervised learning stage (see SI Text). Learning of the tuning of the S4 units and of the synaptic weights from S4 to the top classification
units is the only task-dependent, supervised-learning stage. The main route to IT is denoted with black arrows, and the bypass route (38) is denoted with blue
arrows (see SI Text). The total number of units in the model simulated in this study is on the order of 10 million. Colors indicate the correspondence between
model layers and cortical areas. The table (Right) provides a summary of the main properties of the units at the different levels of the model. Note that the model
is a simplification and only accounts for the ventral stream of the visual cortex. Of course, other cortical areas (e.g., in the dorsal stream) as well as noncortical
structures (e.g., basal ganglia) are likely to play a role in the process of object recognition. The diagram (Left) is modified from ref. 58 (with permission from the
author) which represents a juxtaposition of the diagrams of refs. 46 and 59.
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recognition in the ventral pathway

A repeating theme:

Local
spatial filters (simple 

and complex cell-
like) arranged in a 
hierarchy can be 
built up to enable 
visual recognition

How do 
neurons 

compute the 
ANDs and ORs?



What determines feature hierarchies?
Grouping to form more abstract features, given image regularities that support tasks  

— “hand - wire” (Riesenhuber and Poggio, …) 

— unsupervised learning based on based on successive discovery of image regularities 
(Barlow) 

• detecting “suspicious coincidences”:  

- Is p(feature A, feature B) >> p(feature A) p(feature B) 

- if so, recode to remove dependence. E.g. contingent adaptation example 

- advantage of general features. but perhaps mainly useful at lower levels of the hierarchy 

— supervised learning 

• — “20 questions” approach (Ephstein et al.) 

- find diagnostic features that distinguish the categories for the most important tasks to 
determine the top level 

- repeat at a lower level of abstract to find sub-features that distinguish the diagnostic 
features 

- …and so forth 

• deep convolutional networks



What determines feature hierarchies? 
An example for one level of abstraction

Need features for rapid, accurate generalization, given 
a visual task requirement.

Find features of “intermediate complexity”, i.e. 
image “fragments”, that are most informative for 

category distinctions 

Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate 
complexity and their use in classification. Nature Neuroscience



Object recognition in the context of a task 
requirement

What do 
these 
scenes 
have in 
common?



“Up” curbs-- requiring a step up



Distinguish 
from non “up 

curbs”

...that do not 
require a step  
up and require 
different actions



Learning based on informative 
fragments for the task

Evgeniy Bart

Algorithm finds 
fragments that maximize 
mutual information 

Detect “up curbs” from 
an approach angle that 
requires a step. 

View-specific 

Works well 

Experimentally tractable



Do people learn to use fragments of 
predicted “intermediate complexity”

Virtual morphogenesis
Brady, M. J., & Kersten, D. (2003). 
Bootstrapped learning of novel objects. 
Journal of Vision, 3(6), 413–422.



Generating naturalistic object classes
Virtual Phylogenesis

Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object 
Categories. Curr Biol. 18, 597-601



Training

A B

Member of category A or B?



Results
Features of intermediate complexity (local image 
patches) predicted human observers ability to classify 
new objects from learned categories

A

Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object 
Categories. Curr Biol. 18, 597-601

B



Puzzle?

How to learn when objects aren’t experienced 
in isolation? 

This is the bootstrapping problem  
(Brady & Kersten)



dorsal

ventral

feedback

V1

Feedback



Shipp, S. (2007). Structure and function of the cerebral cortex. CURBIO, 17(12), R443–9. doi:10.1016/j.cub.2007.03.044

Superficial

Deep



Two computational strategies
Discriminative mechanisms 

• Computational/behavioral speed and accuracy requires 
effective diagnostic features to deal with the enormous 
variation within a pattern/object category 

Generative mechanisms 

• Provide flexibility, generalization

VanRullen, R., & Thorpe, S. J. (2001). The time course of visual processing: 
from early perception to decision-making. Journal of Cognitive 
Neuroscience, 13(4), 454–461.

p(object | image) 
feedforward

p(image | object) X p(object)* 
feedback

* recall bayes:  p(object | image) ∝ p(image | object) X p(object)



Feedback functions
Disambiguation  

• suppress explained input 

• enhance explained input 

The executive metaphor 

• expertise at various levels of abstraction



motivation: 
missing data

Top-down, generative models?



missing data & occlusion



or or not

?

Perceptual “explaining away”



Extraneous data: recognition despite cast shadows

Cavanagh P (1991) What's up in top-down processing? In: Representations of Vision: Trends and tacit assumptions in 
vision research (Gorea A, ed), pp 295-304. Cambridge, UK: Cambridge University Press.



Object variations that haven’t 
been seen before

can recognize as scissors AND 
estimate an articulation



Suggests...

is a more complete picture than this



Doesn’t mean that feedback is necessary for 
recognition (Thorpe et al.) 

But top-down feedback may be important for 

• achieving high-performance given uncertainty, 
noise, clutter 

• task flexibility 

• learning new object models



feedback functions?

Coarse-to-fine

• E.g. is it a fox? If so, where is its nose?

Ambiguity reduction through top-down 
prediction

Hierarchically organized representations 
& expertise

Known

next step

To be inferred

Cause Perceptual inference

s1 s2
s1 s2 s1 s2

?

B

I1 I2

To discount

C

I1 I2

m

I1 I2

mA

I1 I2

m

s1 s2
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perceptual organization reduces 
activity in V1

Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., & Woods, D. L. 
(2002).; Fang, F., Kersten, D., & Murray, S. O. (2008).

...but non-retinotopic voxels are also suppressed (Wit et al., 2012)

Behavioral evidence for top-down reduction of early activity?  Use 
perceptual adaptation--the psychophysicist’s electrode



Analysis-by-synthesis. Bind lower-level information 
that might be required for executive tasks, e.g. fine-
grain. : enhance lower-level consistent features and/or 
suppress inconsistent ones. Useful for representation 
and interpretation of novel patterns? Dealing with 
clutter?

Predictive coding:  suppress lower-level features that 
are consistent with a confident high-level 
interpretation. Reduce metabolic costs, signal new 
unexplained incoming information.

Disambiguation?



“predictive coding”
through suppression of consistent 

features at lower levels

Lower area
(V1) Higher area

HiLo

Predictive
estimatorInput

Inhibition

Feedforward
error signal

Feedback
prediction

e.g. Rao, R. P., & Ballard, D. H. (1997). Dynamic model of visual recognition predicts 
neural response properties in the visual cortex. Neural Comput, 9(4), 721-763.
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Predictive
estimatorInput

Inhibition

Feedforward
error signal
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Lee & Mumford, 2003, JOSA
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global suppression?

Initially, we interpreted the diamond results as local suppression 
of consistent features. …but both our subsequent measurements 
and those of others showed suppression of voxels not in 
retinotopic correspondence with the line segments during 
perceptual coherence (e.g. Wit et al., 2012). The suppression 
was not necessarily localized to the features being “explained” 
by high-level hypotheses. 

Further, we now know that “the degree of perceptual 
organization” doesn’t always measurably modulate V1 MR 
activity even at a coarse global level. 

For example…



Mannion, Kersten, D. J., & Olman, C. A. (2013). Consequences of polar form coherence for fMRI responses in 
human visual cortex. NeuroImage.

Why no significant modulation of V1?

Area V3, dorsal and ventral mid-level areas, and the human MT complex  do 
show increased response with increasing coherence. (No effect on LOC.)

Distracting attentional task



Shape vs. orientation 
adaptation

fat skinny

shape

orientation



We found opposite modulation of high- and low-level visual 
aftereffects as a consequence of perceptual grouping

He, D., Kersten, D., & Fang, F. (2012). Opposite modulation of high- and low-level visual aftereffects by perceptual 
grouping. Current Biology, 22(11), 1040–1045.

Perceptual grouping (“diamond percept”) reduces the strength of 
adaptation to local tilt, while amplifying the effect of adaptation to a whole 
shape, consistent with localized lower-level, feature-specific modulation.

diamond 
perceived

oriented patches 
perceived



Non-diamond Diamond Non-diamond Diamond

Tilt after-effect Shape after-effect

Perceptual grouping (“Diamond”) reduces the strength of adaptation to local 
tilt, while amplifying the effect of adaptation to a whole shape 

Consistent with predictive coding interpretation

…but more studies are needed



Local enhancement?

Perceptual organization of scenes

Damien Mannion, Daniel Kersten & Cheryl Olman



Damien Mannion, Daniel Kersten & Cheryl Olman







Damien Mannion, Daniel Kersten & Cheryl Olman

early visual area



Feedback
The executive metaphor  

• Attention, hierarchically organized expertise.  

- E.g. V1: Feature-specific tasks, Huk & Heeger, 2000; Working 
memory (Harrison & Tong, 2009); Perceptual learning (Hochstein & 
Ahissar,2002); Foveal V1 as a high-resolution spatial buffer (Lee et 
al. 1998,; Williams et al., 2008); Task-dependent changes in early 
receptive fields (McManus et al., 2011); 

• Use of built-in generative knowledge? 

- The “perceived size and V1” puzzle



recall global organization of V1

global: hypercolumns arranged retinotopically

neurons receiving information from nearby 
points in the world are near on cortical surface



Fang, Boyaci, Kersten, & Murray, S. O. (2008). Attention-dependent 
representation of a size illusion in human V1. Current Biology

Feedback: Executive metaphor?



Fang, Boyaci, Kersten, & Murray, S. O. (2008). Attention-dependent 
representation of a size illusion in human V1. Current Biology

Feedback: Executive metaphor?


