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Introduction

Belief propagation

We also computed marginal distributions in the previous lecture’s example of belief propagation. Belief 
propagation is a general technique which can be used to compute marginal distributions and to do MAP 
estimation. We looked at a very specific example. In particular, our goal was to calculate the marginals:

p(yi | y1
*⋆ , ...), where yi represented the depth of an interpolated surface, and yj

*⋆ represent the 

measurements of the depth. In our case, the distributions were gaussian. Thus each marginal told us 
the most probable depth (the mean) and the degree of uncertainty (standard deviation). In our example 
we had only two data points, one at each end. The rest of the depths were interpolated based on a prior 
smoothness constraint that encouraged nearby depths to be the same. The result was a “compromise” 
between what the data “said” and what the prior “thought” answers should usually look like:

This was the final result. To get there, the challenge was to make our best guess of the surface 
depth given that: 

1) We didn’t have data everywhere. The stereogram was “sparse”; 
2) When we did have depth measurements, they were noisy. 

We arrived at the result using belief propagation, which is an iterative method where one updates 
marginal distributions at each node by receiving and passing messages between neighboring nodes. If 
there are no loops in the graph, belief propagation provides an exact solution.



Previously...

...a brief review of what is needed today

Natural patterns are complex, and in general it is difficult and often impractical to build a detailed quanti-
tative generative model. But natural inputs, such as sounds and images,  do have regularities, and we 
can get insight into the problem by considering how various factors might produce them.

One way to begin simplifying the problem is to note that not all variables have a direct influence on each 
other. So draw a graph in which lines only connect variables that influence each other.  We use directed 
graphs to represent conditional probabilities.
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The the graph specifies how to decompose the joint probability:
 p[F, C, Is, Ic ] = p[ Ic | C ] p[C | F ] p[Is | F ] p[F ]

Basic rules: Condition on what is known, integrate out what you don't care about.

Condition on what is known:
Given a state of the world S, and inputs I, the "universe" of possibilities is:

p (S, I)

If we know I (i.e. the visual system has measured some image feature I), the joint can be turned into a 
conditional (posterior):

p (S I) = p (S, I) /∕ p (I)

Integrate out what we don't care about
Let Sprimary be the variables we care about, Ssecondary the ones we don’t (also called “noise” or con-
founding variables or nuisance variables or generic variables). 

We don't care to estimate the noise (or other generic, nuisance, or secondary variables):

p Sprimary I = 
Snoise

p Sprimary, Ssecondary I,

or if continuous = 
Ssecondary

p Sprimary, Ssecondary I ⅆSsecondary

This is the "integrating out" or "marginalization" step. Decisions are then based on the marginals. 

Summary of the fruit & color classification example 

Pick most probable fruit AND color--
We want to maximize the probability of getting the right fruit and the right color. Both fruit and 

color are primary variables.
--Answer "red tomato"

Pick most probable color
We want to maximize the probability of getting the right color, and don’t care about which fruit it 

is. Color is primary, fruit type is secondary.
So sum over (marginalize) the fruit type variable to get the marginal p(color | measurements)

--Answer "red"

Pick most probable fruit
We want to maximize the probability of getting the right fruit, and don’t care about what color it 

is. Fruit type is primary, and color is secondary.
So sum over (marginalize) the material color variable to get the marginal p(fruit | measurements)

--Answer "apple"
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Pick most probable fruit
We want to maximize the probability of getting the right fruit, and don’t care about what color it 

is. Fruit type is primary, and color is secondary.
So sum over (marginalize) the material color variable to get the marginal p(fruit | measurements)

--Answer "apple"

Today

Generalize the notion of what it means to “care about” a variable. Leads us to Bayesian decision the-
ory.

Showing how Bayesian decision theory relates to neural network and machine learning

Set neural network supervised learning  in the context of various statistical/machine learning methods

Bayesian Decision Theory: Utility
How to generalize optimal inference to include different degrees of importance in task requirements?

Bayes Decision theory, loss, and risk

We'd now like to generalize the idea of "integrating out" unwanted variables to allow us to put weights 
on how important a variable is for a task.

Consider a simple discrete decision task in which there is a measurement and one has to decide 
whether to accept or reject an hypothesis.This is the classic problem of signal detection.

Imagine a noisy image and you have to decide whether it is a human face or not. There are two ways of 
being correct and two ways of being wrong.

If there really is a face there, and you decide “yes”--that is called a “hit” (or true positive).
If there really is a face there, and you decide “no”, that is a miss (also called a false negative). 
If there really is not a face there, and you decide “yes there is a face”--that is called a “false 

alarm” 
(also called a false positive). 

If there really is not a face there, and you decide “no”, that is a correct rejection (or true nega-
tive).

But sometimes getting the benefits of getting the right answer has to be considered in light of the costs 
of the different types of errors. The costs of certain kinds of errors (e.g. a high cost to false alarms) can 
affect the decision criterion.

For example, a health professional might say that since stress EKG's have about a 30% false alarm 
rate, follow-up tests aren’t worth doing. The cost of a false alarm is high in dollars, with the resulting 
follow-ups, angiograms, etc.. And there is some increased risk to the patient of extra unnecessary tests.  
But, of course, false alarm rate isn't the whole story, and one should ask what the hit rate (or alterna-
tively the miss rate) is. If the miss rate is about 10%, from the patient's point of view, the cost of a miss 
is very high, one's life. So a patient's goal would not be to minimize error rate per se (i.e. probability of a 
mis-diagnosis, which in effect gives equal weights to both kinds of errors), but rather to minimize a 
measure of subjective cost that puts a very high cost on a miss, and low cost on a false alarm.
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is very high, one's life. So a patient's goal would not be to minimize error rate per se (i.e. probability of a 
mis-diagnosis, which in effect gives equal weights to both kinds of errors), but rather to minimize a 
measure of subjective cost that puts a very high cost on a miss, and low cost on a false alarm.

Bayes Decision theory, loss, and risk in perception
Although decision theory in vision has traditionally been applied to analogous trade-offs that are more 
cognitive than perceptual, the concept of utility is relevant in many aspects of perception. Perception 
has implicit, unconscious trade-offs in the kinds of errors that are made. 

For example, image intensities provide  the data that can be used to estimate an object's shape and/or 
estimate the direction of illumination. Accurate object identification often depends crucially on an objec-
t's shape, and the illumination is a confounding (secondary or nuisance) variable. This suggests that 
visual recognition should put a high cost to errors in shape perception, and lower costs on errors in 
illumination direction estimation. 

So the process of perceptual inference depends on task. 

The effect of marginalization in the  fruit example illustrated task-dependence. Now we show how 
marginalization can be generalized through decision theory to model other kinds of goals than error 
minimization (MAP) in task-dependence.

Why do people often report seeing faces in clouds, tree bark, shower curtains, on mars, in pancakes?

Perhaps it is because the social cost of a false alarm is low compared to the cost of a miss, which is 
high. If you see a face in a tree trunk, you might be alarmed, but as the saying goes, “better safe than 
sorry”. 

Bayes Decision theory provides tools to model  performance as a function of utility.
Some terminology. The terms state, hypothesis, signal  are essentially the same--to represent the 
random variable (which could be vector or list) indicating the state of the world--the "state space". We 
often assume that the decision, d,  of the observer maps directly to state space, d->s.  E.g. I estimate 
that an object is 10 feet away.

We now clearly distinguish the decision space from the state or hypothesis space, and introduce the 
idea of a loss L(d , s), which is a number representing the cost of making the decision d, when the 
actual state is s. Loss could be between like variables, such as the cost of estimating a distance of 10 
feet when it is actually 11 feet away. But it could also represent the cost of a decision or action that 
relies on the true distance. E.g. the cost of choosing an initial velocity (call it d) of a bean bag intended 
to hit a target 11 feet away.

As we’ve seen in sensory processing, often we can't directly measure the true value s, and we can only 
infer it from observations, e.g. a sensory or image measurement x, through a posterior p(s|x).

Thus, given an observation  x, we define a risk function that represents the average loss over signal 
states s:
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infer it from observations, e.g. a sensory or image measurement x, through a posterior p(s|x).

Thus, given an observation  x, we define a risk function that represents the average loss over signal 
states s:

R (d; x) = 
s

L (d, s) p (s x)

This suggests a decision rule: α𝛼(x)=argmin
d

 R(d;x) for that particular x. 

But there could be many x’s and not all x are equally likely. This suggests a decision rule that minimizes 
the expected risk averaged over all observations:

R (α) = 
x

R (d; x) p (x)

Loss functions determine standard inference choices
We won't show them all here, but with suitable choices of likelihood, prior, and loss functions, we can 
derive standard estimation procedures (maximum likelihood, MAP, estimation of the mean) that mini-
mize risk as special cases.

For the MAP estimator, 

R (d; x) = 
s

L (d, s) p (s x) = 
s

(1 -− δd,s) p (s x) = 1 -− p (d x)

where as we've seen before, δd,sis the discrete analog to the Dirac delta function--it is zero if d≠s, and 
one if d=s. (See KroneckerDelta[ ] )

Thus minimizing risk with the loss function L = (1 -− δd,s)is equivalent to maximizing the posterior, p(d | 
x). Choose d that maximizes the posterior effectively penalizes all errors equally.

What about marginalization? You can see from the definition of the risk function, that this corresponds 
to a uniform loss: 

L = - 1. 

We don't care how bad (or good) the values of the marginalized variables are, so we given all combina-
tions of d and s the same constant negative loss value L(d,s) =  -1. So for L(d2,s2) = -1, minimizing risk 
is quantitatively equivalent to maximizing the marginal p(p(s1 | x)):

R (s1; x) = 
s2

L (d2, s2) p (s1, s2 x)

So for our face recognition example, a really huge error in illumination direction has the same cost as 
getting it right. 

Back again to the fruit color example. With the identical conditional probablistic structure (e.g. graph) 
and probabilities, can one ideal decision maker decide "red tomato" and another "apple"?  Optimal 
classification of the fruit identity required marginalizing over fruit color--i.e. effectively treating fruit color 
identification errors as equally costly...even tho', doing MAP after marginalization effectively means we 
are not explicitly identifying color.
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So for our face recognition example, a really huge error in illumination direction has the same cost as 
getting it right. 

Back again to the fruit color example. With the identical conditional probablistic structure (e.g. graph) 
and probabilities, can one ideal decision maker decide "red tomato" and another "apple"?  Optimal 
classification of the fruit identity required marginalizing over fruit color--i.e. effectively treating fruit color 
identification errors as equally costly...even tho', doing MAP after marginalization effectively means we 
are not explicitly identifying color.

Show that  quadratic loss, L(d,s) = (d-s)^2, is equivalent to estimating the mean

Note on terminology: Is the glass half full or half empty? Above we described utility theory for pes-
simists. You may also see terminology favored by optimists, where “utility” or “gain” = - loss, and 
“expected utility” = - risk. 

Slant estimation example

This section takes a toy version of "real life" problem, and derives a quantitative prediction of ideal 
behavior. 

Estimation

Imagine the top of a coffee mug. It typically has a circular cross-section. However, due to projection, the 
image on your retina is more like an ellipse from most viewpoints. Now imagine it is a "designer coffee 
mug" which has an elliptical cross-section. 

How could you guess the true, i.e. physical 3D shape, from measurements made in the projected 
image? The "aspect" slider below changes the ratio of the major to minor axes of the coffee mug. The 
"y" variable changes the slant of your viewpoint. These two causes determine an image measurement 
x--the height of the projected ellipse in the image (See "Slant" example below).

In[1]:= Manipulate[Graphics3D[
{EdgeForm[], Scale[Cylinder[{{-−.0, -−.01, -−.0}, {.0, .01, .0}}, 1 /∕ 2], {1, 1, d}]},
Boxed → False, ImageSize → Tiny, ViewCenter → {0, 0, 0},
ViewPoint → {0, 10, α}], {{d, 1.0}, .1, 2}, {α, -−20, 20}]

Out[1]=

d

0.348

α

0.6

Let x be the data measurement, i.e. the “stimulus”. It could be measured by height in the projected 
image. In our example below, we’ll assume that x = 1/2. 

We approximate the generative model as: x ≃ d Cos[slant] + noise, where d is the physical height of the 
disk in 3D, and slant is the inclination relative to the viewer.  This approximation is reasonable when the 
disk size is small relative to the viewing distance. We make the simplifying assumption that the width is 
1, so then d = aspect ratio. 

We’d like to estimate the aspect ratio and the slant. But we have one measurement and two unknowns.
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disk size is small relative to the viewing distance. We make the simplifying assumption that the width is 
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Image 

From: Geisler, W. S., & Kersten, D. (2002). Illusions, perception and Bayes. Nat Neurosci, 5(6), 
508-510.

Introduction
Consider the above figure.

Bayesian ideal observers for tasks involving the perception of objects or events that differ along two 
physical dimensions, such  as aspect ratio and slant, size and distance, or speed and direction of 
motion. When a stimulus is received, the ideal observer computes the likelihood of receiving that stimu-
lus for each possible pair of dimension values (that is, for each possible interpretation). It then multiplies 
this likelihood distribution by the prior probability distribution for each pair of values to obtain the poste-
rior probability distribution—the probability of each possible pair of values given the stimulus. Finally, 
the posterior probability distribution is convolved with a utility function, representing the costs and 
benefits of different levels of perceptual accuracy, to obtain the expected utility associated with each 
possible interpretation. The ideal observer picks the interpretation that maximizes the expected utility. 
(Black dots and curves indicate the maxima in each of the plots.) 

As a tutorial example, the figure was constructed with a specific task in mind; namely, determining the 
aspect ratio (d) of the physical object, and slant (α𝛼) of a tilted ellipse. The data is a measurement (x) of 
the aspect ratio of the image on the retina. The black curve in the likelihood plot shows the ridge of 
maximum likelihood corresponding to the combinations of slant and aspect ratio that are exactly consis-
tent with x=0.5; the other non-zero likelihoods occur because of noise in the image and in the measure-
ment of x. The prior probability distribution corresponds to the assumption that surface patches tend to 
be slanted away at the top and have aspect ratios closer to 1.0. 

The asymmetric utility function corresponds to the assumption that it is more important to have an 
accurate estimate of slant than aspect ratio.
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Bayesian decision theory and learning
Bayesian inference seems completely different from the type of neural network feedforward models 
required to recognize objects. Let’s look at how the Bayesian approach relates to alternative models 
based on neural networks, radial basis functions, or other machine learning methods? Understanding 
this relationship will also provide a justification for Bayes rule and the intuitions behind it.

Let a decision rule to estimate an output S be: S*⋆ = α𝛼(I) and let the loss function (or negative utility) be 
L(α𝛼(I),S). As discussed above, the loss function is the penalty for making the decision α𝛼(I ) when the 
true state is S (e.g., a fixed penalty for a misclassification).

Suppose we have a set of examples  {Ii,Si: i =1,...,N}, then the empirical risk (Vapnik 1998) of the rule 
α𝛼(I) is defined to be:

(1)

For example, empirical risk could be the proportions of misclassifications.

The best decision rule α𝛼*⋆(.) is selected to minimize Remp(α𝛼). For example, the decision rule is chosen to 
minimize the number of misclassifications. Neural networks and machine learning models select rules to 
minimize various forms of Remp(α𝛼).

Now suppose that the samples {Si , Ii} come from a distribution p(S, I ) over the set of training pairs. 
Then, if we have a sufficient number of samples, we can replace the empirical risk by the true risk:

(2)

Note this is just working backwards from what it means to take an average.

Minimizing R(α𝛼) leads to a decision rule that depends on the posterior distribution p(S|I) obtained by 
Bayes rule 
p(S|I) = p(I|S)p(S)/p(I). To see this, we rewrite Equation 2 as
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Note this is just working backwards from what it means to take an average.

Minimizing R(α𝛼) leads to a decision rule that depends on the posterior distribution p(S|I) obtained by 
Bayes rule 
p(S|I) = p(I|S)p(S)/p(I). To see this, we rewrite Equation 2 as

where we have expressed p(S, I) = p(S|I)p(I). So the best decision α𝛼(I) for a specific image I is given by

and depends on the posterior distribution p(S|I). Hence, Bayes arises naturally when you start from the 
risk function specified by Equation 2.

There are two take-home messages:

1) the Bayes posterior p(S|I ) follows logically from trying to minimize the number of misclassifications in 
the empirical risk (provided there are a sufficient number of samples). 

2) it is possible to have an algorithm, or a network, that computes α𝛼(.) and minimizes the Bayes risk but 
that does not explicitly represent the probability distributions p(I|S) and p(S). 
(See

Graphical model for decision theory: A summary
This section shows the common structure shared by three types of inference: 
detection (“is the signal there or not?”), classification (“which signal is it?”), and estimation (“what is the 
quantity?”).
◼ Detection: a =  s',   s’ ∈ {s1, not s '1 }

◼ Classification: a = s' ∈ {s1, s2 , s3, s4 ...}

◼ Estimation: a = s', where s' takes on continuous values

Decisions can be right or wrong regarding a discrete hypothesis (detection, classification), or have 
some metric distance from an hypothesis along a continuous dimensions (estimation). Each decision or 
estimation has an associated loss function. There is a common graphical structure to each type of 
inference.

In the diagram below, we replace the decision variable d, by a more general term a for "action".

The observer model might refer to the input/output model of a human, animal, neural population, or 
neuron. Or it can refer to and ideal observer or ideal agent that minimizes the average loss. An ideal 
agent is called a “normative” model of a process or behavior...i.e. given a description of the problem to 
be solved, what is best solution? Then one asks how an human, animal, neural population, or neuron 
compares.
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Decisions, tasks, and actions

The variables in decision theory have a graphical structure (see Kersten and Mamassian, 2009) which 
determines how to factorize the joint distribution over them, and thus determines a common starting 
point for deriving ideal observers--i.e. decision makers that minimize risk. The graph below formally 
summarizes an observer or "agent". 

How is utility learned and represented by the brain?
Natural loss functions may be "hard-wired", embedded in the architecture. But also adaptive changes 
through learning. The role of reward.

Supervised learning: neural networks, statistics, & machine 
learning 

Relationship of neural networks to methods of statistics/regression and machine learning. 

Rationale: The brain is complicated. Good to understand bottom-up, from neurons to behavior. But also 
good to understand top-down, from behavior to quantitative models with as few free parameters as 
possible. But with a view to plausible neural networks. We don’t know enough about neurons to know 
how a given behavior is implemented with  specific neural network. 

A good idea to try the simplest model first.

Logistic regression, and the generalized linear model
The single (weight) layer perceptron is a special case of logistic regression, which in turn is a special 
case of a generalized linear model. Logistic regression has been studied by statisticians since the 
1950s. 

The starting point is wanting to model a binary response Y (think action potential on or off) by the 
conditional probability: 

P(Y=1 | X=x ), 
where X are the input features. Let’s assume that

P(Y=1 | X=x ) = p(x;w)

for some parameters w. How to model this function p? 

As we’ve done before, let’s assume we want a linear function. But over what function of p? 

p(x) = w.x + b has problems because the left side is bounded between 0 and 1, and the right side is 
unbounded. Log p(x) = w.x + b may seem nice because adding input features multiplies probabilities, 
but is bounded on only one side. A solution is to model log odds as a linear function:

Log p(x)
1-−p(x)

= w.x + b

p(x) = 1
1+e-−(w.x + b)
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Log p(x)
1-−p(x)

= w.x + b

p(x) = 1
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Looking familiar? This says that the probability of Y=1 is determined by taking a linear weighted sum of 
the inputs plus b (think bias) and deciding “yes” if this is bigger than zero. This is a linear classifier. This 
is also the probabilistic update rule we used for the Boltzmann machine. 

To make things look even more familiar let’s calculate the expected value of  Y=1 (of a neuron firing). 
First note that we can write the probability of Y= yi= 1 or 0 as:

p(yi x) = eyi (w.x + b)

1+e(w.x + b)

Then the probability of firing, i.e. yi = 1 is:

p(yi = 1 x) = 1
1+e-−(w.x + b)  = σ𝜎(w.x + b)

By definition, the average rate is:

∑yi=0
1 yi p (yi x) = 0 × p(yi = 0 x) + 1×p(yi = 1 x) = σ𝜎(w.x + b)

This is stage 1 and 2 of our original generic neuron model.

The logistic regression model can be extended to multiple class decisions.

These models in turn can be viewed as special cases of generalized linear models. 

Note: The general linear model is different! It really is linear. The generalized linear model is in general 
not. For applications of the generalized linear model to computational neuroscience,  see Pillow (2007).

The single layer perceptron seems pretty simple, but...
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The logistic regression model can be extended to multiple class decisions.

These models in turn can be viewed as special cases of generalized linear models. 

Note: The general linear model is different! It really is linear. The generalized linear model is in general 
not. For applications of the generalized linear model to computational neuroscience,  see Pillow (2007).

The single layer perceptron seems pretty simple, but...

K nearest neighbor classification
is even simpler.  k nearest neighbors or k-NN for short. Has no problem with Xor. 
We return to this in a demo below.

Fisher linear discriminant
Find a projection that minimizes the within-class variance, while maximizing the between-class variance.

Support vector machines

Naive Bayes

http://en.wikipedia.org/wiki/Naive_Bayes_classifier

And others, Random Forest, AdaBoost, ...
This link also has a concise description of k-NN. 

http://en.wikipedia.org/wiki/Random_forest

Nearest neighbor demonstration: “random Xor”
Define 𝒟 to be a mixture distribution of bivariate normals

𝒟 = MixtureDistribution[{1, 1, 1, 1},
{MultinormalDistribution[{0, 0.}, {{1., 0}, {0, 1.}}],
MultinormalDistribution[{0, 10.}, {{1., 0}, {0, 1.}}],
MultinormalDistribution[{10, 0.}, {{1., 0}, {0, 1.}}],
MultinormalDistribution[{10, 10.}, {{1., 0}, {0, 1.}}]}];

Here’s a sample:

RandomVariate[𝒟]

{9.53876, 9.56682}

We can generate 100 samples:

somedata = Table[RandomVariate[𝒟], {100}];

And then artificially assign labels.

Change below for Xor, Or...And...

labels = Which[EuclideanDistance[#, {0, 0}] < 5, 0,
EuclideanDistance[#, {0, 10}] < 5, 1, EuclideanDistance[#, {10, 0}] < 5,
1, EuclideanDistance[#, {10, 10}] < 5, 0] & /∕@ somedata;
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ListPlot[somedata]

5 10

5

10

We can color the plots with the labels:

colorf = Blend[{{0, Blue}, {1, Red}}, #] &
pl = Graphics[MapThread[{colorf[#1], Point[#2]} &, {labels, somedata}],

Axes → True, AspectRatio → 1]

Blend[{{0, Blue}, {1, Red}}, #1] &

5 10
-−2

2

4

6

8

10

12

Estimate nearest neighbor boundaries
Now run through lots of points inside {{0,10},{0,10}}. For each point find the k nearest neighbors, and 
count how many have labels of 1 (i.e. how many dots are “blue”). Plot up the count numbers. 

nf2[x_, k_] := Total[
Nearest[Flatten[Table[{somedata[[i]] → labels[[i]]}, {i, 1, 100}], 1], x, k]] /∕ k;

DensityPlot[nf2[{x, y}, 10], {x, 0, 10}, {y, 0, 10}, PlotPoints → 100]

If the number of neighbors with label= +1 is bigger than k/2, output 1, otherwise 0. 
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k = 1;
DensityPlot[If[nf2[{x, y}, k] > 1 /∕ 2, 1, 0], {x, 0, 10}, {y, 0, 10}, PlotPoints → 20]

k=1 and Voronoi diagrams

Nearest neighbor regression
“If something is similar to something else in one respect, it is likely to be similar in another respect.”

Fishers linear discriminant demo

Initialize

Read in Statistical Add-in packages:

Off[General::"spell1"];
<< "MultivariateStatistics`";
<< "ComputationalGeometry`"

Discriminant functions

Let's build our geometric intuitions of what a simple perceptron unit does by viewing it from a more 
formal point of view. Perceptron learning is an example of nonparametric statistical learning, because it 
doesn't require knowledge of the underlying probability distributions generating the data (such distribu-
tions are characterized by a relatively small number of "parameters", such as the mean and variance of 
a Gaussian distribution). Of course, how well it does will depend on the generative structure of the data. 
Much of the material below is covered in Duda and Hart (1978).

Linear discriminant functions: Two category case

A discriminant function, g(x) divides input space into two category regions depending on whether g(x)>0 
or g(x)<0. (We've switched notation, x=f). The linear case corresponds to the simple perceptron unit we 
studied earlier:

g (x) = w.x + w0

where w is the weight vector and w0 is the (scalar) threshold (sometimes called bias, although this 
"bias" has nothing to do with statistical "bias"). 
Discriminant functions can be generalized, for example to quadratic decision surfaces: 
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where w is the weight vector and w0 is the (scalar) threshold (sometimes called bias, although this 
"bias" has nothing to do with statistical "bias"). 
Discriminant functions can be generalized, for example to quadratic decision surfaces: 

g (x) = w0 + 
i=1

wi xi + 
i=1


j=1

wij xi xj

where x = {x1,x2,x3...}. We've seen how g(x)=0 defines a decision surface which in the linear case is  a 
hyperplane. 
Suppose x 1and x2 are vectors, with endpoints sitting on the hyperplane, then their difference is a vector 
lying in the hyperplane

w.x1 + w0 = w.x2 + w0
w.(x1 -− x2) = 0

so the weight vector w is normal to any vector lying in the hyperplane. Thus w determines how the 
plane is oriented. The normal vector w points into the region for which g(x)>0, and -w points into the 
region for which g(x)<0.

Let x be a point on the hyperplane. If we project x onto the normalized weight vector x.w/|w|, we have 
the normal distance of the hyperplane from the origin equal to:

w.x /∕ w = -−w0 /∕ w

Thus, the threshold determines the position of the hyperplane.

One can also show that the normal distance of x to the hyperplane is given by:
g (x) /∕ w

So we've seen that: 1) disriminant function divides the input space by a hyperplane decision surface; 2) 
The orientation of the surface is determined by the weight vector w; 3) the location is determined by the 
threshold w0; 4) the discriminant function gives a measure of how far an input vector is from the hyper-
plane.
The figure summarizes the basic properties of the linear discriminant.
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Clear[w1, w2, w, w0];
Manipulate[
(*⋆ x0={2,1};*⋆)
w = {w1, w2}; wn = w /∕ Norm[w];
g[x_] := {w1, w2}.x + w0;
gg = Plot[Tooltip[

x2 /∕. Solve[{w1, w2}.{x1, x2} + w0 ⩵ 0, x2], "discriminant"], {x1, -−1, 3}];
ggg = Graphics[g[Dynamic[MousePosition["Graphics"]]]];
Show[{gg, Graphics[Inset["g[x]=", {1.6, 2}]],

Graphics[Inset[ToString[g[x0]], {2, 2}]], Graphics[
{Tooltip[Arrow[{{0, 0}, w}], "w"], Tooltip[Arrow[{{0, 0}, (-−w0 /∕ Norm[w]) *⋆ wn}],

"-−w0/∕|w|"], Tooltip[{Arrow[{{0, 0}, x0}]}, "x"],
Tooltip[{Arrow[{x0, x0 -− wn *⋆ g[x0] /∕ Norm[w]}]}, "g(x)/∕|w|"]}]},

PlotRange → {{-−1, 3}, {-−1, 3}}, AxesOrigin → {0, 0}, Axes → True,
AspectRatio → 1, ImageSize → Medium],

{{w0, -−2.5}, -−6, 3}, {{w1, 1}, 0, 3}, {{w2, 2}, 0, 3},
{{x0, {2, 1}}, Locator}]

w0

w1

w2

g[x]= 1.5934

-−1 1 2 3

-−1

1

2

3

Multiple classes

Suppose there are c classes. There are a number of ways to define multiple class discriminant rules.  
One way that avoids undefined regions is:
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Suppose there are c classes. There are a number of ways to define multiple class discriminant rules.  
One way that avoids undefined regions is:

gi (x) = wi.x + wi0, i = 1, ..., c

Assign x to the ith class if : gi (x) > gj (x) for all j ≠ i.

(Adapted from Duda & Hart, 1973)

It can be shown that this classifier partitions the input space into simply connected convex regions. This 
means that if you connect any two feature vectors belonging to the same class by a line, all points on 
the line are in the same class. Thus this linear classifier won't be able to handle problems for which 
there are disconnected clusters of features that all belong to the same class. Also, from a probabilistic 
perspective, if the underlying generative probability model for a given class has multiple peaks, this 
linear classifier won't do a good job either.

Task-dependent Dimensionality reduction

Motivation

Later, when we consider the problem of dimensionality reduction, we will take another look at hyper-
planes. But here the idea will be to find hyperplanes onto which we can project our input data, and from 
there divide up the hyperplane into decision regions. The idea is that the original input space may be 
impractically huge, but if we can find a subspace (hyperplane) that preserves the distinctions between 
categories as well as possible, we can make our decisions in smaller space. We will derive the Fisher 
linear "discriminant".

This is closely related to the psychology idea of finding "distinctive" features. E.g. consider bird identifica-
tion. If I want to discriminate cardinals from other birds in my backyard, I can make use of the fact that 
(males) cardinals may be the only birds that are red. So even tho' the image of a bird can have lots of 
dimensions, if I project the image on to the "red" axis, I can do fairly well with just one number. How 
about male vs. female human faces?
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Fisher's linear "discriminant"

Generative model: two nearby gaussian classes
Define two bivariate base distributions

(ar = {{1, 0.99}, {0.99, 1}};
ndista = MultinormalDistribution[{0, -−1}, ar];)
(br = {{1, .9}, {.9, 2}};
ndistb = MultinormalDistribution[{0, 1}, br];)

Find the expression for the probability distribution function of ndista

pdf = PDF[ndista, {x1, x2}]

1.12822 ⅇ
1

2
(-−x1 (50.2513 x1-−49.7487 (x2+1))-−(x2+1) (50.2513 (x2+1)-−49.7487 x1))

Use Mean[ ] and CovarianceMatrix[ndista] to verify the population mean and the covariance matrix of 
ndistb

Mean[ndistb]

{0, 1}

Covariance[ndista]

{{1, 0.99}, {0.99, 1}}

Try different covariant matrices. Should they be symmetric? Constraints on the determinant of ar, br?
Make a contour  plot of the PDF ndista

pdfa = PDF[ndista, {x1, x2}];
ContourPlot[pdfa, {x1, -−3, 3}, {x2, -−3, 3}, PlotPoints → 64, PlotRange → All]
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nsamples = 500;
a = Table[Random[ndista], {nsamples}];
ga = ListPlot[a, PlotRange → {{-−8, 8}, {-−8, 8}},

AspectRatio → 1, PlotStyle → Hue[0.2`], DisplayFunction → Identity];
b = Table[Random[ndistb], {nsamples}];
gb = ListPlot[b, PlotRange → {{-−8, 8}, {-−8, 8}},

AspectRatio → 1, PlotStyle → Hue[0.6`], DisplayFunction → Identity];
Show[ga, gb, DisplayFunction → $DisplayFunction]

-−5 5

-−5

5

Use Mean[ ] to find the sample mean of  b. Whats is the sample covariance of b?

Mean[b]

{-−0.0634543, 0.930223}

Covariance[b]

{{1.05063, 0.957104}, {0.957104, 1.98301}}

Try out different projections of the data by varying the slope (m) of the 
discriminant line

m = -−2 /∕ 3;
wnvec = {1, m} /∕ Sqrt[1 + m^2];

{{x, y}}.{n1, n2}
Map[#1 *⋆ {n1, n2} &, {{x, y}}.{n1, n2}]

{n1 x + n2 y}

{{n1 (n1 x + n2 y), n2 (n1 x + n2 y)}}
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aproj = (#1 wnvec &) /∕@ (a.wnvec);
gaproj = ListPlot[aproj, AspectRatio → 1,

PlotStyle → Hue[0.3`], DisplayFunction → Identity];
bproj = (#1 wnvec &) /∕@ (b.wnvec);
gbproj = ListPlot[bproj, AspectRatio → 1,

PlotStyle → Hue[0.7`], DisplayFunction → Identity];
Show[ga, gb, gaproj, gbproj, DisplayFunction → $DisplayFunction,
AspectRatio → Automatic]

-−5 5

-−5

5

By trial and error, find a value of m that separates the classes well along the projection line. Plot out the marginal distributions relative to this line.

Calculate the "signal-to-noise" ratio along the projection line.  Do this by taking the difference between 
the means divided by the square root of the product of the standard deviations along the line.

Mean[aproj]

{0.473876, -−0.315917}

Theory for simple 2-class case 
(see Duda and Hart for general case)

A measure of the separation between the projections is the difference between the means:
w.(ma -− mb)
and

ma =
1

N


i=1

N

x, summed over the N x' s from class a

mb =
1

M
x, summed over the M x' s from class b

where w (wnvec) is the unknown unit vector along the discriminant line .

In our case above, the vector difference between the means is:

Mean[a] -− Mean[b]

{0.0831499, -−1.92741}
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and the difference between the means projected onto a discriminant line is:

wnvec.(Mean[a] -− Mean[b])

1.13832

To improve separation, we can't just scale w, because the noise scales too. 

We'd like the difference between the means to be large relative to the variation for each class. We can 
define a measure of the scatter for the projected samples in say class a (a==1), by:


y∈class a

(y -− ma)2

where mais the sample mean of the points from class a projected onto discriminant line and y=w.x 
Or in terms of the Mathematic example:

Apply[Plus, aproj -− wnvec.Mean[a]];

The total scatter S is defined by the sum of the scatters for both classes (a and b). 

S = 
y∈class a

(y -− ma)2 + 
y∈class b

(y -− mb)2

If we divide the above number by the total number of points, we have an estimate of the variance of the 
combined data along the projected axis.

We now have the basic ingredients behind intuition for the Fisher linear discriminant. We'd like to find 
that w for which J:

J (w) =
ma -− m


b

2

S
=

w.(ma -− mb) 2

S

is biggest. We want to maximize the difference between the projected class means, while minimizing 
the dispersion of the data on the projected line.

One can show that S = wT.SW.w, where

SWis measure of within-class variation called the within-class scatter matrix:

SW = 
i=1

2


x∈Class i

(x -− mi) (x -− mi)T

For the numerator, a measure of between class variation is the between-class scatter matrix:

SB = (m1 -− m2).(m1 -− m2)T

and the difference between the projected means can be show to be:

ma -− m

b

2 = wT.SB.w

Find w (corresponding to slope) to maximize the criterion function

J (w) =
wT.SB.w

wT.SW.w

Answer:

w = SW-−1.(ma -− mb)
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Demo: Finding Fisher's linear discriminant

normalize[x_] := x /∕ Sqrt[x.x];

ma = Mean[a];
mb = Mean[b];

Sa = Sum[Outer[Times, a[[i]] -− ma, a[[i]] -− ma], {i, 1, nsamples}];
Sb = Sum[Outer[Times, b[[i]] -− mb, b[[i]] -− mb], {i, 1, nsamples}];
Sw = Sa + Sb;
wldf = normalize[Inverse[Sw].(ma -− mb)]

{0.697928, -−0.716168}

aproj = (#1 wldf &) /∕@ (a.wldf);
gaproj = ListPlot[aproj, AspectRatio → 1,

PlotStyle → Hue[0.3`], DisplayFunction → Identity];
bproj = (#1 wldf &) /∕@ (b.wldf);
gbproj = ListPlot[bproj, AspectRatio → 1,

PlotStyle → Hue[0.7`], DisplayFunction → Identity];
Show[ga, gb, gaproj, gbproj, DisplayFunction → $DisplayFunction]
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We started off with a 2-dimensional input problem and turned it into a 1-D problem. For the n-dimen-
sional case, see Duda and Hart.
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Compare with the principal component axes

c = Join[a, b];
ListPlot[c, PlotRange → {{-−8, 8}, {-−8, 8}}]
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g1 = ListPlot[c, PlotRange → {{-−8, 8}, {-−8, 8}},
AspectRatio → 1, DisplayFunction → Identity];

auto = Covariance[c]
eigvalues = Eigenvalues[auto]
eigauto = Eigenvectors[auto]

{{1.09252, 0.999432}, {0.999432, 2.48674}}

{3.00816, 0.571092}

{{0.462554, 0.886591}, {-−0.886591, 0.462554}}

gPCA = Plot[{eigauto[[1,2]]/∕eigauto[[1,1]] x,
eigauto[[2,2]]/∕eigauto[[2,1]] x},

{x,-−4,4}, AspectRatio-−>1,
DisplayFunction-−>Identity,
PlotStyle-−>{RGBColor[.2,0,1]}];
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Show[g1, gPCA, DisplayFunction → $DisplayFunction]
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How does the principal component (biggest variance) compare with the Fisher discriminant line?

SVMs and Kernel methods

Initialize

Read in  Add-in packages:

Off[General::"spell1"];
<< "ErrorBarPlots`";
<< "MultivariateStatistics`";

Ellipsoid::shdw :
Symbol Ellipsoid appears in multiple contexts MultivariateStatistics`, System`; definitions in context 

MultivariateStatistics` may shadow or be shadowed by other definitions. )

Make sure the SVM package is downloaded in the default directory

SetDirectory[NotebookDirectory[]]

/∕Users/∕kersten/∕Sites/∕kersten-−lab/∕courses/∕Psy5038WF2014/∕Lectures/∕Lect_15

<< MathSVMv7`

We assume a simple perceptron TLU to classify vector data x into one of two classes depending on the 
sign of g(x):

decision(x) = sign(w.x + b).
Given g (x) = w.x + b, recall that g(x)/||w|| is the distance of a data point x from a plane defined by g(x) 
= 0. In support vector machines, the goal is to find the separating plane (i.e. find w and b) that is as far 
as possible from any of the data points. The intuition is that this will minimize the probability of making 
wrong classifications when given new data at some future point. Formally, we want to solve"
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Given g (x) = w.x + b, recall that g(x)/||w|| is the distance of a data point x from a plane defined by g(x) 
= 0. In support vector machines, the goal is to find the separating plane (i.e. find w and b) that is as far 
as possible from any of the data points. The intuition is that this will minimize the probability of making 
wrong classifications when given new data at some future point. Formally, we want to solve"

max(w,b)mini dΠw,b, xi,

where d(Πw,b, xi) = g(x) /∕ || w ||, i.e.

d(Πw,b, xi) = g(x) /∕ || w || = w.xi + b /∕ || w ||
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Two-class data (black and grey dots), their optimal separating hyperplane (continuous line), and support 
vectors (circled in blue). This is an example output of the SVMPlot function in MathSVM. The width of 
the “corridor” defined by the two dotted lines connecting the support vectors is the margin of the optimal 
separating hyperplane. (From Nilsson et al., 2006)

The Primal Problem
It can be shown that the optimal separating hyperplane solving (1) can be found as the solution to the 
equivalent optimization problem 

minw,b
1
2
||w ||2

subject to yiwT xi + b ≥ 1,

Typically, equality will hold for a relatively small number of the data vectors. These data are termed 
support vectors. The solution (w, b) depends only on these specific points, and in effect contain all the 
information for the decision rule. The "dual problem".

A Simple linear SVM Example (from Nilsson et al. 2006)

Here's a demo of a simple SVM problem. It uses the add on package MathSVMv7 written by Nilsson et 
al. 
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Here's a demo of a simple SVM problem. It uses the add on package MathSVMv7 written by Nilsson et 
al. 
len = 20;
X = Join[

RandomReal[NormalDistribution[-−2, 1], {len /∕ 2, 2}],
RandomReal[NormalDistribution[2, 1], {len /∕ 2, 2}]];

y = Join[Table[1, {len /∕ 2}], Table[-−1, {len /∕ 2}]];

We use the simple SVM formulation  provided in MathSVM by the SeparableSVM function.

τ = 0.01;
α = SeparableSVM[X, y, τ]

{0, 0, 0, 0.137456, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.137456, 0, 0, 0, 0, 0}

{0, 0, 0.190548, 0, 0, 0, 0, 0, 0, 0, 0.00155191, 0, 0, 0, 0, 0, 0, 0, 0, 0.188996}

SeparableSVM[{{-−0.270935, -−2.65218}, {-−1.95276, -−2.52008}, {-−1.89739, -−1.07845},
{-−0.763816, -−2.32397}, {-−0.88129, -−0.999857}, {-−2.13166, -−0.312347},
{-−0.675034, -−3.00938}, {-−3.05368, -−2.05241}, {-−4.04021, -−2.05777},
{-−1.08124, -−2.69893}, {2.10368, 0.889012}, {1.99685, 2.99536},
{2.99501, 2.22825}, {0.724624, 2.59584}, {3.77872, 2.63434}, {0.657296, 1.73201},
{0.841787, 1.65132}, {1.93301, 1.91092}, {3.3824, 2.3385}, {1.41159, 1.72466}},

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -−1, -−1, -−1, -−1, -−1, -−1, -−1, -−1, -−1, -−1}, 0.01]

{0, 0.222806, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.126342, 0.0964638, 0, 0, 0, 0, 0, 0, 0}

In the output figure below, the solid line marks the optimal hyperplane, and dotted lines mark the width 
of the corridor that joins support vectors (highlighted in blue).
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SVMPlot[α, X, y]

-−1.0 -−0.5 0.5 1.0

-−1.5

-−1.0

-−0.5

0.5

1.0

SVMPlot[
SeparableSVM[{{-−0.270935, -−2.65218}, {-−1.95276, -−2.52008}, {-−1.89739, -−1.07845},

{-−0.763816, -−2.32397}, {-−0.88129, -−0.999857}, {-−2.13166, -−0.312347},
{-−0.675034, -−3.00938}, {-−3.05368, -−2.05241}, {-−4.04021, -−2.05777},
{-−1.08124, -−2.69893}, {2.10368, 0.889012}, {1.99685, 2.99536},
{2.99501, 2.22825}, {0.724624, 2.59584}, {3.77872, 2.63434}, {0.657296, 1.73201},
{0.841787, 1.65132}, {1.93301, 1.91092}, {3.3824, 2.3385}, {1.41159, 1.72466}},

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -−1, -−1, -−1, -−1, -−1, -−1, -−1, -−1, -−1, -−1}, 0.01],
{{-−0.270935, -−2.65218}, {-−1.95276, -−2.52008}, {-−1.89739, -−1.07845},
{-−0.763816, -−2.32397}, {-−0.88129, -−0.999857}, {-−2.13166, -−0.312347},
{-−0.675034, -−3.00938}, {-−3.05368, -−2.05241}, {-−4.04021, -−2.05777},
{-−1.08124, -−2.69893}, {2.10368, 0.889012}, {1.99685, 2.99536},
{2.99501, 2.22825}, {0.724624, 2.59584}, {3.77872, 2.63434}, {0.657296, 1.73201},
{0.841787, 1.65132}, {1.93301, 1.91092}, {3.3824, 2.3385}, {1.41159, 1.72466}},

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -−1, -−1, -−1, -−1, -−1, -−1, -−1, -−1, -−1, -−1}]

-−3 -−2 -−1 1 2 3

-−3

-−2

-−1

1

2

3

A Nonlinear Example: Using Kernels (from Nilsson et al. 2006)

What if the data are not linearly separable? The essential idea is to map the data (through some non-
linear mapping, e.g. polynomial) to a higher-dimensional "feature" space to find the optimal hyperplane 
separating the data. The dot product gets replaced by a non-linear kernel function. For example, the 
polynomial kernel is given by:
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What if the data are not linearly separable? The essential idea is to map the data (through some non-
linear mapping, e.g. polynomial) to a higher-dimensional "feature" space to find the optimal hyperplane 
separating the data. The dot product gets replaced by a non-linear kernel function. For example, the 
polynomial kernel is given by:

If d = 1, we have the standard dot product, but for d = 2, 3, etc.. we have polynomial functions of the 
elements of the vectors x. See Nilsson et al, and paper by Jäkel (2009) for more information on kernels. 

Here is a demo for an application for nonlinear classification . We'll use second-degree kernel:

PolynomialKernel[x, y, 2]

(1 + x.{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -−1, -−1, -−1, -−1, -−1, -−1, -−1, -−1, -−1, -−1})2

Some synthetic data which is not linearly separable.

len = 50;
X = Join

RandomReal[NormalDistribution[0, 0.03], {len /∕ 2, 2}],
Table

RandomReal[NormalDistribution[i /∕ len -− 1 /∕ 4, 0.01]],

RandomNormalDistribution(2 i /∕ len -− 1 /∕ 2)2 -− 1 /∕ 6, 0.01,

{i, len /∕ 2};
y = Join[Table[1, {len /∕ 2}], Table[-−1, {len /∕ 2}]];
SVMDataPlot[X, y, PlotRange → All]

-−0.2 -−0.1 0.1 0.2

-−0.15

-−0.10

-−0.05

0.05

We use the KernelFunction to specify the kernel type and run SeparableSVM[].

τ = 0.01;
pk = PolynomialKernel[#1, #2, 2] &;
α = SeparableSVM[X, y, τ, KernelFunction → pk]

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3865.71, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1424.3, 0, 0, 0, 0, 0, 0, 0, 0, 29.2739, 0, 0, 4.32638, 0, 0, 0, 0, 2407.8, 0, 0, 0, 0}

When visualizing the results, SVMPlot can use the kernel functions to draw any nonlinear decision 
curves.
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SVMPlot[α, X, y, KernelFunction → pk]

-−0.15 -−0.10 -−0.05 0.05 0.10 0.15

-−0.14

-−0.12

-−0.10

-−0.08

-−0.06

-−0.04

-−0.02

Clear[len, X, y, α, pk]

More information
The wiki entry for SVMs has a fairly good introduction (As of fall 2014). 

To go to the source see Vapnik (1995)

http : // svm.first.gmd.de/

Demo links:

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

And for applications of kernel methods more generally, to cognitive and neuroscience see reviews by 
Jäkel et al. (2006; 2009). 

© 1998, 2001, 2003, 2005, 2007, 2009, 2014  Daniel Kersten, Computational Vision Lab, Department of Psychology,  University of 
Minnesota.

Mathematica’s Classify[ ] function demo
Here we adapt code from one of Mathematica’s examples to apply it to the noisy Xor problem.

Define  clusters sampled from normal distributions:

sampledata[center_] :=
RandomVariate[MultinormalDistribution[center, IdentityMatrix[2]], 30];

Generate clusters, assign labels to each and plot;
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clusters = sampledata /∕@ {{0, 0}, {0, 10}, {10, 0}, {10, 10}};
colors = {Blue, Yellow, Yellow, Blue};
ListPlot[clusters, PlotStyle → Darker@colors]

2 4 6 8 10 12 14
-−2

2

4

6

8

10

12

Dimensions[clusters]

{4, 30, 2}

The finagling in the next line is to assign all of the 2D points to their corresponding colors, and then 
running the associations through the Classifier.

Flatten[Thread[Transpose[clusters][[#]] → colors] & /∕@ Range[30], 1]

c3 = Classify[Flatten[Thread[Transpose[clusters][[#]] → colors] & /∕@
Range[Dimensions[clusters][[2]]], 1]]

ClassifierFunction Method: NearestNeighbors
Number of classes: 2



How do probabilities get calculated? 

Normal@c3[{2, 7}, "Probabilities"][[2]]

0.97619

plotprob[method_] := Module[{},
c3 =
Classify[Flatten[Thread[Transpose[clusters][[#]] → colors] & /∕@ Range[30], 1],
Method → method];

DensityPlot[Normal@c3[{x, y}, "Probabilities"][[1]], {x, 0, 10}, {y, 0, 10}]
];
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plotprob /∕@ {"LogisticRegression", "NearestNeighbors",
"RandomForest", "SupportVectorMachine", "NaiveBayes"}

 , ,

, , 

plotprobabilities[method_] := Module[{c, proba},
c3 = Classify[Flatten[

Thread[Transpose[clusters][[#]] → colors] & /∕@ Range[30], 1], Method → method];
proba = Table[Append[{x, y}, #] & /∕@ Lookup[c3[{x, y}, "Probabilities"], colors],

{x, 0, 10, .5}, {y, 0, 10, .5}];
proba = Flatten[#, 1] & /∕@ Transpose[proba, {3, 2, 1, 4}];
Show[
ListPlot3D[proba, PlotRange → {0, 1}, PlotLabel → method],
ListPointPlot3D[Map[Append[#, 1] &, clusters, {2}],
PlotStyle → ({Opacity[.9], #} & /∕@ colors)], ImageSize → 250

]
];
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plotprobabilities /∕@ {"LogisticRegression", "NearestNeighbors",
"RandomForest", "SupportVectorMachine", "NaiveBayes"}

 ,

, ,

, 

Appendix

Mathematica code to illustrate Bayesian estimation of surface slant and aspect 
ratio

This code was used to produce the figure in a Nature Neuroscience News & Views article by Geisler 
and Kersten (2002). (See paper by Weiss, Simoncelli and Adelson.)
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This code was used to produce the figure in a Nature Neuroscience News & Views article by Geisler 
and Kersten (2002). (See paper by Weiss, Simoncelli and Adelson.)

Initialization

npoints = 128;
loaspect = 0;
hiaspect = 5;
$TextStyle = {FontFamily → "Helvetica", FontSize → 14}
Fswitch = True;

{FontFamily → Helvetica, FontSize → 14}

PadMatrix[mat_, gray_, n_] := Module[{d},
d = Dimensions[mat];
Return[PadRight[PadLeft[mat, {d[[1]] + n, d[[2]] + n}, gray],

{d[[1]] + 2 *⋆ n, d[[2]] + 2 *⋆ n}, gray]];
];

Init delta

gdelta[x_, w_] := 1 -− (UnitStep[x + w /∕ 2] -− UnitStep[x -− w /∕ 2]);
(*⋆Plot[gdelta[x,1],{x,-−10,10},PlotRange→{0,2}];*⋆)

Calculate Likelihood function and its maxima

(We've used the notion "prim" and "sec" for primary and secondary variables. But below rather than 
integrating out the secondary variable, we use a loss function to soften the notion of what is important 
and what is not. We''ll require more precision of the slant estimate than of the aspect ratio.)

Image model determines the constraint, x = d Cos[alpha] + noise, determines 
the likelihood

Assume noise has a Gaussian distribution with standard deviation = 1/5;
Assume an image measurement (x=1/2)
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likeli[alpha_, x_, d_, s_] :=
Exp[-−((x -− d Cos[alpha])^2) /∕ (2 s^2)] (1 /∕ Sqrt[2 Pi s^2])

likeli[α, x, d, s]
x = 1 /∕ 2; s = 1 /∕ 5;
like = likeli[α, x, d, s]

ⅇ
-−

(x-−d Cos[α])2

2 s2

2 π s2

5 ⅇ-−
25

2

1

2
-−d Cos[α]

2

2 π

Plot likelihood 

gdlike = DensityPlotlike, {d, loaspect, hiaspect}, α, -−
π

2
,

π

2
, PlotPoints → npoints,

Mesh → False, ColorFunction → (RGBColor[1 -− (0.1+ 0.8 #1), 1, 1] &),

FrameLabel → {"aspect ratio, d", "slant angle, α"}

Plot likelihood maxima

There is no unique maximum. The likelihood function has a ridge

gtemp29 = ListPlotTable
N[x]

Cos[alpha]
, alpha, alpha, -−

π

2.
,

π

2.
, 0.001,

ImageSize → Small, Axes → False
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Plot likelihood together with maximum along the ridge

gdlike = DensityPlotlike, {d, loaspect, hiaspect}, α, -−
π

2
,

π

2
, PlotPoints → npoints,

Mesh → False, ColorFunction → (RGBColor[1 -− (0.1`+ 0.8` #1), 1, 1] &),

FrameLabel → {"aspect ratio, d", "slant angle, α"}, Frame → Fswitch;

glikemax = Show[gdlike, gtemp29]

Calculate the prior, and find its maximum

The prior probability distribution corresponds to the assumption that surface patches tend to 
be slanted away at the top and have aspect ratios closer to 1.0. We model the prior by a 
bivariate gaussian:
PDF[MultinormalDistribution[{μα, μd}, R], {α, d}];

R1 = {{.25, 0}, {0, .25}};
ndist3 = MultinormalDistribution[{Pi /∕ 4., 1}, R1];
pdf3 = PDF[ndist3, {α, d}];
FindMinimum[-−pdf3, {{d, 0}, {α, 1}}]
gdprior = DensityPlot[pdf3^.4, {d, loaspect, hiaspect},

{α, -−Pi /∕ 2, Pi /∕ 2}, PlotPoints → npoints, Mesh → False,
ColorFunction -−> (RGBColor[1, 1 -− (0.1 + 0.8 #), 1 -− (0.1 + 0.8 #)] &),
FrameLabel → {"aspect ratio, d", "slant angle, α"}];

{-−0.63662, {d → 1., α → 0.785398}}
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Show[gdprior, Graphics[{PointSize[0.05`], Point[{1, 0.785`}]}]]

Calculate the posterior, and find its maximum

More precisely, we'll calculate a quantity proportional to the posterior. The posterior is equal to the 
product of the likelihood and the prior, divided by the probability of the image measurement, x. Because 
the image measurement is fixed, we only need to calculate the product of the likelihood and the prior:

Clear[α, x, d, s];
likeli[α, x, d, s] *⋆ PDF[MultinormalDistribution[{μα, μd}, R], {α, d}];

gdpost = DensityPlot[(pdf3 *⋆ like)^.2, {d, loaspect, hiaspect}, {α, -−Pi /∕ 2, Pi /∕ 2},
ColorFunction -−> (RGBColor[1, 1, 1 -− (0.01 + 0.9 #)] &), PlotPoints → npoints,
Mesh → False, FrameLabel → {"aspect ratio, d", "slant angle, α"}, Frame → Fswitch]

R1 = {{.25, 0}, {0, .25}};
ndist3 = MultinormalDistribution[{Pi /∕ 4., 1}, R1];
pdf3 = PDF[ndist3, {α, d}]
FindMinimum[-−pdf3 *⋆ like, {{d, 1}, {α, 1}}]

0.63662 ⅇ
1

2
(-−(0.+4. (-−1+d)) (-−1+d)-−(0.+4. (-−0.785398+α)) (-−0.785398+α))

{-−1.17378, {d → 0.881475, α → 0.923647}}
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Show[gdpost, Graphics[{PointSize[0.05], Point[{0.88, 0.92}]}]]

Compute expected loss--i.e. risk, and find its minimum
The expected loss is given by the convolution of the loss with the posterior:

            risk=posterior*loss, where * means convolve; utility= - risk

Loss function

The asymmetric utility function corresponds to the assumption that it is more important to have an 
accurate estimate of slant than aspect ratio. The loss function reflects the task. Accurate estimates of 
slant may be more important for an action such as stepping, whereas an accurate estimation of aspect 
ratio may be more important for determining object shape (circular coffee mug top or not?). If one were 
to grasp an object that is elliptical in shape with say, the thumb on the bottom and finger on top, this 
task could require accurate estimates of both slant and aspect ratio.

maploss = Table(1 -− gdelta[x1d, 0.25`]) (1 -− gdelta[x2d, 2]),

x1d, -−3, 3,
6

npoints
, x2d, -−3, 3,

6

npoints
;

gdloss = ListDensityPlot[maploss, Mesh → False,
ColorFunction → (RGBColor[1 -− (0.01+ 0.9 #1), 1 -− (0.01+ 0.9 #1), 1] &), Frame → False]
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Convolve posterior with loss function

Convert function description to numerical arrays for convolving

post = Transpose[Table[like *⋆ pdf3, {d, loaspect, hiaspect,
(hiaspect -− loaspect) /∕ npoints}, {α, -−Pi /∕ 2, Pi /∕ 2, Pi /∕ npoints}]];

post2 = PadMatrix[post, 0, 16];
maploss2 = PadMatrix[maploss, 0, 16];
offset = Floor[Dimensions[maploss2][[1]] /∕ 2];
tempcon = ListConvolve[maploss2, post2, {-−1, -−1}];
risk2 = RotateLeft[tempcon, {offset, offset}];
risk =

Take[risk2, {17, Dimensions[risk2][[1]] -− 16}, {17, Dimensions[risk2][[1]] -− 16}];

grbrisk = ListDensityPlot[Map[#^1. &, risk]^.2,
Mesh → False, ColorFunction -−> (RGBColor[1, 1, 1 -− (0.01 + 0.9 #)] &),
FrameLabel → {"aspect ratio, d", "slant angle, α"}, Frame → Fswitch];

Position[(risk), Max[(risk)]]

{{108, 27}}

Show[grbrisk, Graphics[{PointSize[0.05], Point[{27, 108}]}]]
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