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The visual system:
overview of a large-scale neural 

architecture

Goals
• Provide an overview of a major brain subsystem to 

help anchor concepts in neural network theory. 

• Behavioral, functional requirements that determine 
the computations that networks must do.  

• Discuss issues of neural representation. 

• Connect various parts and functions of the visual 
system with neural network ideas we've studied

where to start?

anatomy, neurophysiology… 
at what scale? 

neurocomputational theory? 

or behavior?

complex information processing 
system

Visual behavior—jobs of vision
Within-object relations: Object perception 

•categorization, identification 

•properties/attributes: size, shape,material, 
pose,expressions,… 

Viewer-object relations 

•navigation,heading ,time-to-contact,… 

•manipulation/grasp 

•tracking 

Object-object relations 

•relative depth, relative motion, scene 
interpretation, planning, scene recognition,…



a ‘simple’ illustration
A. B.

D.

C.
It takes just one quick 
glance to see the fox, a 

tree trunk, some grass and 
background twigs. 

But that is just the 
beginning of what vision 

enables us to do with this 
picture.

Here’s one person’s 
description:

A. B.

D.

C.“One can see that there 
is an animal, a fox--in fact 
a baby fox. It is emerging 
from behind the base of a 
tree not too far from the 
viewer, is heading right, 
high-stepping through 

short grass, and probably 
moving rather quickly. Its 
body fur is fluffy, reddish-
brown, relatively light in 

color, but with some 
variation. It has darker 

colored front legs and a 
dark patch above the 

mouth. Most of the body 
hairs flow from front to 
back...and what a cute 
smile, like a dolphin.”

Inferences about the fox picture involved various:

• types of features & attributes (shapes, material)

• levels of abstraction (parts, objects, actions, scenes)

• spatial scales

• relationships

Descriptions are inferences of object properties and relationships— i.e. 
causes of image intensities, not of image intensity patterns

A crucial assumption is that these inferences are based on deep, 
generative knowledge of how virtually any natural image could be 
produced

…after all, this may be the first time you’ve seen this picture!



how should one go about understanding 
perception?

computational problems?

vision is concerned with causes of image intensity patterns, but the 
causes of behavioral relevance are encrypted and confounded 

many hypotheses about cause can be consistent with the same 
local image evidence 

local variations  in image evidence can be consistent with the same 
cause 

accurate perceptual decisions resolve these ambiguities by 
combining lots of image evidence with built-in knowledge

Need to model uncertainty

computational problems?

Solving toy (low-dimensional) problems rarely 
scales up to deal with the complexity of natural 
images. 

Humans have the capacity to deal with an 
enormous space of possible objects (30 to 
300K) as they appear in different contexts in 
natural images for different tasks.

Need to solve scalability

computational problems?

Vision stimulates and support answers to a 
limitless range of questions. Human vision doesn’t 
just recognize, it interprets scenes. 

e.g. description of the fox

Need to solve task flexibility



starting point for modeling?

computational vision

bayesian decision theory provides framework 
for modeling uncertainty 

architectures/algorithms provide tools for 
understanding scalability and task flexibility

bayesian theories
functional/behavioral 

theories architectures/ 
algorithms neural circuits

graphical models
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Are there common principles of organization and 
computation 

laterally, feedforward, and feedback?



theories of the brain’s internal 
processes of perceptual inference

30+ cortical areas that are visually sensitive, often with specific preferences, such as 

• localized edges, color,  

• motion 

• object patches, whole objects,.. 

• face parts, faces 

• bodies,.. 

• places…

Wallisch, P., & Movshon, J. A. (2008). Structure and Function 
Come Unglued in the Visual Cortex. 
197. V1

ventral

dorsal

dorsal

ventral

from monkey
primary visual cortex (V1)

local: small hypercolumns consisting of banks of neurons 
tuned for edge orientation

neurons representing similar features are near 
on cortical surface

“simple cells” — template matching

 “complex cells” — template matching tolerant 
to spatial shifts

global: hypercolumns arranged retinotopically

neurons receiving information from nearby 
points in the world are near on cortical surface

1-2 mm



lateral organization: “maps”
Why the organization? The level of abstraction? 

• Keep similar features together for 
feedforward integration. 

• Lateral computations to group features of 
similar type—segmentation 

• Efficiency constraints 

• Minimum wiring constraint 

• Efficient representation of sensory input 
& cost of neural activity 

• Efficient representations for learning
Ii

Ij

li j

limited dendritic spread

Markov Random Field models

link contours with similar 
orientations

link regions with similar 
colors, textures

Grouping

What should the local features be? How many different types?
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An example
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Boyaci, H., Fang, F., Murray, S. O., & Kersten, D. (2007). 
Current Biology, 17(11), 989–993.

Localized V1 
responses here should be the 

same with standard feedforward 
model

V1 response follows 
perceived lightness, 
not physical intensity
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Figure 1: Standard model of V1 simple cell responses. The neuron computes a weighted
sum of the image over space and time, and this result is normalized by the responses of
neighboring units, and passed through a pointwise non-linearity (see e.g., Carandini et al.,
1997

It may seem surprising to some that we should take such a stance. V1 does
afterall have a seemingly ordered appearance—a clear topographic map, and an or-
derly arrangement of ocular dominance and orientation columns. Many neurons are
demonstrably tuned for stimulus features such as orientation, spatial-frequency, color,
direction of motion, and disparity. And there has even emerged a fairly well agreed
upon “standard model” for V1 in which simple-cells compute a linearly weighted sum
of the input over space and time (usually a Gabor-like function) and the output is
passed through a pointwise nonlinearity, in addition to being subject to contrast gain
control to avoid response saturation (Figure 1). Complex cells are similarly explained
in terms of summing the outputs of a local pool of simple-cells with similar tuning
properties but di�erent positions or phases. The net result is to think of V1 roughly
as a “Gabor filter bank.” There are now many papers showing that this basic model
fits much of the existing data well, and many scientists have come to accept this as a
working model of V1 function (see e.g., Lennie, 2003a)

But behind this picture of apparent orderliness, there lies an abundance of un-
explained phenomena, a growing list of untidy findings, and an increasingly uncom-
fortable feeling among many about how the experiments that have led to our current
view of V1 were conducted in the first place. The main problem stems from the
fact that cortical neurons are highly nonlinear—i.e., they emit all-or-nothing action
potentials, not analog values. They also adapt, so their response properties depend
upon the history of activity. Cortical pyramidal cells have highly elaborate dendritic
trees, and realistic biophysical models suggest that each thin branch could act as a
non-linear subunit, so that any one neuron could be computing many di�erent non-
linear combinations of its inputs (Hausser & Mel, 2003), in addition to being sensitive
to coincidences (Softky & Koch, 1993; Azouz & Gray, 2000, 2003). Everyone knows
that neurons are non-linear, but few have acknowledged the implications for studying
cortical function. Unlike linear systems, where there exist mathematically tractable,
textbook methods for system identification, non-linear systems can not be teased
apart using some straightforward, reductionist approach. In other words, there is no
general method for characterizing non-linear systems.2

2The Volterra series expansion is often touted as a general approach for characterizing non-linear
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Convolution



image = f(pigment, illumination) ~ r(x,y) × e(x,y)

What are the features that are being linked?

estimate pigment property--the reflectance,  and discount illumination

prior probabilistic structure: 
illumination spatially smooth
reflectance is piece-wise constant.
E.g. gibbs sampler texture demo
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perceptual
inference

reflectance pattern, r(x,y) illumination, e(x,y)

image pattern

lateral organization
Why the organization? The level of abstraction? 

• Keep similar features together for feedforward 
integration. 

• Lateral computations to group features of 
similar type—segmentation 

• Efficiency constraints 

• Minimum wiring constraint 

• Efficient representation of sensory input & 
cost of neural activity 

• Efficient representations for learning how can layout be learned?  

to keep similar features near.. 
but V1 is ~ 2D, and many features!

1-2 

Kohonen adaptive maps

• Mathematica notebook

lateral organization
Why the organization? The level of abstraction? 

• Keep similar features together for 
feedforward integration. 

• Lateral computations to group features of 
similar type—segmentation 

• Efficiency constraints 

• Minimum wiring constraint 

• Efficient representation of sensory input 
& cost of neural activity 

• Efficient representations for learning

how can receptive field weights 
be learned?  

both unsupervised, and supervised learning 
methods



Unsupervised learning of 
receptive fields

• Models of the early levels of abstraction:  

• local, selectivity to orientation, spatial and 
temporal frequency 

• Information-theoretic constraints 

• exploit regularities in natural image input Olshausen & Field’s model of V1 receptive fields

Efficient coding and higher 
order dependencies

Kersten, D. (1987). Predictability and redundancy of natural images. J Opt 
Soc Am A, 4(12), 2395-2400. 

Gives rise to neural network 
models that are closely 
related to principles of 
image compression 
developed in signal 
processing theory, as in 
“difference coding” 

R(x) = L(x) - L(x-1) 

which exploits the 
observation that L(x) is often 
~  L(x-1)
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firing rate

 

Linear spatial filter

 

Outputs from other cortical cells

Divisive normalization--a 
common non-linearity

In[547]:= width = 256; radius =
width

5
;

maxg := 0.8` HRandomReal@D - 0.5`L + 0.5`;

ming := 0.25` HRandomReal@D - 0.5`L + 0.5`;

maxg2 := 0.15` HRandomReal@D - 0.5`L + 0.5`;

d1 = TableBIfB i -
width

2

2

+ j -
width

2

2

< radius2, ming, maxgF,

8i, 1, width<, 8j, 1, width<F;
g1 = ArrayPlot@d1, Mesh Ø False, PlotRange Ø 80, 1<D;

d2 = TableBIfB i -
width

2

2

+ j -
width

2

2

< radius2, ming, maxg2F,

8i, 1, width<, 8j, 1, width<F;
g2 = ArrayPlot@d2, Mesh Ø False, PlotRange Ø 80, 1<D;
Show@GraphicsRow@8g1, g2<, Spacings Ø Scaled@0.1`DDD

Out[555]=

‡ Contrast normalization

It turns out that neurons in V1 show an analogous response to your own perception of contrast. One way to model this is to 

assume that the response of a single unit that signals contrast for a particular location, spatial frequency and orientation 

preference, gets divided by the average of a measure of the magnitude of the responses of neighboring units that also 

signal contrast over a range of spatial frequencies and orientations.

The linear spatial receptive field model for a V1 neuron says that that response should scale linearly with contrast. But 

simple cells don't show this property--instead, the response begins to saturate at high input contrasts (e.g. for a drifting 

sinusoidal grating matching the orientation, spatial frequency and motion direction preferences of the cell). Time-wise, the 

response also begins to occur sooner as the stimulus contrast is increased. Another break-down is seen in the response of a 

cell to the combination of a horizontal and vertical sinusoidal gratings. Linearity predicts the response to the sum should 

be the sum of the responses, but it isn't. Instead neurophysiologists find "cross-orientation inhibition". Interestingly 

enough, a cell that prefers say the vertical grating will typically show zero response to the horizontal one; yet, the presence 

of the horizontal one still inhibits the cell's firing to the vertical.

ContrasNormalizationNotes.nb 3

From Heeger

The middle disks have the 
same physical luminance 
variance, but the one on the 
right appears more “contrasty”, 
i.e. to have higher variance. 

This may be a behavioral consequence of 
an underlying non-linearity in the spatial 
filtering properties of V1 neurons involving 
“divisive normalization” derived from 
measures of the activity of other nearby 
neurons.
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Further reduces redundancy. Cf. Schwartz, 
O., & Simoncelli, E. P. (2001). Natural 
signal statistics and sensory gain control. 
Nature Neuroscience, 4(8), 819–825.



Lateral organization

How do neural populations represent information?


