Introduction to Neural Networks

Self-organizing Adaptive Maps
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Cortical maps

Work in monkey, and human brain, shows that the cortex is characterized by numerous distinct areas. It
has been estimated that there are more than 30 visual areas alone in the macaque cortex. The earlier
areas typically show a spatial topographic representation of visual space--nearby regions of visual
space map to nearby regions of cortex. The retinotopic map in the primary visual area (V1) is the clear-
est example of this (cf. Engel et al., 1994; Visual Cortex in Humans by B A Wandell, S O Dumoulin, and
A A Brewer 2009, Encyclopedia of Neuroscience. Elsevier). Other visual areas of the brain also show
geometrical organization (Wandell et al. 2005).

Features, such as orientation, show spatial organization where similar orientations map to nearby
spatial locations. Other areas of the brain show spatial organization of "non-spatial features". For
example, the auditory cortex has tonotopic maps in which the spatial order of cell responses corre-
sponds to pitch or acoustic frequency (Talavage et al. (2004) describe neuroimaging results in humans).
The somatosensory cortex also shows a spatial organization (the "cortical homunculus").

In regions of the cortex with no obvious maps, it is quite possible that other kinds of maps wait to be
discovered. Tanaka and colleagues (Tanaka, 1996; 2003) have shown that region TE of the monkey
inferotemporal cortex has columns with cells that have similar visual shape preferences. Along the
surface of the cortex, receptive field properties may correspond to other kinds of variation, such as
rotation in the pose of a face, over limited extents (on the order of 1 mm or so).

The widespread use of spatial organization in cortex suggests the possibility of a general constraint
underlying the layout of features on cortex and the development of neural receptive field organization.
We know more about primary visual cortex than any other area, so let's take a closer look at what it
does.

Quantitative modeling of the retinotopic map to V|

Primary cortex is spatially organized so that nearby image points map to nearby cortical points. Can we
say more about the metrical structure of this mapping?



2 | Lect_22b_AdaptMaps.nb

As one moves from an image point above the foveal/fixation point (i.e. starting at a point a fixed dis-
tance along the vertical meridian) along an arc (say counter-clockwise), the corresponding point on V1
moves up in a roughly straight line from the lower bank (towards the lingual gyrus) of calcarine the to
the midline and then up on the upper bank (towards the cuneus). In other words, retinal rings map
(approximately) to vertical cortical lines. If one moves from the fovea along a "spoke" to the periphery,
the corresponding point on V1 moves from near the pole (most posterior point) of the occipital cortex
toward interior and anterior region of V1. In other words, retinal spokes map (approximately) to horizon-
tal lines. The change from image coordinates to cortical coordinates has been modeled as a log polar
or complex log map (Schwarz, 1977). For a demo, see smallRetinaCortexMap.nb or this demo. These
topographic properties are used to distinguish the boundaries between visual areas such as V1 and V2.

V1 (and most other cortical areas) is also organized in layers from 1 (superficial, i.e. towards the outside
of the brain) to 6 (deep), with anatomical depth on the order of a millimeter. But let's ignore the layer-
specific circuitry for now, and treat the cortex as a 2D sheet. The retinotopic map idea specifies a
mapping from retinal positions to cortical positions: i.e. take 2D inputs to 2D outputs.

...but we know that cortex represents more than positional features. Cells show selectivity for the
degree of ocularity, orientation, motion,...This suggests that a functional role for the spatial organization
of cortex is to map N-D inputs (in feature space) to 2-D outputs (topographic cortical space), where N>2.

Dimension reduction framework for understanding cortical
maps

Primary visual cortex does not simply have the job of representing nearby retinal points at nearby
cortical locations. Much physiological research has shown that V1 brings together information from the
two eyes, along similar orientations, as well as location. Together with anatomical studies, it is now
commonly accepted that in many species, including humans, neurons with similar orientation prefer-
ences and various degrees of relative input from the two eyes are organized into "hypercolumns" (See
Figure below, and earlier Lecture).

(Caveat: A puzzle, however, is the observation that not all species have ocular dominance columns,
and the function of such columns is not understood (Horton and Adams, 2005). )

Hypercolumns preserve spatial contiguity and smoothness of the placement of neurons selective for
features of the input.
This observation suggests that a general principle may account for the organization and development of
cortical maps: Neighboring points in feature or parameter space (e.g. orientation, ocular
dominance, as well as retinal position)

should map to nearby points on the 2D cortical sheet. (See: Durbin & Mitchison, 1990)

The underlying assumption is that most operations performed in the cortex are local and performed
through computations on the dendritic trees, which can have tens of thousands of connections/sy-
napses on just one neuron. Dendritic trees have limited extent. The related input for these computations
should be physically near the computing units. For example, one task of vision is to go beyond the
mere detection of contour segments, but to link contours that are likely to belong together to form a
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global object outline. Thus it would make sense to have the cells that signal similar orientations to be
near.

Visual information from a single point in the world is separated by a great distance anatomically in the
left and right eyes. This information needs to be brought physically together to process the two images
binocularly, for example, to group similar features in the two eyes, also to compute stereoscopic depth.
Operations that occur frequently, that need to combine many sources of information, and that need to
be done quickly could be done more efficiently if the brain could avoid having too many long connec-
tions.

But there seems to be a problem: How to map a high dimensional feature vector to a 2-dimensional
surface?

Comelo
Ocutar
Ceuar o concornea wihcalor
colgmna 1 e
s
c \
Surtace =
—T= = "
/ t A To higher
| [ camcairegans
1 w
§ . w
Amary visua
srex varea 71 V' Tosuceror coticuns

VI Toiaterai gencutate
nucieus

Whita manier

29-10 This basic cortzcal module thypercolumni 1 area 17
of the visual cortex contains a complete set of
orientartan columns representing 360° nd a set of ocular
dorawnance columns. Each hypercolumn aiso contamns several
corical pegs, reqions of cortex i which the coifs do not have
n axis ot orientation. The cells 1n the pegs are concemned wr
color, as we shail see in Chapter 30. Each layer of the lateral
geniculate nucleus recerves input from either the conralateral
8 {Ch or the wpsilaterat (I} eve and proiecss 1n tum ta the
T SHY 4(C) 311 20 1 ipsilateral or the consraiateral ocular dominance colurans.

Lateral
gemeunate

Fia mater - Projections

.| == Higher

cortcal

\ areas.
e |

= s
®Xxiata
( B
v = Suoerior
) Cotodius 207 Companison o the receptive ficlds of neurons i the
aramean L5 > / reuna and in the lateral geiculate nucleus with those
il B £ of sumple cortcai cefls in arez 17, A. Cells of the retina and
J) g e lateral gemculate fall into two classes: on-center {1) and off-
v P P ) enolae center (2). B-F. Neurons of the prmary visuai cortex also fall
. = into two maror classes: simple and camplex. Each of these
_| classes, moreover, has several subclasses. This 18 illustrated
Axon here for simple celis. Despite this variety, however, ali smple
cells are charactenized by three fcacures: (1) specific retmal

Right eve position, {2) thewr discrete excitatory (x) and inhibitory (A1

zones. and (3! speaific axs of nnentation. For simplicity, only
receptve fields with a veracal axis of onencaton from (2 to §
o'clock ate shawn in this figure. ¢ach has 4 recalinear
conrigurarion. In fact, each remon of the renna o represenced
1n area 17, not only for this buc tor ali axes of oricatation—
verncal, honzontal. and vanous obliques, {Adapred from Hubei
and Wiesel, 1962.1

White mauer

28—14 The afferent and efferent connecuons of the pnmary
wisusl coreex an made 10 specific fayers of cortex.

Minimum wiring length constraint

Nematode

A number of researchers have sought a simple organizational principle that would predict the spatial
layout of neurons. One such principle is that the layout of nervous system components minimizes total
connection cost. Christopher Cherniak, a philosopher at the University of Maryland calculated the total
wiring length for the ~40,000,000 (11!) possible layouts of the 11 hypothetically "moveable" ganglia
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In[4]:=

Out[4]=

(connecting 302 neurons) in the nematode worm C. elegans. Remarkably, he reported that the layout
the worm actually has is indeed the one with the shortest total connection length (Cherniak, 1991, 1995,
2004). Similar arguments have been made by Cherniak and others for the layout of the multiple areas
of cortex. (But see Young, 1994). The problem of minimizing connection lengths is also encountered in
VLSI component layout in the design of computer chips.

11!
39916800

Why is the brain in the head? (See Cherniak)

Can you think of exceptions to a minimum wiring constraint?

Minimum wiring length & dimensionality reduction in cortical maps

One interesting biological application of the idea of reducing the cost of wiring (e.g. total connection
length) was published by Durbin and Mitchison in Nature (1990).

Let's look at a simple and small version of the problem that Durbin and Mitchison addressed, that of
mapping a higher dimensional parameter space to one of lower dimension. Suppose we have a 2D
feature space that we wish to map to a "1D cortex". Points in the NxN 2D feature space can be repre-
sented by indices (i, j: i = 1, N; j=1, N) or with an appropriate mapping by an index number, f; = f(i,j),
(that ranges from 1 to N?) assigned to the (i,j)th coordinate. Then f; specifies the position in the 1D
representation.

In standard raster ordering for images (e.g. the signal sent to your TV), matrix rows are laid out one
after the next in one long vector. This is exactly what we've done earlier when we take an image in
matrix format and use Flatten[] to convert it to a vector. While nearby horizontal pixels are still close,
nearby vertical pixels in the image now become far apart in the vector representation. f(i, j+1) - f(i,j) = 1,
but f(i+1, j) - f(i,j) = N. A question of mathematical interest is whether there are other possible orderings
that give lower costs, for example in the sense of minimizing the sum of the distances, and thus wiring
length.

I ﬁ

There are several ways of assigning costs for various orderings. Mitchison and Durbin analysed the following
connection cost:

C(f) = EAU
Ay = |fzxj+1 - fur +

fi+1,j - fi,jlq
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If q = 1, then for the standard "raster" ordering, the index,

Jfy=G-DN+j

gives a cost that grows as N°.

It is not always computationally feasible to find the minimum cost for dimensional reduction mappings
of higher dimension, for example from (x,y,r,theta)->(x',y') as one would like to do for the formation of
retinotopic and orientation maps in V1. The alternative is to see whether some biologically plausible
rules could act to accomplish an efficient mapping of the higher dimensional feature space onto the 2D
cortex.

Two biologically plausible rules are:

1) there are competitive winner-take-all interactions selective for distinct inputs
2) the units also strengthen their responses to those stimuli that their neighbors respond to. So if
a neighbor prefers edges oriented at 40 deg, then that unit should prefer edges with a similar orientation.

The first rule helps to divide up the input domain, and the second rule imposes a continuity constraint on
the formation of a map. Durbin and Mitchison developed an algorithm which applied these rules and
showed that the kind of 2D maps which developed looked very much like the visual cortical maps,
revealed from photo-sensitive dye studies (e.g. T'so et al., 1990).

Model result from Durban & Mitchison.

Let's look at the general problem of how to get nearby neurons to be selective for "nearby" features. For
that, we'll step back in time to the classic work of Teuvo Kohonen.

What are the inverse functions that map fij >{i,j}?
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Kohonen's algorithm for topology-preserving mappings

Theory

The Finnish scientist, Teuvo Kohonen, was the first to develop so-called “topology-preserving” adaptive
maps for neural networks (Kohonen, T., 1984). Let's look at the basic structure of a simple adaptive
map. We consider a simple feedforward network, and the question is how should the weights adapt to
the input patterns so that nearby features map to nearby neurons.

Kohonen boiled down the essential features of self-organizing topology-preserving maps to two basic
processes:

1. Find the neuron that shows the most activity among a set of neurons in response to a specific
randomly sampled input. We assume that maximum activity occurs for patterns which match the recep-
tive field (i.e. as with a template matching process).

2. Define a set of neighbors around this maximum, and make these neighbors more likely to
respond to that input in the future by making each of their weights a better match to the input. Typically
the neighborhood Nc starts off large, and is gradually reduced over time.

Let x be an n-dimensional vector representing a feature sample. Let m; be a n-dimensional vector

representing the weights of the i unit. Let x(t,) and mg(t,) be the vector and weight values at time t,
for neuron c. We will follow an example by Kohonen and use the following rules:

1. Similarity matching. Check over all units i to find unit ¢ such that:
pe(t) = m,(1,)| = minfe(r,) —m, (1)

The idea is to find the neuron that responds best to the input pattern x. In this example, the one that
responds best is the one whose weights are the best match to the input pattern itself, as measured by
the euclidean distance between the weights and the pattern. When the distance is small, it is a good
match. One could use other measures of how well the neurons respond to the input pattern.

2. Updating. Update the weights for unit ¢, and all the units within c's neighborhood:

m, (L) +o (@ ) x(t,) —m,(z,)] fori EN_

m;,(t,) otherwise

m(t.,,) = {

The idea is to adjust the weight vector m in a direction that brings it closer to the input pattern x. a(t)
controls the learning rate. In our simulations below, we'll start with big steps and ramp a(t,) down
linearly.

Exercise

For the similarity matching rule, what is the relationship between: 1) the above "distance" between an
input vector and a neuron's weights and 2) the dot product between the input and the neuron's weights?
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What is the steady-state solution for this learning rule?

Demonstration of Kohonen's algorithm for mapping 2D
features to a ID line

In[101]:=

Let's consider the simple problem above. Imagine a 1D visual cortex, i.e. the neurons are arranged in a
straight line (rather than a 2D sheet). But the input images are 2D. We want to map 2D to 1D. In gen-
eral, the input could represent abstract 2D features specified by continous valued inputs (e.g. 2 units
whose values represent x and y positions), and these get mapped to a discrete set of output units
whose position is correlated with the feature values. The biologically realistic retina to cortex problem is
set up differently--the inputs themselves are arranged in a 2D spatial array and get mapped to a 2D
cortical sheet. However, as discussed above, when one considers other features such as orientation,
we have a problem in which a higher dimensional feature space (e.g. a 3D space representing 2D
position and oriention) is mapped to a lower dimensional space (a 2D space representing location of
neurons on the cortical sheet).

Define functions

(¥ramp[] is used below to define both the a() term,
and the rate of change of the neighborhood size =*)

ramp[x_,yint_,end_,plat_] :=
If[(x>=end) || (-2*x*yint/end+yint<plat) ,plat,
-2xx*yint/end+yint];

(#*rv randomly samples the 2D "feature space'"x)
rv := {RandomReal[],RandomReal[]};

(*These are alternative samplings to try
rvdiscrete := 1/8 + (Floor[(4 rv)]/4);
rvline := {xx=RandomReal[],xx};*)

Neighborhood function

The neighborhood function determines the neighbors, and thus the topology of the connections
between the neurons. In our example, the neigborhood is 1-D and is defined along a line.

neigh[] is a neighborhood function that produces a list of indices for the neighbors of unit c. We will not
use a toroidal geometry here. Instead, neigh[] generates shorter lists of indices near the borders, so the
min_ and max__ of the range need to be specified. This neighborhood function only defines neighbors
along a line, i.e. in one dimension. You could elaborate this algorithm to find maps from 2D to 2D,
allowing neighbors to be nearby regions of 2D space.
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nf10:= neigh[c_,numneigh_,min_,max_]:=Module[{i,nn, temp},

In[111]:=

out[115]=

In[116]:=

out[117]=

temp = numneigh/2;

nn={};

For[i=c-temp, (i<=c+temp) && (i<=max) ,i++,
If[i>=min,nn=Join[nn, {i}]];
17

Return[nn];

1;

Initializing the simulation parameters

n is the number of nodes in the 1D line. mu is the matrix with the weights that will get updated accord-
ing to the above update rule. niter is the number of iterations.

numneighO is the intial neighborhood size. If this is too small, the topography map can get tangled. We
will start off with a neighborhood size that is 60-80% of the total size, n. Execute the cell below, first with
n =10, so you can see what is being represented. Then set n=1200 for the simulation below.

n =1200;

mu = Table[rv, {j, 1, n}];

gl = ListPlot[mu, PlotRange -» {{-0.25, 1}, {-0.25, 1}},
AspectRatio -» 1, Joined -» True, ImageSize -» Small];

niter =
4000;
0.6*n
numneighO = Floor[ ] ;
2

eta[t_] := ramp[t, 0.9, niter, 0.1];
numneigh[t_] := 2 Floor[ramp[t, numneighO, niter, 2]];
gl

1.0 [y
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0.4 408
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Let's take a look at how the neighborhood size and a =eta, decrease with the number of iterations, t :

Plot[eta[t], {t, 1, niter}];
Plot [numneigh[t], {t, 1, niter}, PlotRange -» {0, 2 numneighO}, ImageSize -» Small]
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The algorithm

We will make a series of plots, showing the first ten iterations, and after that sampling every 50. The
plots will show how the matrix mu (which evolves the topography of a 1D line, (because of the way we
defined the neigh[] function) gradually fits itself to the geometry of the 2D input space.

We'll use hue to colorcode the positions of the units along the line. So unit 1 (and others near it) on the
left are reddish orange, ones near the middle (neuron #600) are greenish blue, and on the right (near
neuron #1200), they are magenta-reddish.

In[118:= gcolor2 = Graphics[Table[{Hue[i—] , PointSize[0.027], Point[{i—, rzi}]}, {i, 1, n} ];
n n

1
Show |gcolor2, Background - RGBColor [0, 0, 0], AspectRatio —» —]

10
e =

inf20)= gcolor = Graphics[Table[{Hue[i /n], PointSize[0.01], Point[mu[[i]]]}, {i, 1, n}]];

inf21}= Dynamic [
Show[gcolor, Background -> RGBColor [0, O, 0], AspectRatio -> 1 , ImageSize -» Small]]

out[121]=
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For[t=1,t<=niter,t++,
If[ (Mod[t,50]==1) || t<=10,
gcolor = Graphics[Table[{Hue[i/n],PointSize[0.01],
Point[mu[[i]]]1},{i,1,n}]1];
1;

(#*Pick a uniformly distributed "feature" sample from a 2D arrayx)
X=rv;
(*Do the similarity matching. mini is the unit whose weights best match the input =*)

diffs = Map[Norm,Transpose[Transpose[mu]-x]];
minarg = Min[diffs];
mini = Part[Position[diffs,minarg],1,1];

(*Make a list, j, of the neighbors for this index,at this tth jteration *)

j=neigh[mini,numneigh[t],1,n];

(*Update the weights in the neighborhood of i to move them
towards feature x, by eta proportion of the differencex)

For[s=1,s<=Length[j],s++,
mul[ j[[s]] 1] = mu[[ JO[s]] 1] +
eta[t] (x-mu[[j[[s]] 1)

1:

Let's summarize what we have done. There are n (= 1200) "neurons", each with 2 input weights, repre-
sented by matrix mu. We imagine representing the weights of these n neurons by a location in weight
space. Because a neuron's weights define a template for feature matching, nearby points in weight-
space correspond to nearby points in input or "feature space". So you can also think of the two dimen-
sions of our plot as representing two dimensions in feature space. Neural selectivity divides up and
covers feature space. The weight vectors are represented in the same coordinate system as the input
vectors in order to show which neuron each weight vector belongs.

A point for each neuron is represented by a different hue in the graph above--neurons with similar hues
are neighbors along a line, i.e. next to each other in our 1D "cortex". We randomly sampled a location in
the 2-dimensional input space defined by the unit square. Thus, initially for example, "reddish" points
(that are close on the 1D cortex) were scattered all over in weight space. Nearby neighbors could be
activated by quite different stimulus features. Not good.

Ater 5, 10, 100 and 4000 iterations.
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LiStAnimate[{.l ., ., .}]

F >l alyl =

We then surveyed the n neurons to see which one had input weights that were closest to the sampled
location. (Note that we didn't realistically model the response of the unit--which if linear would be the dot
product of the input with its weights.) Then we adjusted the 2 weights of that neuron to move them
closer to the sampled input point. Further, we adjusted the weights of all of the neighbors of that neuron
(i.e. those with similar hues) to be closer too. We reduced the size of the neighborhood as the number
of iterations increased. So a unit's weights are less affected by distant neurons as time goes on. The
end result is that nearby points in feature space tend to activate nearby neurons that are arrayed in a 1-
D line. For other interesting examples, and for a discussion of the relationship of Kohonen maps to
space-filling curves, see Kohonen (1984).

Although we motivated Kohonen topology-preserving networks with the problem of feature mapping in
cortex, there is a large range of applications that extend outside the problem we've considered (e.g.
regression, Cherkassky & Lari-Najafi, 1991).

For additional applications and related work, see: Graziano MSA, Aflalo TN. (2007), Koulakov AA,
Chklovskii DB. (2001).

Meier, J. D., Aflalo, T. N., Kastner, S., & Graziano, M. S. A. (2008). Complex Organization of Human
Primary Motor Cortex: A High-Resolution fMRI Study. Journal of Neurophysiology, 100(4), 1800—-1812.
doi:10.1152/jn.90531.2008

Tittgemeyer, M. (2011). The role of long-range connectivity for the characterization of the functional—
anatomical organization of the cortex, 1-13. doi:10.3389/fnsys.2011.00058/abstract
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Exercises

Compute the connection cost for the Kohonen adaptive map in the above example. Compare it to a raster scheme.

Try sampling from rvline,and watch how the algorithm learns the topology of the 1D input space.

Try playing with the intial neighborhood size, numneigh0.What happens if it starts off small,(e.g.let the number of neighbors be fixed at 2

throughout the similation).

Define a 2D feature input space which is not rectangular. For example, rvcould sample from a triangular or circular region within the unit square.
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