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Population encoding & decoding

review

lateral organization
Retinotopic maps 

• Log-polar model 

• see: smallRetinaCortexMap.nb 

Other maps? Grouping what? 

• http://gallantlab.org/publications/huth-et-
al-2012.html 

• http://gallantlab.org/semanticmovies/ 

Efficient representations that reduce or exploit 
redundancy 

• sparse coding theories. “dictionary” 
methods 
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Efficient representations that reduce or exploit 
redundancy
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1rst order

2nd order, linear

PCA

but needs modified Oja rule to capture all components:



“autoencoder networks”

L L’~

2nd order

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

PCA is a linear transform that  
decorrelates the coefficients: 

E(sisj)=E(si )E(Sj)

ICA finds a linear decomposition such that: 
p(si ,Sj)=p(si )p(Sj)

Efficient representations that reduce or exploit 
redundancy

[L(x, y)�
X

i

siAi(x, y)]
2 +

X

i

B(si)

Hyvärinen, A. (2010). Statistical Models of Natural Images and Cortical Visual 
Representation. Topics in Cognitive Science, 2(2), 251–264. doi:10.1111/j.
1756-8765.2009.01057.x

PCA vs. Linear Discriminant Analysis
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from lecture 18
Schwartz, O., & Simoncelli, E. P. (2001). Natural signal statistics and sensory 
gain control. Nature Neuroscience, 4(8), 819–825.

responses of linear model neurons with receptive fields that are close in space, preferred orientation or 
spatial frequency are not statistically independent

Higher-order structure?
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firing rate

 

Linear spatial filter

 

Outputs from other cortical cells

Higher-order structure?
In[547]:= width = 256; radius =

width

5
;

maxg := 0.8` HRandomReal@D - 0.5`L + 0.5`;

ming := 0.25` HRandomReal@D - 0.5`L + 0.5`;

maxg2 := 0.15` HRandomReal@D - 0.5`L + 0.5`;

d1 = TableBIfB i -
width

2

2

+ j -
width

2

2

< radius2, ming, maxgF,

8i, 1, width<, 8j, 1, width<F;
g1 = ArrayPlot@d1, Mesh Ø False, PlotRange Ø 80, 1<D;

d2 = TableBIfB i -
width

2

2

+ j -
width

2

2

< radius2, ming, maxg2F,

8i, 1, width<, 8j, 1, width<F;
g2 = ArrayPlot@d2, Mesh Ø False, PlotRange Ø 80, 1<D;
Show@GraphicsRow@8g1, g2<, Spacings Ø Scaled@0.1`DDD

Out[555]=

‡ Contrast normalization

It turns out that neurons in V1 show an analogous response to your own perception of contrast. One way to model this is to 

assume that the response of a single unit that signals contrast for a particular location, spatial frequency and orientation 

preference, gets divided by the average of a measure of the magnitude of the responses of neighboring units that also 

signal contrast over a range of spatial frequencies and orientations.

The linear spatial receptive field model for a V1 neuron says that that response should scale linearly with contrast. But 

simple cells don't show this property--instead, the response begins to saturate at high input contrasts (e.g. for a drifting 

sinusoidal grating matching the orientation, spatial frequency and motion direction preferences of the cell). Time-wise, the 

response also begins to occur sooner as the stimulus contrast is increased. Another break-down is seen in the response of a 

cell to the combination of a horizontal and vertical sinusoidal gratings. Linearity predicts the response to the sum should 

be the sum of the responses, but it isn't. Instead neurophysiologists find "cross-orientation inhibition". Interestingly 

enough, a cell that prefers say the vertical grating will typically show zero response to the horizontal one; yet, the presence 

of the horizontal one still inhibits the cell's firing to the vertical.

ContrasNormalizationNotes.nb 3

From Heeger

The middle disks have the same physical 
luminance variance, but the one on the right 
appears more “contrasty”, i.e. to have higher 
variance. 

This may be a behavioral consequence of 
an underlying non-linearity in the spatial 
filtering properties of V1 neurons involving 
“divisive normalization” derived from 
measures of the activity of other nearby 
neurons.

Ri = s ‚
j=1

n

wij Lj ì ‚
kŒNi

Rk
2

Accounts for neurophysiological responses 
of neurons in V1. 

Schwartz, O., & Simoncelli, E. P. (2001). 
Natural signal statistics and sensory gain 
control. Nature Neuroscience, 4(8), 819–
825.

divisive normalization

More on decorrelation: 

non-orthogonal decorrelation
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Contingent Adaptation

Barlow, H. B., & Foldiak, P. (1989). Adaptation and decorrelation in 
the cortex. In C. Miall, R. M. Durban, & G. J. Mitchison (Ed.), The 

Computing Neuron Addison-Wesley.

McCollough, C. (1965, 3 September 1965). Color Adaptation of 
Edge-Detectors in the Human Visual System. Science, 149, 

1115-1116.

anti-hebbian

hebbian

ContingentAdaptation.nb

Lateral organization
& neural codes

How do neural populations represent information?
Working assumptions:  

Lateral organization involves a population of neurons representing features at the 
same level of abstraction 

Receptive fields organized along a topographically mapped dimension with 
overlapping selectivities 

Decoding — inferring world property from spikes— requires extracting information 
from the population

Mathematica notebook 

Lect_24b_VisualRepCode.nb



Neural Implementations 
of Bayesian Inference

Zemel, R. S., Dayan, P., & Pouget, A. (1998). Probabilistic interpretation of population codes Neural 
Computation, 10(2), 403–430. 

Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population 
codes. Nature Neuroscience, 9(11), 1432–1438. doi:10.1038/nn1790 

Probabilistic brains: knowns and unknowns (2013.) Pouget, A., Beck, J., Ma, W.J., Latham, P. 
Nature Neuroscience 16:1170-1178.

Lecture notes adapted from Alexandre Pouget 
http://cms.unige.ch/neurosciences/recherche/

Perceptual encoding:  
learning to represent world properties in terms of firing 
patterns

Perceptual decoding:  
interpretation of encoded pattern by subsequent neural 
processes

Poisson noise

 Imagine the following process: we bin time into small 
intervals, δt. Then, for each interval, we toss a coin 
with probability, P(head) =p. If we get a head, we 
record a spike. This is the Bernoulli process of PS#1. 

 For small p, the number of spikes per second follows 
a Poisson distribution with mean p/δt spikes/second 
(e.g., p=0.01, δt=1ms, mean=10 spikes/sec).

Properties of a Poisson process 

• The variance should be equal to the mean 
• A Poisson process does not care about the past, i.e., at 

a given time step, the outcome of the coin toss is 
independent of the past (“renewal process”). 

• As a result, the inter-event intervals follow an 
exponential distribution (Caution: this is not a good 
marker of a Poisson process)



Poisson process and spiking

The inter spike interval (ISI) distribution is close to an 
exponential except for short intervals (refractory period) and 
for bursting neurons

Actual data Simulated Poisson Process

Poisson process and spiking

The variance in the spike count is proportional to the 
mean but the the constant of proportionality can be 
higher than 1 and the variance can be an polynomial 
function of the mean. Log σ2 = β Log a +log α

Poisson model

Is Poisson variability really noise? 

Where could it come from? 

Neurons embedded in a recurrent network with sparse connectivity 
tend to fire with statistics close to Poisson (Van Vreeswick and 
Sompolinski, Brunel, Banerjee) 

Could Poisson variability be useful for probabilistic computations? 
I.e. where knowledge of uncertainty is represented and used?

Poisson-like representations can be used for Bayesian integration of information

to illustrate population coding return to orientation selectivity

20



Population Code

Tuning Curves Pattern of activity (r)
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The decoding problem
Given a stimulus with unknown orientation s, 
what can one say about s given a vector r 
representing the pattern of neural activity?

Bayesian approach: estimate the posterior 
 p(s|r)

Estimation theory: come up with a single value 
estimate from r

Advantages of a probabilistic 
representation
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Visuo-Tactile Integration

(Ernst and Banks, Nature, 2002)

Recall Ex 3 in PS #3: Derive the optimal rule for integrating 
two noisy measurements to estimate the mean

μ =
��

�� + ��
μ� +

��
�� + ��

μ�
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p(s|Touch)p(s|Vision)

Bimodal 
p(s|Vision,Touch)= 

Cue integration

S (Width)

αp(s|Vision) p(s|Touch)



Population codes
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Underlying assumption: population codes 
encode single values.

Probabilistic population codes
Alternative: compute a posterior distribution, p(s|r) from (Foldiak, 

1993; Sanger 1996).  
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Variability in neural 
r e s p o n s e s f o r a 
constant stimulus: 
Poisson-like
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