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Introduction

Last time

From energy to probability. From Hopfield net to Boltzmann machine. We showed how the Hopfield 
network, which minimized an energy function, could be viewed as finding states that increase probabil-
ity. 

Neural network computations from the point of view of statistical inference
By treating neural network learning and dynamics in terms of probability computations, we can begin to 
see how a common set of tools and concepts can be applied to:
1. Inference: as a process which makes the best guesses given data. E.g. find H such that  p(H | data) 
is biggest.
2. Learning: a process that discovers the parameters of a probability distribution. E.g. find weights such 
that 
p(weights | data) is biggest
3. Generative modeling: a process that generates data from a probability distribution. 
E.g. draw samples from p(data | H)

Today

Boltzmann machine: learning the weights
Probability and statistics overview
Introduction to drawing samples

Boltzmann Machine: Learning
We've seen how a stochastic update rule improves the chances of a network evolving to a global 
minimum. Now let's see how learning weights can be formulated as a statistical problem.



The Gibbs distribution again
Suppose T is fixed at some value, say T=1. Then we could update the network and let it settle to ther-
mal equilibrium, a state characterized by some statistical stability, but with occasional jiggles. Let Vα 

represent the vector of neural activities. The probability of a particular state α is given by:

Recall that the second equation is the normalization constant the ensures that the total probability (i.e. 
over all states) is 1.

We divide up the units into two classes: hidden and visible units. Values of the visible units  are deter-
mined by the environment. 

If the visible units are divided up into "stimulus" and "response" units, then the network should learn 
associations (supervised learning). 

If they are just stimulus units, then the network observes and organizes its  interpretation of the stimuli 
that arrive (unsupervised learning).

Our goal is to have the hidden units discover the structure of the environment. Once learned, if the 
network was left to run freely using stochastic sampling, the visible units would take on values that 
reflect the structure of the environment they learned. In other words, the network has a generative 
model of the visible structure.

Consider two probabilities over the visible units, V:

P(V) - probability of visible units taking on certain values determined by the environment.
P'(V) - probability that the visible units take on certain values while the network is running at 

thermal equilibrium. 

If the hidden units have actually "discovered" the structure of the environment, then the probability P should 
match P'. How can one achieve this goal? Recall that for the Widrow-Hoff and  error backpropagation rules, we 
started from the constraint that the network should minimize the error between the network's prediction of the 
output, and the actual target values supplied during training. We need some measure of the discrepancy between 
the desired and target states for the Boltzmann machine.  The idea is to construct a measure of how far away two 
probability distributions are from each other--how far P is from P'. One such function is the Kullback-Leibler (KL) 
measure or relative entropy (also known as the  "Gibbs G measure").

Then we need a rule to adjust the weights so as to bring P' -> P in the sense of reducing the KL mea-
sure G. Ackley et al. derived the following rule for updating the weights so as to bring the probabilities 
closer together. Make weight changes ΔTijsuch that:
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where pij is the probability of Vi and Vj both being 1 when environment is clamping the states at thermal 
equilibrium averaged over many samples. p'ij is the probability of Vi and Vj being 1 when the network is 
running freely without the environment at equilibrium.

Derive an expression for the KL divergence between two univariate gaussian distributions of means u1 and u2, each with a standard deviation of 
sd.

Relatives and descendants of Boltzmann machines
As noted earlier, convergence through simulated annealing can be impractically slow. The mean field 
approximation is one technique used to improve convergence (cf. Ripley, 1996). Mean field methods 
come from physics where one simplifies the problem by replacing node values with averages, similar to 
the transition from the discrete to analog Hopfield networks.

Boltzmann machines can be considered a special case of belief networks which we will study later 
(Ripley, 1996). Learning, as you might imagine, is also very slow because of the need to collect lots of 
averages before doing a weight update.

The Boltzmann machine learns to approximate the joint probability distribution on a set of binary ran-
dom variables where some of the variables can be designated inputs, others outputs, and others hid-
den. Learning large scale joint distributions is known to be a hard problem in statistics. We’ll discuss the 
general problem later.  The success of the Boltzmann machine has been limited to small scale prob-
lems. One successor to the Boltzmann machine is the Helmholtz machine and its derivatives (Dayan et 
al., 1995; Hinton, 1997). 

A special case called Restricted Boltzmann Machines (RBMs) have been shown to be very useful for a 
number of problems. RBMs are divided up into layers of units that have  connections between nearby 
layers but not within layers. RBMs have been used to discover efficient representations of inputs that 
can then be fine tuned for a task, such as digit classification, using backpropagation (Hinton, G. E., & 
Salakhutdinov, R. R., 2006). 

See also sleep-wake algorithms & “deep belief” networks references.

For a computational example of an application to learning and inference, see:

http://www.cs.toronto.edu/~hinton/digits.html

And for a related neuroscience study see: Berkes, P., Orbán, G., Lengyel, M., & Fiser, J. (2011). Sponta-
neous cortical activity reveals hallmarks of an optimal internal model of the environment. Science, 
331(6013), 83–87

Probability and statistics overview
To understand modern neural network theory, we need to understand probablistic modeling.Why?

Basic rules of probability

Joint probabilities. Suppose we know everything there is to know about a set of variables (A,B,C,D,E). 
What does this mean in terms of probability? It means that we know the joint distribution, p(A,B,C,D,E). 
In other words, for any particular combination of values (A=a,B=b, C=c, D=d,E=e), we can calculate, 
look up in a table, or determine some way or another the number p(A=a,B=b, C=c, D=d,E=e), for any 
particular instances, a, b, c, d, e.
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Joint probabilities. Suppose we know everything there is to know about a set of variables (A,B,C,D,E). 
What does this mean in terms of probability? It means that we know the joint distribution, p(A,B,C,D,E). 
In other words, for any particular combination of values (A=a,B=b, C=c, D=d,E=e), we can calculate, 
look up in a table, or determine some way or another the number p(A=a,B=b, C=c, D=d,E=e), for any 
particular instances, a, b, c, d, e.

Rule 1: Conditional probabilities from joints: The product rule
Probability about an event changes when new information is gained.

Prob(X given Y) = p(X|Y)

p(X Y ) =
p(X , Y )

p(Y )

p(X , Y ) = p(X Y ) p(Y )

The form of the product rule is the same for densities as for probabilities.

Independence

Knowledge of one event doesn't change the probability of another event. This can be expressed in 
terms
of conditional probability as:

p(X)=p(X|Y) which by the product rule is:

p(X,Y)=p(X)p(Y)

Rule 2: Lower dimensional probabilities from joints: The sum rule (marginalization)

p(X ) =
i=1

N

p(X , Y (i))

p(x) = 
-−∞

∞
p(x, y) ⅆy

These distributions on the left are called marginal distributions. They are obtained by “summing over” or 
“integrating out” the variables we are not interested in.

Rule 3: Bayes' rule
From the product rule, and since p[X,Y] = p[Y,X], we have:

p(Y X ) =
p(X Y ) p(Y )

p(X )
, and using the sum rule, p(Y X ) =

p(X Y ) p(Y )

∑Y p(X , Y )

Developing intutions: Bayes inference applied to visual perception

Consider the problem of interpreting the line drawing shown in the upper left part of the figure below.
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What is the “data”? What is the perceptual hypothesis? What are the probablilistic relationships 
between them? If we can answer these questions, we can first pose problems of perception as prob-
lems of perceptual inference. Then perhaps later we can investigate the possibility that a neural network 
is solving the perceptual inference problem.

p[hypothesis data] =
p[data hypothesis] p[hypothesis]

p[data]

p[S I] =
p[I S] p[S]

p[I]

Usually, we will be thinking of the “hypothesis” term as a random variable over the hypothesis space, 
and “data” comes from some measurements. So for visual inference, S = hypothesis (the scene), and 
I = data  (the image data), and I = f(S). In perceptual inference, optimal decisions are based on: 

p(S|I),  

the posterior probability of the scene given the image, i.e. what you get when you condition the joint by 
the image data. The posterior is often what we'd like to base our decisions on, because as we discuss 
below,  picking the hypothesis S which maximizes the posterior (i.e. maximum a posteriori or MAP 
estimation) minimizes the average probability of error.

p(S) is the prior probability of the scene.

p(I|S) is the likelihood of the scene. Note this is a probability over values of I, but not of S. So ∫ p(I|S)dI 
= 1. 

A MAP decision based on p(S|I) does not necessarily involve explicit computations of the likelihood and 
prior as in Bayes rule. Such inferential processes are sometimes called “discriminative”. Generative 
inferences rely on explicit knowledge of how the data might have been generated, as represented by 
the likelihood p(I | S), perhaps together with a model of the prior, p(S).

In general, S is a high-dimensional description of scene parameters, and I is a vector of image measure-
ments.  

One of the challenges of visual inference is that the data by itself is insufficient to decide the value(s) of 
the hypothesis. In other words, the image measurements I don’t uniquely determine the scene descrip-
tion S. A visual system must make a good guess. To do this well, it needs to take into account all the 
ways the image might have been generated--i.e. the causes of image measurements, together with a 
model of the prior probabilities of those causes. To give some intuition, here is an example of how the 
likelihood and priors represent constraints in Bayesian visual inference:

Lect_13_Probability.nb     5



Usually, we will be thinking of the “hypothesis” term as a random variable over the hypothesis space, 
and “data” comes from some measurements. So for visual inference, S = hypothesis (the scene), and 
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p(S) is the prior probability of the scene.

p(I|S) is the likelihood of the scene. Note this is a probability over values of I, but not of S. So ∫ p(I|S)dI 
= 1. 

A MAP decision based on p(S|I) does not necessarily involve explicit computations of the likelihood and 
prior as in Bayes rule. Such inferential processes are sometimes called “discriminative”. Generative 
inferences rely on explicit knowledge of how the data might have been generated, as represented by 
the likelihood p(I | S), perhaps together with a model of the prior, p(S).

In general, S is a high-dimensional description of scene parameters, and I is a vector of image measure-
ments.  

One of the challenges of visual inference is that the data by itself is insufficient to decide the value(s) of 
the hypothesis. In other words, the image measurements I don’t uniquely determine the scene descrip-
tion S. A visual system must make a good guess. To do this well, it needs to take into account all the 
ways the image might have been generated--i.e. the causes of image measurements, together with a 
model of the prior probabilities of those causes. To give some intuition, here is an example of how the 
likelihood and priors represent constraints in Bayesian visual inference:

We will return to examples of Bayesian inference in perception later. But first, let’s go over some basic 
definitions in statistics. 

Statistics

The definitions and properties of statistics are important to know about in the context of what it means to 
have “image data”. Image data can come in many forms, such as the raw intensity values in a picture, 
or some simple measurement like how far a pixel intensity is from its neighbors. Often one needs to 
summarize some quantity in a complex pattern, like an image. These summaries often take the form of 
statistics. Statistics like the mean (or expectation) and variance can be sufficient to characterize a whole 
distribution, such as a gaussian. This assumption is used in parametric statistics. But other times there 
is no simple distribution to characterize the underlying probablistic generative process. Then we might 
represent the distribution in terms of frequencies with respect to some relevant measurements. A 
histogram of image intensities is an example--i.e. how frequently do graylevels 0, 1, 2, ...255 occur in 
the image?

Expectation & variance
Analogous to center of mass:

Definition of expectation or average:

Average[X] = X = E[X] = Σ x[i] p[x[i]] ~∼ 
i=1

N

xi /∕ N

μ𝜇 = E[X ] = x p(x) dx

Some rules:

E[X+Y] = E[X] + E[Y]
E[aX] = a E[X]
E[X+a] = a + E[X]

Definition of variance:

σ𝜎2 =Var[X] = E[[X-μ𝜇]^2] = ∑j=1
N pjxj -− μ𝜇2 ~∼ ∑i=1

N (xi -− μ )2  N

Var[X ] = (x -− μ𝜇)2 p(x) dx

Standard deviation:

σ = Var[X]

Some rules:

Var[X] = EX2 -− E[X]2

Var[aX] = a2 Var[X]
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Covariance & Correlation
Covariance:

Cov[X,Y] =E[[X - μ𝜇X ] [Y - μ𝜇Y ] ]

Correlation coefficient:

ρ[X, Y] =
Cov[X, Y]

σX σY

Covariance matrix
Suppose now that X is a vector: {X1, X2,...} 

Then we can describe the covariance between pairs of elements of X:
Σ ij= cov[Xi,Xj] =E[[Xi - μ𝜇Xi ] [Xj - μ𝜇X j ] ] ~∼ ∑n=1

N (xi
n -− μ𝜇Xi ) xj

n -− μ𝜇Xi 
T N

In matrix form, the covariance can be written:
Σ = cov[X]= E[ (X-E[X])(X -− E[X ])T ]

In other words, the covariance matrix can be approximated by the average outer product. In the lan-
guage of neural networks, it is proportional to a Hebbian matrix memory of pair-wise relationships.

Independent random variables
If p(X,Y) = p(X)p(Y), then

E[X Y] = E[X] E[Y] (uncorrelated)
Cov[X, Y] = ρ[X, Y] = 0
Var[X + Y] = Var[X] + Var[Y]

If two random variables are uncorrelated (ρ𝜌[X,Y] = 0), they are not necessarily independent. 

Two random variables are said to be orthogonal if their correlation is zero.

Degree of  belief vs., relative frequency

What is the probability that it will rain tomorrow? Assigning a number between 0 and 1 is assigning a 
degree of belief. These probabilities are also called subjective probabilities. It is nonsense to think of 
“repeating” tomorrow to see how frequently it rains.

What is the probability that a coin will come up heads? In this case, we can imagine actually doing an 
experiment to find out. Flip the coin n times, and count the number of heads, say h[n], and then set the 
probability, p ≃  h[n]/n -- the relative frequency (which is a statistic). Of course, if we did it again, we may 
not get the same estimate of p. One solution often given is:

p = lim
n→∞

h(n)

n

A problem with this, is that in general there is no guarantee that a well -− defined limit exists.

In some domains we may have enough data that we can measure statistics, and model probabilities of 
both inputs and outputs. So the relative frequency interpretation seems reasonable. In practice, the 
dimensions of many problems in perception, cognition, language, and memory are so high, that it is 
impractical to do this. 

Suppose you wanted to estimate the joint probabilities of 6 letter combinations from a database of 
english words (or worse yet, 8x8 pixel images). There are over 300 million possible combinations of 26 
letters--i.e. over 300 million "bins" for your word counts. Most of these would have zero or near-zero 
entries, and it would be hard to get good estimates of most of the joint probabilities of 6 letter combina-
tions. Although there are ways to estimate "objective priors" in high-dimensional spaces (see below), 
once we use the statistical framework to model perception, say of a particular cue, then probabilities 
can become more like  "subjective unconscious beliefs". From a modeling perspective, one can treat a 
specific prior as an assumed ingredient, and test to see how well the model accounts for the data, and 
how well it predicts new data. If it the model does a poor job empirically, then one can go back and 
question whether an alternative prior could improve the predictions.
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In some domains we may have enough data that we can measure statistics, and model probabilities of 
both inputs and outputs. So the relative frequency interpretation seems reasonable. In practice, the 
dimensions of many problems in perception, cognition, language, and memory are so high, that it is 
impractical to do this. 

Suppose you wanted to estimate the joint probabilities of 6 letter combinations from a database of 
english words (or worse yet, 8x8 pixel images). There are over 300 million possible combinations of 26 
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once we use the statistical framework to model perception, say of a particular cue, then probabilities 
can become more like  "subjective unconscious beliefs". From a modeling perspective, one can treat a 
specific prior as an assumed ingredient, and test to see how well the model accounts for the data, and 
how well it predicts new data. If it the model does a poor job empirically, then one can go back and 
question whether an alternative prior could improve the predictions.

Sidenote: Parametric vs. non-parametrics statistics and neural networks

Principle of insufficient reason

Principle of symmetry
Suppose we have N events, x[1], x[2], x[3],..., x[N] that are all physically identical except for the label. In 
the absence of any other information about these events, it seems reasonable to assume that 

prob(x(1)) = prob(x(2)) = prob(x(3)) = prob(x(N)) =
1

N
In other words, intuition tells us that if we have no additional pertinent data about the events, we should 
assume that they are uniformly distributed. I.e., assume a uniform prior. 

What about the continuous case where there is no reason to assume any particular value at all between 
-∞ and +∞? If one assumes the prior is constant, then it has to approach zero everywhere to make sure 
the sum between -∞ and +∞ is 1...mmm...
A constant value is often assumed anyway, and this is called an improper prior. 

Information theory and Maximum entropy
Information theory provides a powerful extension to the principle of symmetry. Information of event (or 
signal) X is:

Information[X ] = -−log2(p(X ))

The more improbable an event, the more “surprising” it is in some sense, and the more information it 
provides.

Using the definition of expectation above, we can specify the expectation of information (or average 
information), which is called entropy. Entropy of a random variable X with probability distribution p[X] is:

H(X ) = Average(Information[X ]) = -−
X

p(X ) log2(p(X ))

It can be shown that out of all possible probability distributions for our above case, H(X) is biggest for 
the uniform distribution, p(X)=1/N. Maximum entropy is looking like the symmetry principle.

Indeed it turns out that a useful generalization of the principle of symmetry is maximum entropy. For 
example, out of all possible probability distributions of a random variable with infinity range, but with a 
specific mean and standard deviation, the Gaussian is unique in having the largest entropy. If the range 
goes from zero to infinity, and we know the mean, the maximum entropy distribution is an exponential 
(Cover and Thomas).
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It can be shown that out of all possible probability distributions for our above case, H(X) is biggest for 
the uniform distribution, p(X)=1/N. Maximum entropy is looking like the symmetry principle.

Indeed it turns out that a useful generalization of the principle of symmetry is maximum entropy. For 
example, out of all possible probability distributions of a random variable with infinity range, but with a 
specific mean and standard deviation, the Gaussian is unique in having the largest entropy. If the range 
goes from zero to infinity, and we know the mean, the maximum entropy distribution is an exponential 
(Cover and Thomas).

An interesting application of the maximum entropy principle is to learning image textures joint probabili-
ties: p(I[1],..., I[N]), where N is very big, but where one has only a relatively small number of measured 
statistics relative to the number of possible images (which is really huge). The measurements underde-
termine the dimensionality of the probability space--i.e. there are many different probability distributions 
that give the same statistics. So the principle of symmetry, (also called insufficient reason, principle of 
indifference), says to choose the one with the maximum entropy. This provides a way to model high 
dimensional priors. And in fact, this has been done for texture models briefly described in a previous 
lecture (Zhu et al.).  Here is an observed sample:

Here is a synthesized sample after Minimax entropy learning:

In general, it is a hard problem to draw true samples from high dimensional spaces. One needs a 
quantitative model of the distribution and a method such as Gibbs sampling to draw samples.  And in 
the above text example, the sample was not drawn from an explicit probability distribution. The previous 
lecture mentioned an example of an application of texture synthesis to understanding the networks of 
the brain’s visual system, see Freeman, J & Simoncelli, E. P. (2011)

Mathematica functions for multivariate distributions & 
exploring marginals

Later we’ll tackle the problem of drawing samples from high-dimensional, but structured distributions. 
But here we’ll use Mathematica built-in functions to illustrate some of the above ideas.

Multivariate gaussian probability density

An n-variate multivariate gaussian (multinormal) distribution with mean vector μ𝜇 and covariance matrix Σ 
is denoted Nn (μ𝜇, Σ). The density is:

p (x) =
1

(2 π)n/∕2 Det[Σ]1/∕2
Exp-−

1

2
(x -− μ)T Σ-−1 (x -− μ)

You can read in the Mathematica package which has predefined MultinormalDistribution[μ𝜇, Σ]. 
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(*⋆Needs["MultivariateStatistics`"]*⋆)

Then, for example, you can define the probability density function for mean vector {μ1, μ2}, and 
covariance matrix σ112, ρ *⋆ σ11 *⋆ σ22, ρ *⋆ σ11 *⋆ σ22, σ222, where ρ𝜌 parameterizes correlation.

In[285]:= Σ = σ11
2, ρ *⋆ σ11 *⋆ σ22, ρ *⋆ σ11 *⋆ σ22, σ22

2;
PDF[MultinormalDistribution[{μ1, μ2}, Σ ], {x, y}]

Out[286]=
1

2 π σ11
2 σ22

2 -− ρ2 σ11
2 σ22

2

ⅇ
1

2
-−
5.25423×10-−9 (0.202363-−1. μ1) 1.90323×108 y ρ σ11-−1.90323×10

8 ρ μ2 σ11-−3.85144×10
7 σ22+1.90323×10

8 μ1 σ22

-−1.+ρ2 σ11
2 σ22

-−
5.25423×10-−9 (y-−1. μ2) -−1.90323×108 y σ11+1.90323×10

8 μ2 σ11

-−1.+ρ2 σ11 σ22
2

In[287]:= ⅇ
1

2
-−(y-−μ2)

(y-−μ2) σ11
2

σ11
2 σ22

2 -−ρ2 σ11
2 σ22

2
-−

ρ (x-−μ1) σ11 σ22

σ11
2 σ22

2 -−ρ2 σ11
2 σ22

2
-−(x-−μ1) -−

ρ (y-−μ2) σ11 σ22

σ11
2 σ22

2 -−ρ2 σ11
2 σ22

2
+

(x-−μ1) σ22
2

σ11
2 σ22

2 -−ρ2 σ11
2 σ22

2  2 π σ11
2 σ22

2 -− ρ2 σ11
2 σ22

2

Out[287]= ⅇ
1

2
(-−y+μ2)

(y-−μ2) σ11
2

σ11
2 σ22

2 -−ρ2 σ11
2 σ22

2
-−

ρ (1.29075-−μ1) σ11 σ22

σ11
2 σ22

2 -−ρ2 σ11
2 σ22

2
-−(-−0.40977-−μ1) -−

ρ (y-−μ2) σ11 σ22

σ11
2 σ22

2 -−ρ2 σ11
2 σ22

2
+

(1.22789-−μ1) σ22
2

σ11
2 σ22

2 -−ρ2 σ11
2 σ22

2 

2 π σ11
2 σ22

2 -− ρ2 σ11
2 σ22

2

In[288]:= Σ

Out[288]= σ11
2 , ρ σ11 σ22, ρ σ11 σ22, σ22

2 

In[289]:= Covariance[MultinormalDistribution[{μ1, μ2}, Σ]]

Out[289]= σ11
2 , ρ σ11 σ22, ρ σ11 σ22, σ22

2 

σ11
2 , ρ σ11 σ22, ρ σ11 σ22, σ22

2 

σ11
2 , ρ σ11 σ22, ρ σ11 σ22, σ22

2 

Examples of PDF, CDF

A specific example, MultinormalDistributionμ𝜇, Σ
m1 = {1,1/∕2};
r=(1/∕2)*⋆{{1,2/∕3},{2/∕3,4}};
ndist = MultinormalDistribution[m1, r];
pdf = PDF[ndist, {x1, x2}]

1

4 2 π
3 ⅇ

1

2
-−(-−1+x1) 

9

4
(-−1+x1)-−

3

8
-−

1

2
+x2-−-−

3

8
(-−1+x1)+

9

16
-−

1

2
+x2 -−

1

2
+x2
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GraphicsRow[{g1 = ContourPlot[PDF[ndist, {x1, x2}], {x1, -−3, 3}, {x2, -−3, 3}],
g13D = Plot3D[PDF[ndist, {x1, x2}], {x1, -−3, 3}, {x2, -−3, 3}]}]

Calculating probabilities using the CDF
What is the probability of x1 and x2 taking on values in the region x1 < .5 ⋂ x2 < 2? 
Recall that the cumulative distribution function is given by:

CDF (x1, x2) = 
-−∞

x2


-−∞

x1
p (x1, x2) ⅆx1 ⅆx2

So the answer is the area under the PDF shown below.

grp = RegionPlot[x1 < .5 && x2 < 2, {x1, -−4, 4}, {x2, -−4, 4},
PlotStyle → Directive[Opacity[.25], EdgeForm[], FaceForm[Gray]]];

Show[{ g1, grp}, ImageSize → Small]

We could numerically integrate to find the area. Alternatively, the answer can be found from the built-in 
cumulative distribution function, or CDF. The value corresponds to the height of the contour at {x1, x2} = 
{.5, 2.0}. Move your mouse cursor over the contour plot below near the {.5, 2.0} point.
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gcdf = ContourPlot[CDF[ndist, {x1, x2}], {x1, -−4, 4}, {x2, -−4, 4},ImageSize → Small];
Show[{ gcdf, grp}, ImageSize → Small]

A more precise answer is:

CDF[ndist, {.5, 2.0}]

0.225562

Finding the mode
The mode is the value of the random variable with the highest probability or probability density. For 
discrete distributions, think of it as the most frequent value.

(Sometimes the word “mode” is used to refer to a local maximum in a density function. Then the distribu-
tion is called multimodal. If it has two modes, it is called bimodal.) There may not be a unique mode--the 
uniform distribution is an extreme case of this. 

For the Gaussian case, the mode vector corresponds to the mean vector. But we can pretend we don't 
know that, and use the FindMaximum[] function to find the maximum and the coordinates where the 
max occurs:

FindMaximum[PDF[ndist, {x1, x2}], {{x1, 0}, {x2, 0}}]

{0.168809, {x1 → 1., x2 → 0.5}}

Marginals
Suppose we want the distribution for just x1, PDF[x1] = marginal[x1]. How do we find it?
Integrate PDF[x1, x2] with respect to x2. This is called calculating the marginal distribution of x1. It is 
obtained by integrating out the other variable, x2. Similarly, we can calculate PDF[ x2].

Clear[x1, x2];

marginal[x1_] := 
-−∞

∞

PDF[ndist, {x1, x2}] ⅆx2;

marginal2[x2_] := 
-−∞

∞

PDF[ndist, {x1, x2}] ⅆx1;

What is the mode of PDF[x2]?

FindMaximum[marginal2[x2], {{x2, 0}}]

{0.282095, {x2 → 0.5}}

12     Lect_13_Probability.nb



Now let’s plot up the marginals on top of the contour plot of the joint distribution.

mt = Table[{x1, marginal[x1]}, {x1, -−3, 3, .2}];
g2 = ListPlot[mt, Joined → True, PlotStyle → {Red, Thick}, Axes → False];

mt2 = Table[{x2, marginal2[x2]}, {x2, -−3, 3, .4}];
g3 = ListPlot[mt2, Joined → True, PlotStyle → {Green, Thick}, Axes → False];

theta = Pi /∕ 2;
Show[g1, Epilog → {Inset[g2, {0, -−3}, {0, 0}], Inset[g3, {-−3, 0}, {0, 0},

Automatic, {{Cos[theta], Sin[theta]}, {Sin[theta], -−Cos[theta]}}]}]

Drawing samples

As we've used in earlier lectures, drawing samples is done by:

RandomVariate[ndist]

{1.0705, 0.769877}

{0.936747, 0.146599}

{0.9697, -−0.302945}

or

RandomReal[ndist]

{1.90757, -−0.21533}

{2.05819, 2.35961}

Here’s an example of a “white gaussian noise” image. It is called “white” because there are no correla-
tions between the pixel intensities. Each one is drawn independently of any of the others.
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width = 32;
data = RandomVariate[NormalDistribution[0, 1], width *⋆ width];
Image[Partition[data, width]] /∕/∕ ImageAdjust

Mixtures of gaussians  with MultinormalDistribution[]

Multivariate gaussian distributions are often inadequate to model real-life problems, that for example 
might involve more than one mode or might have non-gaussian properties. One solution is to approxi-
mate more general distributions by a sum or mixture of gaussians.

Clear[mix];
r1=0.4*⋆{{1,.6},{.6,1}};
r2=0.4*⋆{{1,-−.6},{-−.6,1}};
m1 = {1,.5}; m2 = {-−1,-−.5};
ndist1 = MultinormalDistribution[m1, r1];
ndist2 = MultinormalDistribution[m2, r2];

mix[x_,mp_] := mp*⋆PDF[ndist1, x] + (1-−mp)*⋆PDF[ndist2, x];

Manipulate[gg1 = Plot3D[mix[{x1, x2}, mp], {x1, -−2, 2},
{x2, -−2, 2}, PlotRange → Full, ImageSize → Small], {{mp, .2}, 0, 1}]

mp

Mathematica has a built-in function for defining mixture distributions:

𝒟[w_] = MixtureDistribution[{w, 1 -− w}, {MultivariatePoissonDistribution[7, {9, 10}],
MultivariatePoissonDistribution[2, {5, 4}]}];

Manipulate[DiscretePlot3D[PDF[𝒟[w], {x, y}], {x, 0, 30},
{y, 0, 30}, ExtentSize → Full], {w, 0, 1}]

See Zoran and Weiss (2011) for an interesting application of mixture models to discovering visual 
features in natural images.
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See Zoran and Weiss (2011) for an interesting application of mixture models to discovering visual 
features in natural images.

Sampling in low dimensions
We first go over a few basics.

Density mapping theorem

Suppose we have a change of variables that maps a discrete set of x's uniquely to y's:  X->Y.

Discrete random variables
No change to probability function. The mapping just corresponds to a change of labels, so the probabili-
ties p(X)=p(Y).

Continuous random variables
In this case, the form of probability density function changes because we require the probability "mass" 
to be unchanged: p(x)dx = p(y)dy

Suppose, y=f(x)

pY (y) δy = pX (x) δx

Transformation of variables is used in making random number generators for probability densities other 
than the uniform distribution, such as a Gaussian.

Below we’ll need to use the cumulative distribution function: CDF(x) = prob (X < x) = ∫-−∞
x p(X ) ⅆX

Univariate sampling

Making a univariate (scalar) gaussian random number generator: 
We assume we have a random number generator that provides uniformly distributed numbers between 
0 and 1. How can we get numbers that are Gaussian distributed?

Well, the easiest way is to use a built-in function:

RandomVariate[NormalDistribution[0, 1]]

0.726157

but we’d like to better understand some principles behind generating random numbers for a specified 
distribution.

Method 1: Just for Gaussian. Use Central Limit Theorem
If all we want to do is make a Gaussian random number generator from a uniformly distributed genera-
tor, we can use the Central Limit Theorem. The Central Limit Theorem says that the sum of a suffi-
ciently large number of independent random variables drawn from the same underlying distribution (with 
finite mean and variance), will be approximately normally distributed. The approximation gets better as 
the number of samples increases.
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Try the cell below with nusamples = 1, 2, .., 10,...

Manipulatezl = Table 
i=1

nusamples

RandomReal[] -−
nusamples

2
, {1000};

Histogram[zl, ImageSize → Small], {nusamples, 1, 30, 1}

nusamples

Method 2:  Use Density Mapping theorem. More general.
We'll use the density mapping theorem to turn uniformly distributed random numbers RandomReal[] 
into gaussian distributed random numbers with mean =0 and standard deviation =1.
pY (y) δy = pX (x) δx

pY (y)
δy

δx
= pX (x)

Suppose pY (y)=1 (over the unit interval, but zero elsewhere). Then

y (x) = 
-−∞

x
px (x') ⅆx' = P (x)

Thus if we sample from the uniform distribution to get y, x should be distributed according to pX (x). 
To do this, we need a mapping from y->x. This is given by the inverse cumulative distribution, i.e. P-−1(y).
Let's implement this. The quick way is to use Mathematica's built-in function to get the inverse cumula-
tive. 

Method 2a: Applied to Gaussian
InverseErf[ ] is the inverse of :

erf (z) =
2

π

0

z
e-−t2 d t

We can use this to define a function for the inverse cumulative of a gaussian:
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Clear[z];

z[p_] := 2 InverseErf[1 -− 2 p];
Plot[z[y], {y, 0, 1}]

0.2 0.4 0.6 0.8 1.0

-−3
-−2
-−1

1
2
3

binsize = 0.1;
zl = Table[z[RandomReal[]], {5000}];
freq = BinCounts[zl, {-−3, 3, binsize}];
ListPlot[freq, Filling → Axis]

Method 2b: From scratch: Works for almost any low dimensional distribution. 
Suppose we have a discrete representation of any cumulative distribution. How can we generate sam-
ples? For illustration purposes, we'll illustrate the method with a discretization of the Gaussian. 

Our first goal is to produce a discrete approximation to the cumulative gaussian. To review where things 
come from, we'll start with the definition of a Gaussian, and make sure it is normalized.

Integrate[Exp[-−(x -− x0)^2 /∕ (2 *⋆ σ^2) ], {x, -−Infinity, Infinity}]

ConditionalExpression
2 π

1
σ2

, Reσ2 > 0

Let x0=0 and σ𝜎=1:

Plot
ⅇ-−

x12

2

2 π
, {x1, -−4, 4}

-−4 -−2 2 4

0.1

0.2

0.3

0.4

Note that Plot[PDF[NormalDistribution[0,1],x1],{x1,-4,4}]; gives the same thing using the built-in 
normal distribution function.
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Cumulative gaussian

Clear[cumulgauss, x, x1];
cumulgauss[x_] := NIntegrate[Exp[-−(x1^2 ) /∕ 2] /∕ (Sqrt[2 *⋆ Pi]), {x1, -−Infinity, x}]

cumulgauss[Infinity]

1.

We can plot up cumulgauss:

Plot[cumulgauss[x], {x, -−4, 4}]

-−4 -−2 2 4

0.2

0.4

0.6

0.8

1.0

Now make a discrete version of the cumulative distribution:

lcumulgauss = Table[{x, cumulgauss[x]}, {x, -−4.`, 4.`, 0.25`}];
ListPlot[lcumulgauss, Filling → Axis]

Remember the reason we are doing this is to show how we can go from this to drawing samples. I.e. it 
doesn’t have to
be a gaussian at this stage, the cumulative could have come from some arbitrary histogram from data 
gathered elsewhere.

Make inverse cumulative gaussian table
This is a useful trick whenever you want an inverse function, given a discrete representation.

invlcumulgauss = RotateLeft[lcumulgauss, {0, 1}];

To see what this does, evaluate:

{{x1, y1}, {x2, y2}, {x3, y3}}
RotateLeft[{{x1, y1}, {x2, y2}, {x3, y3}}, {0, 1}]

{{x1, y1}, {x2, y2}, {x3, y3}}

{{y1, x1}, {y2, x2}, {y3, x3}}
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ListPlot[invlcumulgauss, Filling → Axis]

Make interpolated function of the inverse cumulative
Another useful trick.

Interpolation works by fitting polynomial curves to the data. Try the test below with various interpolation orders (the default is 3)

test = Interpolation[{{1, 2.}, {2, 4}, {3, 9}, {4, 16}}, InterpolationOrder → 2];
Plot[test[x], {x, 1, 4}]

1.5 2.0 2.5 3.0 3.5 4.0

4
6
8

10
12
14
16

interinvlcumulgauss = Interpolation[invlcumulgauss];

Plot[interinvlcumulgauss[x], {x, 0.01, 0.99}]

0.2 0.4 0.6 0.8 1.0

-−2

-−1

1

2

Draw samples with a standard deviation of Sqrt[10]

Round[10 interinvlcumulgauss[RandomReal[]]]

7

Draw a bunch of samples, and plot up histogram

z = Table[Round[10 interinvlcumulgauss[RandomReal[]]], {10 000}];
domain = Range[-−20, 20];
Freq = (Count[z, #1] &) /∕@ domain;
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ListPlot[Freq, Filling → Axis]

digression...a quick & dirty way to smooth is to do a moving average

ListPlot[MovingAverage[Freq, 6], Filling → Axis]

Plot up cumulative histogram

CumFreq = FoldList[Plus, 0, Freq];
ListPlot[CumFreq, Filling → Axis]

Same thing, with Accumulate[] :

CumFreq = Accumulate[Freq];
ListPlot[CumFreq, Filling → Axis]

Next time

Graphical models and structured distributions
Sampling in higher dimensional spaces

References
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