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lateral organization

Retinotopic maps
* Log-polar model
¢ see: smallRetinaCortexMap.nb
Other maps? Grouping what?

« http://gallantlab.org/publications/huth-et-
al-2012.html

« http://gallantlab.org/semanticmovies/

Efficient representations that reduce or exploit
redundancy

« sparse coding theories. “dictionary”
methods

Efficient representations that reduce or exploit
redundancy

1rst order
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but needs modified Oja rule to capture all components: Agy = Ot(x,yi - Z‘bjyk)




“autoencoder networks’
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Efficient representations that reduce or exploit
redundancy

2nd order

[ F o=l ‘lln PCA Ls a Linear transform that
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ICA finds a linear decomposition such that:

Plsi,s) =p(si)p(s)

Hyvérinen, A. (2010). Statistical Models of Natural Images and Cortical Visual
Representation. Topics in Cognitive Science, 2(2), 251-264. doi:10.1111/j.

[L(z, y) _ Z SiAi(z,y)]z + EB(Si) 1756-8765.2009.01057.x

PCA vs. Linear Discriminant Analysis

from lecture 18

Higher-order structure!?
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Figure 1. Hlustration of image statistics as seen through two neighboring receptive fields.
Left image: Joint ional hi of two linear ici Pixel intensity corre-
sponds to frequency of occurrence of a given pair of values, except that each column has
been independently rescaled to fill the full intensity range. Right image: Joint histogram of
divisively normalized coefficients (see text).

responses of linear model neurons with receptive fields that are close in space, preferred orientation or
spatial frequency are not statistically independent

Schwartz, O., & Simoncelli, E. P. (2001). Natural signal statistics and sensory
gain control. Nature Neuroscience, 4(8), 819-825.




Accounts for neurophysiological responses
of neurons in V1.

Schwartz, O., & Simoncelli, E. P. (2001).
Natural signal statistics and sensory gain
control. Nature Neuroscience, 4(8), 819—
825.

divisive normalization

From Heeger

Higher-order structure!

Linear spatial filter
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The. middle di§ks have the same physica]
— luminance variance, but the one on the right

appears more “contrasty”, i.e. to have higher
variance.

This may be a behavioral consequence of
an underlying non-linearity in the spatial
filtering properties of V1 neurons involving
“divisive normalization” derived from
measures of the activity of other nearby
neurons.

More on decorrelation:

non-orthogonal decorrelation
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green horizontal adapting
patterns

Computing Neuron Addison-Wesley.

Barlow, H. B., & Foldiak, P. (1989). Adaptation and decorrelation in
the cortex. In C. Miall, R. M. Durban, & G. J. Mitchison (Ed.), The

Contingent Adaptation

McCollough, C. (1965, 3 September 1965). Color Adaptation of
Edge-Detectors in the Human Visual System. Science, 149,
1115-1116.
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Lateral organization
& neural codes

How do neural populations represent information?
Working assumptions:

Lateral organization involves a population of neurons representing features at the
same level of abstraction

Receptive fields organized along a topographically mapped dimension with
overlapping selectivities

Decoding — inferring world property from spikes— requires extracting information
from the population

Mathematica notebook

Lect_24b_VisualRepCode.nb




Neural Implementations
of Bayesian Inference

Lecture notes adapted from Alexandre Pouget
http://cms.unige.ch/neurosciences/recherche/

Zemel, R. S., Dayan, P., & Pouget, A. (1998). Probabilistic interpretation of population codes Neural
Computation, 10(2), 403-430.

Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population
codes. Nature Neuroscience, 9(11), 1432—-1438. doi:10.1038/nn1790

Probabilistic brains: knowns and unknowns (2013.) Pouget, A., Beck, J., Ma, W.J., Latham, P.
Nature Neuroscience 16:1170-1178.

Perceptual encoding:

learning to represent world properties in terms of firing
patterns

Perceptual decoding:

interpretation of encoded pattern by subsequent neural
processes

Poisson noise

Imagine the following process: we bin time into small
intervals, 0t. Then, for each interval, we toss a coin
with probability, P(head) =p. If we get a head, we
record a spike. This is the Bernoulli process of PS#1.

For small p, the number of spikes per second follows
a Poisson distribution with mean p/0t spikes/second
(e.g., p=0.01, dt=1ms, mean=10 spikes/sec).

Properties of a Poisson process

» The variance should be equal to the mean

* A Poisson process does not care about the past, i.e., at
a given time step, the outcome of the coin toss is
independent of the past (“renewal process”).

« As a result, the inter-event intervals follow an

exponential distribution (Caution: this is not a good
marker of a Poisson process)




Poisson process and spiking Poisson process and spiking

The inter spike interval (ISI) distribution is close to an

exponential except for short intervals (refractory period) and
for bursting neurons

The variance in the spike count is proportional to the
mean but the the constant of proportionality can be
higher than 1 and the variance can be an polynomial
function of the mean. Log 02 = 3 Log a +log a
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Is Poisson variability really noise?

Where could it come from? \\\\ I I II
Neurons embedded in a recurrent network with sparse connectivity \
tend to fire with statistics close to Poisson (Van Vreeswick and

Sompolinski, Brunel, Banerjee)

Could Poisson variability be useful for probabilistic computations?
I.e. where knowledge of uncertainty is represented and used?
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Population Code The decoding problem
100 100; - Given a stimulus with unknown orientation s,
80 | 80 S ) what can one say about s given a vector r
z sol Z 6o 004 S representing the pattern of neural activity?
3 3w O®O Q(??o
200, 2 Estimation theory: come up with a single value
"o o 100 050 0 © jo0 estimate from r
Direction (deg) Preferred Direction (deg)
0000 OOOGOGOGGE
Bayesian approach: estimate the posterior
. . p(s|r)
Tuning Curves Pattern of activity (r)
Advantages of a probabilistic Cue integration

representation

N(ptyr.03)

op(s|Vision)

Recall Ex 3 in PS #3: Derive the optimal rule for integrating
two noisy measurements to estimate the mean

r; + rp r; + rp
S (Width)
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Population codes Probabilistic population codes

Standard approach: estimating Alternative: compute a posterior distribution, p(sjr) from (Foldiak,
1993; Sanger 1996).

Bayesian
decoder

probability

45 0 5 45 0 5
Preferred stimulus Preferred stimulus stimulus

Underlying assumption: population codes

encode single values. V4 (S | l') xp (l‘ | S) Variability in neural
responses for a
constant stimulus:
Poisson-like

Preferred S




