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Bias/variance

Initialize

‡ Read in  Add-in packages:

Off@General::"spell1"D;
<< "ErrorBarPlots`";
<< "MultivariateStatistics`";

Make sure the SVM package is downloaded in in the default directory

<< MathSVMv7`

SVMs and Kernel methods
As in Lecture 27 (see discriminant functions), we assume a simple perceptron TLU to classify vector data x into one of 
two classes depending on the sign of g(x):

decisionHxL = signHw.x + bL.

Given g HxL = w.x + b, recall that g(x)/||w|| is the distance of a data point x from a plane defined by g(x) = 0. In support 
vector machines, the goal is to find the separating plane (i.e. find w and b) that is as far as possible from any of the data 
points. The intuition is that this will minimize the probability of making wrong classifications when given new data at 
some future point. Formally, we want to solve"

(1)maxHw,bL Imini dIPw,b, xiMM,

where dIPw,b, xiM = gHxL ê »» w »», i.e.

dIPw,b, xiM = gHxL ê »» w »» = w.xi + b ê »» w »»



-2 -1 1 2 3

-3

-2

-1

1

2

3

Two-class data (black and grey dots), their optimal separating hyperplane (continuous line), and support vectors (circled in 
blue). This is an example output of the SVMPlot function in MathSVM. The width of the “corridor” defined by the two 
dotted lines connecting the support vectors is the margin of the optimal separating hyperplane. (From Nilsson et al., 2006)

‡ The Primal Problem

It can be shown that the optimal separating hyperplane solving (1) can be found as the solution to the equivalent optimiza-
tion problem 

(2)
minw,b

1

2
»» w »»2

subject to yiIwT xi + bM ¥ 1,

Typically, equality will hold for a relatively small number of the data vectors. These data are termed support vectors. The 
solution Hw, bL depends only on these specific points, and in effect contain all the information for the decision rule. The 
"dual problem".

A Simple linear SVM Example (from Nilsson et al. 2006)
Here's a demo of a simple SVM problem. It uses the add on package MathSVMv7 written by Nilsson et al. 

len = 20;
X = Join@

RandomReal@NormalDistribution@-2, 1D, 8len ê 2, 2<D,
RandomReal@NormalDistribution@2, 1D, 8len ê 2, 2<DD;

y = Join@Table@1, 8len ê 2<D, Table@-1, 8len ê 2<DD;

We use the simple SVM formulation  provided in MathSVM by the SeparableSVM function.

t = 0.01;
a = SeparableSVM@X, y, tD
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80, 0.222806, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0.126342, 0.0964638, 0, 0, 0, 0, 0, 0, 0<

In the output figure below, the solid line marks the optimal hyperplane, and dotted lines mark the width of the corridor that 
joins support vectors (highlighted in blue).

SVMPlot@a, X, yD
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A Nonlinear Example: Using Kernels (from Nilsson et al. 2006)
What if the data are not linearly separable? The essential idea is to map the data (through some non-linear mapping, e.g. 
polynomial) to a higher-dimensional "feature" space to find the optimal hyperplane separating the data. The dot product 
gets replaced by a non-linear kernel function. For example, the polynomial kernel is given by:

If d = 1, we have the standard dot product, but for d = 2, 3, etc.. we have polynomial functions of the elements of the 
vectors x. See Nilsson et al, and paper by Jäkel (2009) for more information on kernels. 

Here is a demo for an application for nonlinear classification . We'll use second-degree kernel:
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PolynomialKernel@x, y, 2D

H1 + x.81, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1<L2

Some synthetic data which is not linearly separable.

len = 50;
X = JoinA

RandomReal@NormalDistribution@0, 0.03D, 8len ê 2, 2<D,
TableA

9RandomReal@NormalDistribution@i ê len - 1 ê 4, 0.01DD,

RandomANormalDistributionAH2 i ê len - 1 ê 2L2 - 1 ê 6, 0.01EE=,

8i, len ê 2<EE;

y = Join@Table@1, 8len ê 2<D, Table@-1, 8len ê 2<DD;
SVMDataPlot@X, y, PlotRange Ø AllD
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We use the KernelFunction to specify the kernel type and run SeparableSVM[].

t = 0.01;
pk = PolynomialKernel@Ò1, Ò2, 2D &;
a = SeparableSVM@X, y, t, KernelFunction Ø pkD

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4397.44, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 238.421, 0, 0, 736.733, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3022.5, 0, 0, 0, 399.786, 0<

When visualizing the results, SVMPlot can use the kernel functions to draw any nonlinear decision curves.
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When visualizing the results, SVMPlot can use the kernel functions to draw any nonlinear decision curves.

SVMPlot@a, X, y, KernelFunction Ø pkD
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Clear@len, X, y, a, pkD

‡ More information

The wiki entry for SVMs has a fairly good introduction (As of 12/14/2009, ). 

To go to the source see Vapnik (1995)

http : // svm.first.gmd.de/

Demo links:

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

And for applications of kernel methods more generally, to cognitive and neuroscience see reviews by Jäkel et al. (2006; 
2009). The links to the pdfs are in the course syllabus.

Statistical learning, model selection & the bias/variance dilemma
In Lecture 26,  we summarized optimal rules for minimizing risk in Bayesian statistical decision theory, assuming that we 
know the distributions of the generative model. 

But what if we don't? Consider the regression problem, fitting data that may be a complex function of the input.

The problem in general is how to choose the function that both remembers the relationship between x and y, and general-
izes with new values of x.  At first one might think that it should be as general as possible to allow all kinds of maps. 

For example, if one is fitting a curve, you might wish to use a very high-order polynomial, or a back-prop network with 
lots of hidden units. There is a drawback, however, to the flexibility afforded by extra degrees of freedom in fitting the 
data. We can get drastically different fits for different sets of data that are randomly drawn from the same underlying 
process. The fact that we get different fit parameters (e.g. slope of a regression line) each time means that although we 
may exactly fit the data each time, we introduce variation between the average fit (over all data sets) and the fits over the 
ensemble of data sets. We could get around this problem with a huge amount of data, but the problem is that the amount of 
required data can grow exponentially with the order of the fit--an example of the so-called "curse of dimensionality".

On the other hand,  if the function is restrictive, (e.g. straight lines through the origin), then we will get similar fits for 
different data sets, because all we have to adjust is one parameter--the slope. The problem here, is that the fit is only good 
if the underlying process is in fact a straight line through the origin. If it isn't a straight line for instance, there will be a 
fixed error or bias that will never go away, no matter how much data we collect. Statisticians refer to the trade-off between 
simple but biased fits, and complex but data-dependent variation, as the bias/variance dilemma. 

To sum up, lots of parameter flexibility (or lots of hidden units) has the benefit of fitting anything, but at the cost of 
sensitivity to variability in the data set--there is variance  introduced by the fits found over multiple training sets (e.g. of a 
small fixed size). 

A fit with very few parameters is not as sensitive to the inevitable variability in the training set, but can give large constant 
errors or bias  if the data do not match the underyling model. 

There is no general way of getting around this problem, and neural networks are no exception. We  generalized linear 
regression to non-linear fits using error back-propagation. Because back-propagation models can have lots of hidden 
layers with many units and weights, they form a class of very flexible approximators and can fit almost any function. But 
these models can show high variability in their fits from one data set to the next, even when the data comes from the same 
underlying process. Lots of hidden units can mean low bias, but at a high cost in variance.
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errors or bias  if the data do not match the underyling model. 

There is no general way of getting around this problem, and neural networks are no exception. We  generalized linear 
regression to non-linear fits using error back-propagation. Because back-propagation models can have lots of hidden 
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Demonstration of bias/variance for regression
Suppose we have an unknown, underlying generative model given by: p(y|x)p(x). From this we obtain a set of samples 
{xi, yi}, i=1...N. We posit some estimator to fit the data: yi~f(xi). In general, there will be some cost assigned to errors in 
f's ability to predict the y's. E.g. the expected value of the squared difference between the fits and the true expected value 

of y, call it y
fl
. We can write this cost as the sum of two terms:

The first term on the right is the bias (squared), and the second term the variance. The bias is the "constant error" which 
tells us how far off we'll be--could be non-zero  even with an unlimited supply of data. The second term, the "variance", 
tells us how much variation we have in the ensemble of fits f about the average of all the fit, E[f].

Let's represent the expectation of f, E[f], by f
è
 :
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A more general formulation of the bias/variance trade-off, for a risk function R() is:

Use the following link for the notes:

http://gandalf.psych.umn.edu/~kersten/kersten-lab/courses/Psy5038WF2003/MathematicaNotebooks/Lect_27_BiasVari-
ance/biasvarianceNotes.pdf

Let's demonstrate the effects of the bias/variance trade-off by estimating the values of  f
è
 and  y

fl
, given a generative model.

‡ Mathematica's regression package

Go to Help, and find the Linear Regression package. Look up LinearModelFit[]. We are going to use Regress as our 
learning model. We could have used our errro-back prop network, or other learning algorithms that produce a set of fit 
parameters. The principles would be the same.

ff@x_, a_D := a.91, x, x2, x3= + RandomReal@D;

a = 80, 0, 1, 1<;
xd = Table@8x, ff@x, aD<, 8x, -4, 4, 0.1<D;
ListPlot@xd, AxesOrigin Ø 80, 0<, Joined Ø True, ImageSize Ø SmallD
lm = LinearModelFitAxd, 91, x, x2, x3=, xE;

lm@8"ParameterTable", "RSquared"<D
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:

Estimate Standard Error t Statistic P-Value

1 0.561972 0.0453611 12.3888 5.14194µ10-20

x -0.0322744 0.0323481 -0.997723 0.321539
x2 0.990781 0.00618542 160.18 6.0653µ10-99

x3 1.00634 0.00301387 333.902 1.80769µ10-123

, 0.999893>

Learning from one data set
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Learning from one data set

‡ True model

ff@x_, a_D := a.81, x, x^2, x^3<;

‡ Generative data process: true plus some noise

noise = 15;
ffn@x_, a_D := ff@x, aD + 1.5 * RandomReal@8-noise, noise<D;

‡ Choose domain and true model parameters. Calculate a set of samples from true model ffp,  evaluated 

at xp.

xp = Table@x, 8x, -4, 4, 0.5<D;
a = 80, 0, 1, 1<;
ffp = Hff@Ò1, aD &L êü xp;
gffp = ListPlot@Transpose@8xp, ffp<D,

PlotStyle Ø 8PointSize@0.02D, Hue@0.9D<, Joined Ø True, ImageSize Ø SmallD
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‡ Run one experiment to collect y values for data process:

y = Hffn@Ò1, aD &L êü xp;
gy = ListPlot@Transpose@8xp, y<D, PlotStyle Ø 8PointSize@0.02D, Hue@0.6D<,

ImageSize Ø SmallD

-4 -2 2 4
-20

20

40

60

80

‡ Estimate model parameters using polynomial regression. Return model parameters, and predicted 

responses, fsquiggle

xd = Table@8x, ff@x, aD<, 8x, -4, 4, 0.1<D;

aD = LinearModelFitATranspose@8xp, y<D, 91, x, x2, x3=, xE;

fsquiggle = Table@8x, aD@xD<, 8x, -4, 4, 0.5<D;
gfsquiggle = ListPlot@fsquiggle, PlotStyle Ø 8PointSize@0.02D, Hue@0.1D<,

ImageSize Ø SmallD;

Show@gffp, gy, gfsquiggleD
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Repeat the above, and notice how the model parameters and the fit changes. Try changing the basis 
functions used for fitting.

Comparing learning from multiple data sets
We'd like some idea of how learning generalizes depending on model complexity

‡ The "right" model

First, assume by some incredibly lucky guess, we've chosen the right model {x^2, x^3}, and want to find the parameters. 

y = ffn@Ò1, aD & êü xp;

aD2 = LinearModelFitATranspose@8xp, y<D, 9x2, x3=, xE;

fsquiggle = Table@8x, aD2@xD<, 8x, -4, 4, 0.5<D;
gfsquiggle = ListPlot@fsquiggle, PlotStyle Ø 8PointSize@0.02D, Hue@0.1D<,

ImageSize Ø SmallD;
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gffp = ListPlot@Transpose@8xp, ffp<D,
PlotStyle Ø 8PointSize@0.02D, Hue@0.9D<, Joined Ø TrueD;

gsmooth = Plot@Fit@Transpose@8xp, y<D, 8x^2, x^3<, xD ê. x Ø x2,
8x2, -4, 4<D;

Show@gffp, gy, gfsquiggle, gsmoothD
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‡ A simple, but wrong model

But now suppose that we are trying to fit the data with an inappropriate model. In particular, suppose that it is weak, say a 
linear model:

y = ffn@Ò1, aD & êü xp;

aD3 = LinearModelFit@Transpose@8xp, y<D, 81, x<, xD;
fsquiggle = Table@8x, aD3@xD<, 8x, -4, 4, 0.5<D;
gfsquiggle = ListPlot@fsquiggle, PlotStyle Ø 8PointSize@0.02D, Hue@0.1D<,

ImageSize Ø SmallD;
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gffp = ListPlot@Transpose@8xp, ffp<D,
PlotStyle Ø 8PointSize@0.02D, Hue@0.9D<, Joined Ø TrueD;

gy = ListPlot@Transpose@8xp, y<D,
PlotStyle Ø 8PointSize@0.02D, Hue@0.6D<D;

gsmooth = Plot@Fit@Transpose@8xp, y<D, 81, x<, xD ê. x Ø x2, 8x2, -4, 4<D;
Show@gffp, gy, gfsquiggle, gsmoothD
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The bias is the squared difference between the average y values (blue) and the model fits (orange). The variance is the 
squared difference between the predicted responses (blue) and the true (red line). So we can see that the bias is high. The 
variance (represented by the square root of the variance, black points in the graph) is not zero. But how does it compare 
with a model with lots of parameters?

‡ A complex model, with too many parameters

Now let's try over-fitting. (Analogous to having lots of hidden units and/or layers in a non-linear feedforward network).

y = ffn@Ò1, aD & êü xp;
aD4 = LinearModelFit@Transpose@8xp, y<D,

81, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^10, x^11, x^12<, xD;
fsquiggle = Table@8x, aD4@xD<, 8x, -4, 4, 0.5<D;
gfsquiggle = ListPlot@fsquiggle, PlotStyle Ø 8PointSize@0.02D, Hue@0.1D<,

ImageSize Ø SmallD;
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gffp = ListPlot@Transpose@8xp, ffp<D,
PlotStyle Ø 8PointSize@0.02D, Hue@0.9D<, Joined Ø TrueD;

gsmooth =

Plot@
Fit@Transpose@8xp, y<D, 81, x, x^2, x^3, x^4, x^5, x^6, x^7,

x^8, x^9, x^10, x^11, x^12<, xD ê. x Ø x2, 8x2, -4, 4<D;
gy = ListPlot@Transpose@8xp, y<D,

PlotStyle Ø 8PointSize@0.02D, Hue@0.6D<D;
Show@gffp, gy, gfsquiggle, gsmoothD
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Note how the bias (discrepancy between the orange and blue) is lower than with too few parameters. But we have higher 
variance than with the "right model" family.

Model selection

Bayesian model selection
MacKay (1992)
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Cross-validation
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