
Introduction to Neural Networks

More sampling

Overview

Last time

Scientific python; Python, IPython, numpy, matplotlib,  scipy.

Today

More sampling, leading to MCMC applications

Next time: MCMC sampling with the Python module pymc

Why sampling? 

Boltzmann machine’s update rule review
Recall the Boltzmann machine was a fully connected network consisting of binary units. The update rule 
was to set

where pi is:

where

T (without the indices) is analogous to temperature in  thermodynamics.  For T=1, this update rule 
should by now be quite familiar. If we add a bias term, replace Vj and Tij with vector x and matrix w, it is 
the same expression that we saw logistic regression, and for the simple probablistic model of neural 
spike generation (Lecture 18) where the probability of a neuron firing is:

p(yi = 1 x) = 1
1+e-−(w.x + b)

To implement the update rule for the Boltzmann machine, we draw a uniformly distributed number 

between 0 and 1,  and if that number is less than pi =  p(ΔEi) we set the output of the neuron, Vi , to 1; 

otherwise, set it to zero:



To implement the update rule for the Boltzmann machine, we draw a uniformly distributed number 

between 0 and 1,  and if that number is less than pi =  p(ΔEi) we set the output of the neuron, Vi , to 1; 

otherwise, set it to zero:

This is an example of the use of Monte Carlo sampling to do inference. But sampling can be applied in 
many more ways, for example to learn the weights given training data, and more ways describec below.

Earlier we also saw how to sample in one dimension. But sampling gets much harder as the dimensional-
ity increases. To further motivate sampling, consider several applications:

Pattern synthesis
Draw samples from a generative model which might be complex. E.g. involving lots of lateral interac-
tions as in an undirected graph. Or involving a top-down directed graph that specifies how causes 
create samples.

This can be quite useful in vision to check whether one’s model is capturing the regularities seen in the 
data. Texture synthesis is one example. 

Learning
Given a model, one use stochasticlly generated (synthesized) samples in order to compare with data so 
as to adjust parameters (i.e. weights). We saw this in the original Boltzmann machine. 

Optimization
We already saw an example using the Boltzmann machine to do optimization, where we had multiple 
constraints. For non-convex distributions, one may need annealing. Even with low-dimensional architec-
tures (graphical models), the math can be too hard, and simulations are required. For example, it is one 
thing to posit and write down the joint distribution corresponding to this graph:

but quite another to calculate needed values for unknown variables, with others fixed, and still others 
unwanted. Recall that unwanted variables need to be integrated out in order to calculate ideal perfor-
mance. Practical solutions to solving these kinds of problems is what we are aiming for here and in the 
later material on MCMC sampling.

Integration (summing over) in very high dimensions
Integration or summing over many variables is a recurring problem. Such as finding the volume of a 
function p:
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Integration or summing over many variables is a recurring problem. Such as finding the volume of a 
function p:

Z = 
x1


x2


x3

p (x1, x2, x3)

Often there is no formula for p or closed-form solution for its volume.

Or suppose you want to calculate the average value of a function, f(x) of a random vector. (When you 
calculate the mean, f(x) = x.) and you have an expression for the joint distribution, say p(x), where x = 
(x1,x2,x3,...,xN).

E[f (x)] = 
x1


x2


x3

...
xN

f (x1, x2, x3, ..., xN) p (x1, x2, x3, ..., xN)

Even if one had formulas for the functions, N can be very, very big.

Summing over gets computationally expensive the more variables we need to sum over. If we have 
p (x1, x2, x3, ..., xN)and we would like to sum over N variables, each of which can  take on M 
values. We have to calculate and sum M^N values.  For example, this would be impossible for even a 
small image.

Also, if we want to compare the probability of two models given some data, we need to integrate out the 
parameters, θ𝜃,  that determine the models, m. For example, one model might be a quadratic function 
with three parameters, and another the sum of three sinusoides, whose parameters are the coefficients. 
Think of the parameters as values to be estimated (or explanations of the data) under model m.  Bayes 
rule says that given data x:

p (θ x, m) =
p (x θ , m) p (θ m)

p (x m)

The denominator is called the “evidence”. For a fixed model, we usually don’t need to know the denomi-
nator. But if we want to decide which model is better we need to evaluate p(x|m) for the various m’s. 
And this may not be easy:

p (x m) = 
θ

p (x, θ m) = 
θ

p (x θ, m) p (θ m)

And θ𝜃 = (θ𝜃1,θ𝜃2,...,) may have many dimensions. We’ll talk about “model selection” later.

Sampling as a metaphor for bottom-up, top-down neural processing
One can either fix causes and draw samples of the data (top-down), or fix the data and draw samples of 
possible causes. 

Samples as the basis for representations and decisions.
See  Sundareswara & Schrater (2008), Battaglia et al.  (2011); Vul et al. (2012).
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Sampling

What is Monte Carlo?
Let’s consider the Monte Carlo approach to the integration problem. For example, given a line that 
divides a table into two unequal parts, one could estimate the relative proportions of one of the areas by 
randomly throwing lots of balls on to the table and recording the proportion that settled in the area of 
interest.

More generally, we can approximate a density p(x) with a weighted set of samples from a potentially 
very high dimensional space by:

pN (x) ~∼ 
i=1

N

δxi -− x pxi

and using the definition of the delta function, one can show that we can approximate high-dimensional 
integrals with computable sums:

Let's first look at a univariate example to illustrate concepts that can be carried to more complicated 
cases. Of course to draw samples, we could use the inverse CDF method in an earlier lecture, but let's 
try something different. 

We want to draw samples from a target distribution that is hard to sample from. But we'll assume a 
potential sample can be drawn from another distribution that is easy to sample from, called the proposal 
distribution. Given sample from the proposal distribution, we can calculate its probability from the target 
distribution and then keep the sample if it is a true draw, but reject it if not. How do we know if it is a true 
draw? 

Suppose we want to draw samples from this target distribution:
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p𝒟 = MixtureDistribution[{2, 1},
{NormalDistribution[0, 1 /∕ 2], NormalDistribution[1, 1 /∕ 4]}];

Plot[PDF[p𝒟, x], {x, -−3, 4}, Filling → Axis]

but we are only allowed to draw samples from this one:

q𝒟 = NormalDistribution[.5, 1]

NormalDistribution[0.5, 1]

How can we do it? One straightforward way is rejection sampling. 

Rejection sampling
The idea is to first find M such that PDF[p𝒟,x] < M* PDF[q𝒟,x].

Plot[{PDF[p𝒟, x], 2 *⋆ PDF[q𝒟, x]}, {x, -−3, 4}, Filling → Axis]

Draw a sample x’ from q𝒟 and only keep it if PDF[p𝒟,x’]<M*PDF[q𝒟,x’].

u := RandomVariate[UniformDistribution[]];
x := RandomVariate[q𝒟 ];
samples =

Table[If[(u < PDF[p𝒟, x0 = x] /∕ (20 *⋆ PDF[q𝒟, x0]) && Abs[x] < 3), x0, Null], {10 000}];

gH = Histogram[samples, 48, "PDF"];
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gp𝒟 = Plot[{PDF[p𝒟, x]}, {x, -−3, 4}, Filling → Axis];
Show[{gH, gp𝒟}]

You can see that the rejection sampling is most efficient if M times the proposal distribution isn’t too 
much higher than the target distribution over most of the range. 

Rejection sampling becomes increasingly inefficient as the dimensionality increases when too many 
samples get rejected.

Importance “sampling”
Perhaps should be called “importance approximation”, because we don’t use it to directly produce 
samples from a target distribution, but use samples from a proposal distribution to estimate expecta-
tions with respect to the target distribution. 

E[f] =  f (x) p (x) ⅆx =  f (x)
p (x)

q (x)
q (x) ⅆx =  f (x) w (x) q (x) ⅆx

We can approximate the density p(x)  in terms of a weighted sum of point masses drawn from q(x):

pN (x) ~∼ 
i=1

N

δxi -− x wxi

So if we sample from q(x), but weight the sample according to w(x), we can estimate

E[f] ~∼  
i

N

fxi wxi δ xi -− x ⅆx ~∼ 
i

N

fxi wxi

Lets look at an example where we find the average of a random variable from target distribution p𝒟, but 
we don’t sample from it directly--as before, we sample from the  "proposal" distribution, call it q𝒟.

In[500]:= q𝒟 = NormalDistribution[0, 3];
p𝒟 = NormalDistribution[3, 1];
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In[502]:= u := RandomVariate[q𝒟];
weights = Table[{x0 = u, PDF[p𝒟, x0] /∕ PDF[q𝒟, x0]}, {1000}];
Mean[weights[[ ;; , 1]] *⋆ weights[[ ;; , 2]]]

Out[504]= 2.95723

Compare with the mean when we are allowed to directly sample from p𝒟:

In[505]:= x := RandomVariate[p𝒟 ];
xsamples = Table[{x}, {1000}];

In[507]:= Mean[xsamples]

Out[507]= {2.97845}

Show that we don’t need to know the normalizing constants for either the target or proposal distributions.

What is the importance of importance sampling? 

Suppose you need to sample from a truncated normal distribution with support from 0 to 1--call it pT (x). 
You could draw samples from the normal and throw out ones outside of the (0,1) range. This could 
waste many samples. 

Alternatively, you could use the uniform distribution over (0,1) as the proposal distribution, and weight 
each sample by pT (xi)/1. You can show that the mean is:

(1 /∕ N) 
i

N

xi pTxi

And every sample gets used.

Estimate the variance of the target distribution  of the above truncated normal using importance sampling

Gibbs sampling
Sometimes we can calculate the conditionals

Gibbs sampling simple bivariate demo
weird2ddist[x_, y_] := Exp[-−(x *⋆ x *⋆ y *⋆ y + x *⋆ x + y *⋆ y -− 8 *⋆ x -− 8 *⋆ y) /∕ 2];
gcontour = ContourPlot[weird2ddist[x, y]^.2, {x, -−1, 8},

{y, -−1, 8}, ColorFunction → "BlueGreenYellow", ImageSize → Small]
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n = 50 000;
x = ConstantArray[0.0, n];
y = ConstantArray[0.0, n];

x[[1]] = 1.;
y[[1]] = 6.;
sig[z_, i_] := Sqrt[1. /∕ (1. + z[[i]] *⋆ z[[i]])];
mu[z_, i_] := 4. /∕ (1. + z[[i]] *⋆ z[[i]]);

For[i = 2, i < n -− 1, i = i + 2,
sigx = sig[y, i -− 1];
mux = mu[y, i -− 1];

x[[i]] = RandomVariate[NormalDistribution[mux, sigx]];
y[[i]] = y[[i -− 1]];

sigy = sig[x, i];
muy = mu[x, i];

y[[i + 1]] = RandomVariate[NormalDistribution[muy, sigy]];
x[[i + 1]] = x[[i]];(*⋆*⋆)

]

ListPlot[x]

10000 20000 30000 40000 50000

2

4

6

8
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GraphicsRow[{Histogram[x, 50], Histogram[y, 50]}]

{bins, heights} = HistogramList[x, 50, "PDF"];
maxFreq = N[Max[heights]]
Histogram[x, {bins}, heights &,
Epilog → {{Thick, Darker[Green], Line[{{Mean[x], 0}, {Mean[x], maxFreq + 2}}]}}]

0.5886

{Mean[x], Mean[y]}

{1.79745, 1.92216}

Dimensions[x][[2]]

traj = Transpose[Join[{x[[1 ;; 1000]], y[[1 ;; 1000]]}]];
gtraj0 = ListPlot[traj, Joined → False,

PlotRange → {{-−1, 8}, {-−1, 8}}, PlotStyle → Pink, Axes → True]

2 4 6 8

2

4

6

8
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traj2 = Take[traj, {Dimensions[traj][[1]] -− 300, Dimensions[traj][[1]], 1}];
gtraj = ListPlot[traj2, Joined → True, PlotRange → {{-−1, 8}, {-−1, 8}},

PlotStyle → {Black, Thickness[.005]}, Axes → False];
Show[{gcontour, gtraj}]

Metropolis-Hastings
We’ve gone from special cases to more general. It can be shown that Gibbs Sampling, for example, is a 
special case of a more general class of samplers called Metropolis-Hastings.

The origins

In[448]:= Clear[x, x1, xx, uu, x0, u, p𝒟, q𝒟, A, A0];

The first function below is the target distribution. We pretend we can't sample from it. However, given a 
possible sample we
can evaluate its probability:

In[449]:= p𝒟 = MixtureDistribution[{2, 1},
{NormalDistribution[], NormalDistribution[2, 1 /∕ 4]}];

This next function below is the proposal distribution. We can sample from it and given a possible sam-
ple value as input, we
can calculate its value.

In[450]:= q𝒟[x_] := NormalDistribution[x, 4];

In[451]:= x0 = -−1.0; (*⋆initial value*⋆)
uu := RandomVariate[UniformDistribution[]];
(*⋆xx[x_]:=RandomVariate[q𝒟[x]];*⋆)

10     Lect_20_MoreSampling.nb



Define an “acceptance function” A

In[453]:= (*⋆A[x1_,x0_]:= Min[1.0,PDF[p𝒟,x1]/∕PDF[p𝒟,x0]];*⋆)

In[454]:= A0[x1_, x0_] :=
Min[1.0, (PDF[p𝒟, x1] *⋆ PDF[q𝒟[x0], x1]) /∕ (PDF[p𝒟, x0] *⋆ PDF[q𝒟[x1], x0])];

The above acceptance function is the general case -- it puts the Hastings in Metropolis-Hastings.

If you check the above A0[ ] function, you’ll see that it the proposal distribution is symmetric (you can 
swap x1 and x0, and the computed
value stays the same).  So in our case of a symmetric normal distribution for sampling, we can use:

In[455]:= A[x1_, x0_] := Min[1.0, (PDF[p𝒟, x1]) /∕ (PDF[p𝒟, x0])];

This is sometimes called random-walk Metropolis.

In[456]:= n = 1000;
samples = ConstantArray[0.0, n];

samples[[1]] = x0;
For[i = 1, i < n, i++,

x1 = RandomVariate[q𝒟[samples[[i]]]];

If[uu < A[x1, samples[[i]]], samples[[i + 1]] = x1, samples[[i + 1]] = samples[[i]]]];

In[423]:= gH = Dynamic[Histogram[samples, 48, "PDF", PlotRange → {{-−3, 3}, {0, .8}}]]

Out[423]=
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In[441]:= Dynamic[ListPlot[samples, Joined → True]]

Out[441]= 200 400 600 800 1000

-−3

-−2

-−1

1

2

3

In[404]:= gp𝒟 = Plot[{PDF[p𝒟, x]}, {x, -−5, 6}, Filling → Axis];
Show[{Histogram[samples, 48, "PDF"], gp𝒟}]

Out[405]=

Side note: The original Metropolis et al. paper and simulated annealing papers are among the top 100 
most cited papers according to Web of Science and Nature: http://www.nature.com/news/the-top-100-
papers-1.16224

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. , Equation of state 
calculations by fast computing machines. J. Chem. Phys. 21,1087–1092.

Kirkpatrick. S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science, 220, 
671–680.

Also, try scholar.googling: geman

So what is a Markov Chain?
Again, we’ve introduced material inductively. In fact, Gibbs Sampling and the Metropolis-Hastings 
methods are both examples Markov Chain Monte Carlo. Where does the Markov Chain come in?
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INTRODUCTION 13

for i ̸= j . This method is known as sampling importance resampling (SIR) (Rubin, 1988).
After resampling, the approximation of the target density is

p̃M(x) = 1
M

M
∑

i=1

δx̃ (i) (x) (13)

The resampling scheme introduces some additional Monte Carlo variation. It is, therefore,
not clear whether the SIR procedure can lead to practical gains in general. However, in
the sequential Monte Carlo setting described in Section 4.3, it is essential to carry out this
resampling step.

We conclude this section by stating that even with adaptation, it is often impossible to
obtain proposal distributions that are easy to sample from and good approximations at the
same time. For this reason, we need to introduce more sophisticated sampling algorithms
based on Markov chains.

3. MCMC algorithms

MCMC is a strategy for generating samples x (i) while exploring the state space X using a
Markov chain mechanism. This mechanism is constructed so that the chain spends more
time in the most important regions. In particular, it is constructed so that the samples x (i)

mimic samples drawn from the target distribution p(x). (We reiterate that we use MCMC
when we cannot draw samples from p(x) directly, but can evaluate p(x) up to a normalising
constant.)

It is intuitive to introduce Markov chains on finite state spaces, where x (i) can only take
s discrete values x (i) ∈X = {x1, x2, . . . , xs}. The stochastic process x (i) is called a Markov
chain if

p
(

x (i)
∣

∣ x (i−1), . . . , x (1)) = T
(

x (i)
∣

∣ x (i−1)),

The chain is homogeneous if T ! T (x (i) | x (i−1)) remains invariant for all i , with
∑

x (i) T (x (i) |
x (i−1)) = 1 for any i . That is, the evolution of the chain in a space X depends solely on the
current state of the chain and a fixed transition matrix.

As an example, consider a Markov chain with three states (s = 3) and a transition graph
as illustrated in figure 4. The transition matrix for this example is

T =

⎡

⎢

⎣

0 1 0

0 0.1 0.9

0.6 0.4 0

⎤

⎥

⎦

If the probability vector for the initial state is µ(x (1)) = (0.5, 0.2, 0.3), it follows that
µ(x (1))T = (0.2, 0.6, 0.2) and, after several iterations (multiplications by T ), the product
µ(x (1))T t converges to p(x) = (0.2, 0.4, 0.4). No matter what initial distribution µ(x (1))
we use, the chain will stabilise at p(x) = (0.2, 0.4, 0.4). This stability result plays a funda-
mental role in MCMC simulation. For any starting point, the chain will convergence to the

Under certain conditions, with large enough i, the evolution of samples xi will come to reflect the distribu-
tion of an “invariant distribution”, which with the right design corresponds to our desired target distribu-
tion. Once we have an estimate of that, we can calculate various statistics on it, such as mean values of 
marginals. The conditions can be illustrated with searches on the web (Andriew et al., 2003). A transi-
tion takes us from one node (link) to the next. One would like to avoid getting trapped in loops and one 
would like to be able to access any link in the net. These two constraints correspond to two conditions, 
aperiodicity and irreducibilty which in Markov Chains are required for the chain to evolve such that 
samples are drawn from the target distribution. Google’s original PageRank algorithm used a transition 
matrix with added noise to avoid aperiodicity and irreducibility.

Gibbs sampling texture synthesis demo
Let’s look at an application to pattern synthesis. We’ve already looked at the problem of visual interpola-
tion. This was an example of a more general principle of perception in which similar features reinforce 
each other, providing the basis for grouping. We discuss this more later when we talk about lateral 
organization in neural architectures for vision. 

Grouping similar features can be represented by an undirected graph:

In[508]:=

Suppose the nodes represent pixel values over some probability model of images, such as all the 
images of “grass”. In general, the probability of activation,  si,  of node i will depend on the neighbors j in 
some neighborhood of i:  j ∈ Ni. si. A Markov Random Field (MRF) has the following property:

p si sj; all j ≠ i = p si sj; j ∈ Ni

In other words, to draw samples from p (si given all the other pixels), it is sufficient to draw 
from p (si in a neighborhood of i).

Texture perception relies in part on local regularities in images: MRFs

Texture modeling has received considerable attention in biological vision and computer graphics. A 
recent advance in learning pattern distributions is the Minimax theory (Zhu and Mumford, 1997). Here is 
an observed sample:
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Here is a synthesized sample after Minimax entropy learning:

In general, it is a hard problem to draw true samples from high dimensional spaces. One needs a 
quantitative model of the distribution and a method such as Gibbs sampling to draw samples.  

For a recent example of an application of texture synthesis to understanding the networks of the brain’s 
visual system, see Freeman, J & Simoncelli, E. P. (2011)

Often it isn’t important to be sure that one has a “true sample”, and other techniques can be used to 
produce random patterns. E.g. one can first draw sample of white noise, and then iteratively adjust the 
texture to match statistics of the model, e.g. http://www.cns.nyu.edu/~lcv/texture/

Texture synthesis: An example of generative modeling of data
Last time we took a quick look at the application of the Boltzmann machine problems of pattern synthe-
sis. This involves a different perspective on the same network--now instead of viewing it as doing 
inference, the network is a generative model.  
Here is an observed sample on the left, and a synthesized sample after Minimax entropy learning on 
the right:

In[509]:= GraphicsRowImage , Image 

Out[509]=

We drew the analogy to dreaming or conscious imagery. A potentially related phenomenon is hypna-
gogic imagery. 

Let's let the units take on continuous values. Consider the quantized case. Suppose rather than just 
binary values, our units can take on a range of values. We'll introduce the idea with a demonstration of 
a pattern synthesizer for texture generation.
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Local energy

Local energy (potential) at location i = 
j∈N (i)

f Vi -− Vj

The local energy determines a local conditional probability for the values at the ith site: 

p Vi Vj, jϵ Ni = κ e-−∑j∈N (i)f (Vi-−Vj)

Sampling from textures using local updates
To draw a sample at the ith node, we draw from the local (conditional) probability distribution:

Demo

Set up image arrays and useful functions

In[510]:= size = 64; T0 = 1.; ngray = 16;
brown = N[Table[RandomInteger[{1, ngray}], {i, 1, size}, {i, 1, size}]];
next[x_] := Mod[x, size] + 1;
previous[x_] := Mod[x -− 2, size] + 1;

We can try several types of potentials.
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Ising potential

In[514]:= Clear[f];
f[x_, s_, n_] := If[Abs[x] < 0.5, 0, 1];
s0 = 1.`; n0 = 5;
Plot[f[x, s0, n0], {x, -−2, 2}, AxesLabel →

{"\!\(\*⋆SubscriptBox[\(V\), \(i\)]\)-−\!\(\*⋆SubscriptBox[\(V\), \(j\)]\)", f}]

Out[517]=

-−2 -−1 1 2
Vi-−Vj

0.2

0.4

0.6

0.8
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f

Geman & Geman potential

In[518]:= Clear[f];

f[x_, s_, n_] := N Abs
x

s

n
 1 + Abs

x

s

n

;

s0 = 0.25`; n0 = 2;
Plot[f[x, s0, n0], {x, -−2, 2}, PlotRange → {0, 1}, AxesLabel →

{"\!\(\*⋆SubscriptBox[\(V\), \(i\)]\)-−\!\(\*⋆SubscriptBox[\(V\), \(j\)]\)", f}]

Out[521]=

-−2 -−1 0 1 2
Vi-−Vj

0.2

0.4

0.6

0.8

1.0
f

Define the potential function using nearest-neighbor pair-wise "cliques"
Suppose we are at site i. x is the activity level (or graylevel in a texture) of unit (or site) i. avg is a list of 
the levels at the neighbors of the site i.

In[522]:= Clear[gibbspotential, gibbsdraw, tr];
gibbspotential[x_, avg_, T_] :=

N[Exp[-−(f[x -− avg[[1]], s0, n0] + f[x -− avg[[2]], s0, n0] +
f[x -− avg[[3]], s0, n0] + f[x -− avg[[4]], s0, n0]) /∕ T]];

Define a function to draw a single pixel gray-level sample from a conditional 
distribution determined by pixels in neighborhood
The idea is to calculate the cumulative distribution corresponding to the local conditional probability, 
pick a uniformly distributed number, which determines the value of the sample x (through the distribu-
tion). To save time, we avoid having to normalize the cumulative (it should asymptote to 1) by drawing a 
uniformly distributed random number between the max and min values of the output of FoldList (the 
cumulative sum).
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In[524]:= gibbsdraw[avg_, T_] :=
Module[{}, temp = Table[gibbspotential[x + 1, avg, T], {x, 0, ngray -− 1}];
temp2 = FoldList[Plus, temp〚1〛, temp];
temp10 = Table[{temp2〚i〛, i -− 1}, {i, 1, Dimensions[temp2]〚1〛}];
tr = Interpolation[temp10, InterpolationOrder → 0];
maxtemp = Max[temp2];
mintemp = Min[temp2];
ri = RandomReal[{mintemp, maxtemp}];
x = Floor[tr[ri]];
Return[{x, temp2}];];

In[525]:= gg = Dynamic[
ArrayPlot[brown, Mesh → False, ColorFunction → ColorData["SouthwestColors"],
PlotRange → {1, ngray}, ImageSize → Small]]

Out[525]=

In[526]:= For[iter = 1, iter ≤ 10, iter++, T = 0.25;
For[j1 = 1, j1 ≤ size size, j1++, {i, j} = RandomInteger[{1, size}, 2];
avg = {brown〚next[i], j〛,

brown〚i, next[j]〛, brown〚i, previous[j]〛, brown〚previous[i], j〛};
brown〚i, j〛 = gibbsdraw[avg, T]〚1〛;];

gg];

Out[526]= $Aborted

"Drawing" a pattern sample
Was it a true sample? Drawing true samples means that we have to allow sufficient iterations so that we 
end up with images whose frequency corresponds to the model. How long is long enough?

Denoising, and grouping features contingent on lower level input

A MRF can be constrained by image data. For example, suppose the true image is corrupted by noise. 
Fidelity to input image data can be constrained by prior assumptions about what the true image should 
be.

Alternatively, the nodes s could represent some useful world property to be estimated, such as a materi-
al’s intrinsic reflectivity (or surface color).
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Appendix

Rejection sampling with uniform proposal distribution
The uniform distribution doesn’t cover the whole range of the target distribution, but may be good 
enough.

M = 4;

p𝒟 = MixtureDistribution[{2, 1},
{NormalDistribution[], NormalDistribution[2, 1 /∕ 4]}];

q𝒟2 = UniformDistribution[{-−3, 3}];
gq𝒟 = Plot[{M *⋆ PDF[q𝒟2 , x]}, {x, -−3, 4}, Filling → Axis, PlotRange → {-−5, 6}];

Clear[u, x];
u := RandomVariate[UniformDistribution[]];
x := Module[{n}, n = 1;

While[Abs[xr = RandomVariate[q𝒟2]] > 3, xr;
n++]; Return[xr]];

samples = Table[If[(u < PDF[p𝒟, x0 = x] /∕ (M *⋆ PDF[q𝒟2, x0])), x0, Null], {10 000}];
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gH = Histogram[samples, 48, "PDF", PlotRange → {{-−3, 4}, {0, .7}}]

gp𝒟 = Plot[{PDF[p𝒟, x]}, {x, -−5, 6}, Filling → Axis, PlotRange → {-−3, 4}];
Show[{gH, gp𝒟, gq𝒟}]
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