
Introduction to Neural Networks
U. Minn. Psy 5038

Unifying neural network computations using Bayesian decision 
theory

‡ Initialize:

In[1]:= << "MultivariateStatistics`"

In[2]:= Off@General::spell1D;

In[3]:= SetOptions@ListDensityPlot, ImageSize Ø SmallD;
SetOptions@DensityPlot, ImageSize Ø SmallD;
SetOptions@ContourPlot, ImageSize Ø SmallD;

Bayesian Decision Theory: Utility

Review: Graphical Models of dependence
Natural patterns are complex, and in general it is difficult and often impractical to build a detailed quantitative generative 
model. But natural inputs, such as sounds and images,  do have regularities, and we can get insight into the problem by 
considering how various factors might produce them.

One way to begin simplifying the problem is to note that not all variables have a direct influence on each other. So draw a 
graph in which lines only connect variables that influence each other.  We use directed graphs to represent conditional 
probabilities.

Basic rules: Condition on what is known, and integrate out what you don't care about

‡ Condition on what is known:

Given a state of the world S, and inputs I, the "universe" of possibilities is:

(1)p HS, IL

If we know I (i.e. the visual system has measured some image feature I), the joint can be turned into a conditional 
(posterior):



If we know I (i.e. the visual system has measured some image feature I), the joint can be turned into a conditional 
(posterior):

(2)p HS IL = p HS, IL ê p HIL

‡ Integrate out what we don't care about

We don't care to estimate the noise (or other generic, nuisance, or secondary variables):

(3)

p ISsignal IM = ‚
Snoise

p ISsignal, Snoise IM,

or if continuous = ‡
Snoise

p ISsignal, Snoise IM „Snoise

Called "integrating out" or "marginalization"

Graphical models and general inference

‡ Three types of nodes in a graphical model: known, unknown to be estimated, unknown to be 

integrated out (marginalized)

We have three basic states for nodes in a graphical model: 

known

unknown to be estimated

unknown to be integrated out (marginalization). 

Many problems in perception and cognition can be approached by first analyzing the causes that produces the 
sensory input. A causal state of the world S,  gets mapped to some input data I, perhaps through some intermediate 
parameters L, i.e. S->L->I. And then one can ask in order to achieve some behavior goal, what kind of information needs 
to be extracted about the causes.

So for example, face identity S determines facial shape L. L with other factors, like illumination in turn determines 
the image input data I itself. Consider three very broad types of task:

‡ Data inference: synthesis 

Data synthesis (generative or forward model): We want to model I through p(I|S). In our example, we want to specify 
"Bill", and then p(I|S="Bill") can be implemented as an algorithm to spit out images of Bill. If there is an intermediate 
variable, L, it gets integrated out.
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‡ Hypothesis ("inverse") inference or estimation

Hypothesis inference: we want to model samples for S: p(S|I). Given an image,we want to spit out likely object identities, 
so that we can minimize risk, or do MAP classification for accurate identification. Again there is an intermediate variable, 
L, it gets integrated out. 

‡ Learning (parameter inference)

learning can also be viewed as estimation: we want to model L: p(L|I,S), to learn how the intermediate variables are 
distributed. Given lots of samples of outputs and their inputs, we want to learn the mapping parameters between them. 
(Alternatively, do a mental switch and consider a neural network in which an input S gets mapped to an output I through 
intermediate variables L. We can think of L as representing synaptic weights to be learned.)

Two basic examples in standard statistics are:

Regression: estimating parameters that provide a good fit to data. E.g. slope and intercept for a straight line through points 
{xi,yi}.

Density estimation: Regression on a probability density functions, with the added condition that the area under the fitted 
curve must sum to one.

Recall: Fruit classification example 

The the graph specifies how to decompose the joint probability:

 p[F, C, Is, Ic ] = p[ Ic | C ] p[C | F ] p[Is | F ] p[F ]

‡ Three MAP tasks

Pick most probable fruit AND color--Answer "red tomato"

Pick most probable color--Answer "red"

Pick most probable fruit--Answer "apple"

Why didn't "red tomato", the most probable fruit/color combination,  predict that the most probable fruit is apple?
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Why didn't "red tomato", the most probable fruit/color combination,  predict that the most probable fruit is apple?

Some basic graph types in vision

‡ Basic Bayes

p@S ID =
p@I SD p@SD

p@ID

S (the scene), and I is (the image data), and I = f(S).

We'd like to have:

p(S|I), where is the posterior probability of the scene given the image

-- i.e. what you get when you condition the joint by the image data. The posterior is often what we'd like to base our 
decisions on, because as we discuss below,  picking the hypothesis S which maximizes the posterior (i.e. maximum a 
posteriori or MAP estimation) minimizes the average probability of error.

p(S) is the prior probability of the scene.

p(I|S) is the likelihood of the scene. Note this is a probability of I, but not of S.
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See: Sinha, P., & Adelson, E. (1993). Recovering reflectance and illumination in a world of painted 
polyhedra. Paper presented at the Proceedings of Fourth International Conference on Computer 
Vision, Berlin.

‡ Discounting

The generative structure of the SDT problems we've looked at.

I=⁄S2 pHS2, S1 IL

‡ Cue integration

Optimal cue weighting for gaussian case. 
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Optimal cue weighting for gaussian case. 

Here two measurements (shadow displacement and stereo disparity) may be correlated. However, if S is fixed, then they 
become conditionally independent.

‡ Explaining away and conditional dependence

“Explaining away” is a phenomenon that occurs in probabilistic belief networks in which two (or more) variables influ-
ence a third variable whose value can be measured. Once measured, it provides evidence to infer the values of the influenc-
ing variables. Imagine two coins that can be flipped independently, and the results (heads or tails) have an influence on a 
third variable.  For concreteness, assume the third variable’s value is 1 if both coins agree, and 0 if not (NOT-XOR). If we 
are ignorant of the value of the third variable, knowledge of one influencing variable doesn’t help to guess the value of the 
other~the two coin variable probabilities are independent. (This is called marginal independence, “marginal” with respect 
to the third variable.) But if the value of the third variable  is measured (suppose it is 1), the two coin variables become 
coupled, and they are said to be conditionally dependent. Now knowing that one coin is heads guarantees that the other 
one is too. The phrase “explaining away” arises because coupling of variables through shared evidence arises often in 
human reasoning, when the influences can be viewed as competing causes. Suppose that the evidence is 0. If our interpreta-
tion is that “heads” in either coin can cause such a “suppression” of the NOT-XOR output, then which coin did the 
suppressing?  One of the coins is heads and one tails, but not both. Any auxiliary evidence that tips the balance toward one 
coin being “to blame”, reduces our belief that the other caused the observed 0. The other coin’s possible influence is 
explained away by the new evidence supporting the true-culprit coin’s value of heads. Human reasoning is particularly 
good at these kinds of inferences (Pearl, ). “Explaining away” is also a characteristic of perceptual inferences, for example 
when there are alternative perceptual groupings consistent with a set of identical or similar sets of local image features 
(Kersten, 2003).  In theory, explaining away can be accomplished through a generative process (e.g. recall the Boltzman 
machine). This kind of inference may have a consequence on measureable neural activity (Murray et al., 2002).

How to generalize optimal inference to include task requirements?

Bayes Decision theory, loss, and risk
We'd now like to generalize the idea of "integrating out" unwanted variables to allow us to put weights on how important a 
variable is for a task.

The costs of certain kinds of errors (e.g. a high cost to false alarms) can affect the decision criterion. Even though the 
sensitivity of the observer is essentially unchanged (e.g. the d' = (m2 - m1)/s for two Gaussian distributions, with means 
m2, m1 and standard deviation  s, remains unchanged), increasing the criterion can increase the overall error rate. This 
isn't necessarily bad. 

A doctor might say that since stress EKG's have about a 30% false alarm rate, it isn't worth doing. The cost of a false 
alarm is high--at least for the HMO, with the resulting follow-ups, angiograms, etc.. And some increased risk to the patient 
of extra unnecessary tests.  But, of course, false alarm rate isn't the whole story, and one should ask what the hit rate (or 
alternatively the miss rate) is? Miss rate is about 10%. From the patient's point of view, the cost of a miss is very high, 
one's life. So a patient's goal would not be to minimize errors (i.e. probability of a mis-diagnosis), but rather to minimize a 
measure of subjective cost that puts a very high cost on a miss, and low cost on a false alarm.

Although decision theory in vision has traditionally been applied to analogous trade-offs that are more cognitive than 
perceptual, the concept of utility is relevant even in perception. Perception has implicit, unconscious trade-offs in the kinds 
of errors that are made. 
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The costs of certain kinds of errors (e.g. a high cost to false alarms) can affect the decision criterion. Even though the 
sensitivity of the observer is essentially unchanged (e.g. the d' = (m2 - m1)/s for two Gaussian distributions, with means 
m2, m1 and standard deviation  s, remains unchanged), increasing the criterion can increase the overall error rate. This 
isn't necessarily bad. 

A doctor might say that since stress EKG's have about a 30% false alarm rate, it isn't worth doing. The cost of a false 
alarm is high--at least for the HMO, with the resulting follow-ups, angiograms, etc.. And some increased risk to the patient 
of extra unnecessary tests.  But, of course, false alarm rate isn't the whole story, and one should ask what the hit rate (or 
alternatively the miss rate) is? Miss rate is about 10%. From the patient's point of view, the cost of a miss is very high, 
one's life. So a patient's goal would not be to minimize errors (i.e. probability of a mis-diagnosis), but rather to minimize a 
measure of subjective cost that puts a very high cost on a miss, and low cost on a false alarm.

Although decision theory in vision has traditionally been applied to analogous trade-offs that are more cognitive than 
perceptual, the concept of utility is relevant even in perception. Perception has implicit, unconscious trade-offs in the kinds 
of errors that are made. 

For example, image intensities provide  the data that can be used to estimate an object's shape and/or estimate the direction 
of illumination. Accurate object identification often depends crucially on an object's shape, and the illumination is a 
confounding (secondary) variable. This suggests that visual recognition should put a high cost to errors in shape percep-
tion, and lower costs on errors in illumination direction estimation. So the process of perceptual inference depends an task. 
The effect of marginalization in the  fruit example illustrated task-dependence. Now we show how marginalization can be 
generalized through decision theory to model other kinds of goals than error minimization (MAP) in task-dependence.

Why do people often report seeing faces in clouds, tree bark, shower curtains, on mars, in pancakes?

Bayes Decision theory provides tools to model  performance as a function of utility.

Some terminology. The terms state, hypothesis, signal state as essentially the same--to represent the random variable 
indicating the state of the world--the "state space". We often assume that the decision, d,  of the observer maps directly to 
state space, d->s. We now clearly distinguish the decision space from the state or hypothesis space, and introduce the idea 
of a loss L(d,s), which is the cost for making the decision d, when the actual state is s. 

Often we can't directly measure s, and we can only infer it from observations. Thus, given an observation (e.g. a sensory or 
image measurement) x, we define a risk function that represents the average loss over signal states s:

(4)R Hd; xL = ‚
s

L Hd, sL p Hs xL

This suggests a decision rule: a(x)=argmin
d

 R(d;x). But not all x are equally likely. This decision rule minimizes the 

expected risk average over all observations:
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This suggests a decision rule: a(x)=argmin
d

 R(d;x). But not all x are equally likely. This decision rule minimizes the 

expected risk average over all observations:

(5)R HaL = ‚
x

R Hd; xL p HxL

We won't show them all here, but with suitable choices of likelihood, prior, and loss functions, we can derive standard 
estimation procedures (maximum likelihood, MAP, estimation of the mean) as special cases.

For the MAP estimator, 

(6)R Hd; xL = ‚
s

L Hd, sL p Hs xL = ‚
s

I1 - dd,sM p Hs xL = 1 - p Hd xL

where as we've seen before, dd,sis the discrete analog to the Dirac delta function--it is zero if d¹≠s, and one if d=s. (See 
KroneckerDelta[] )

Thus minimizing risk with the loss function L = I1 - dd,sMis equivalent to maximizing the posterior, p(d | x). Choose d 

that maximizes the posterior effectively penalizes all errors equally.

What about marginalization? You can see from the definition of the risk function, that this corresponds to a uniform loss: 

L = - 1. We don't care whether the values of the marginalized variables or good or bad, so we given all combinations of d 
and s the same constant negative value of -1.

(7)R Hs1; xL = ‚
s2

L Hd2, s2L p Hs1, s2 xL

So for our face recognition example, a really huge error in illumination direction has the same cost as getting it right. 

Back again to the fruit color example. With the identical conditional probablistic structure (e.g. graph) and probabilities, 
can one ideal decision maker decide "red tomato" and another "apple"?  Optimal classification of the fruit identity required 
marginalizing over fruit color--i.e. effectively treating fruit color identification errors as equally costly...even tho', doing 
MAP after marginalization effectively means we are not explicitly identifying color.

Graphical model for decision theory
This section shows the common structure shared by three types of inference: detection, classification, and estimation.

Decisions can be right or wrong regarding a discrete hypothesis (detection, classification), or have some metric distance 
from an hypothesis along a continuous dimensions (estimation). Each decision or estimation has an associated loss func-
tion. There is a common graphical structure to each type of inference.

In the diagram below, we replace the decision variable d, by a more general term a for "action".
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Decisions, tasks, and actions
The variables in decision theory have a graphical structure (see Kersten and Mamassian, 2009) which determines how to 
factorize the joint distribution over them. The graph below formally summarizes an observer or "agent". The observer 
model might refer to the input/output model of a human, animal, neural population, or neuron. Or it can refer to and ideal 
observer or ideal agent that minimizes the average loss. An ideal agent is called a "normative" model of a process or 
behavior...i.e. given a description of the problem to be solved, what is best solution? Then one asks how an human, 
animal, neural population, or neuron compares.

‡ Detection: a = estimate of s = s' = {s' 1, s' 2 }, e.g. s = {s' 1, not s '1 }

‡ Classification: a = s' = {s' 1, s' 2 , s' 3 ,s' 4 ,...}

‡ Estimation: a = s', where s' takes on continuous values

Slant estimation example
This section takes a potentially "real life" problem, and derives a quantitative prediction of ideal behavior. 
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From: Geisler, W. S., & Kersten, D. (2002). Illusions, perception and Bayes. Nat Neurosci, 5(6), 
508-510.

Mathematica code to illustrate Bayesian estimation of surface slant and aspect ratio
This code was used to produce the figure in a Nature Neuroscience News & Views article by Geisler and Kersten (2002) 
that put in context a paper by Weiss, Simoncelli and Adelson.

‡ Initialization

In[6]:= << "MultivariateStatistics`"
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In[7]:= npoints = 128;
loaspect = 0;
hiaspect = 5;
$TextStyle = 8FontFamily Ø "Helvetica", FontSize Ø 14<
Fswitch = True;

Out[10]= 8FontFamily Ø Helvetica, FontSize Ø 14<

In[12]:= PadMatrix@mat_, gray_, n_D := Module@8d<,
d = Dimensions@matD;
Return@PadRight@PadLeft@mat, 8d@@1DD + n, d@@2DD + n<, grayD,

8d@@1DD + 2 * n, d@@2DD + 2 * n<, grayDD;
D;

‡ Init delta

In[13]:= gdelta@x_, w_D := 1 - HUnitStep@x + w ê 2D - UnitStep@x - w ê 2DL;
H*Plot@gdelta@x,1D,8x,-10,10<,PlotRangeØ80,2<D;*L

‡ Introduction

Consider the above figure.

Bayesian ideal observers for tasks involving the perception of objects or events that differ along two physical dimensions, 
such  as aspect ratio and slant, size and distance, or speed and direction of motion. When a stimulus is received, the ideal 
observer computes the likelihood of receiving that stimulus for each possible pair of dimension values (that is, for each 
possible interpretation). It then multiplies this likelihood distribution by the prior probability distribution for each pair of 
values to obtain the posterior probability distribution~the probability of each possible pair of values given the stimulus. 
Finally, the posterior probability distribution is convolved with a utility function, representing the costs and benefits of 
different levels of perceptual accuracy, to obtain the expected utility associated with each possible interpretation. The ideal 
observer picks the interpretation that maximizes the expected utility. (Black dots and curves indicate the maxima in each 
of the plots.) As a tutorial example, the figure was constructed with a specific task in mind; namely, determining the aspect 
ratio and slant of a tilted ellipse from a measurement of the aspect ratio (x) of the image on the retina. The black curve in 
the likelihood plot shows the ridge of maximum likelihood corresponding to the combinations of slant and aspect ratio that 
are exactly consistent with x; the other non-zero likelihoods occur because of noise in the image and in the measurement 
of x. The prior probability distribution corresponds to the assumption that surface patches tend to be slanted away at the 
top and have aspect ratios closer to 1.0. The asymmetric utility function corresponds to the assumption that it is more 
important to have an accurate estimate of slant than aspect ratio.
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‡ Calculate Likelihood function and its maxima

(We've used the notion "prim" and "sec" for primary and secondary variables. But below rather than integrating out the 
secondary variable, we use a loss function to soften the notion of what is important and what is not. We''ll require more 
precision of the slant estimate than of the aspect ratio.)

Image model determines the constraint, x = d Cos[alpha] + noise, determines the 
likelihood
Assume noise has a Gaussian distribution with standard deviation = 1/5;

Assume an image measurement (x=1/2)

In[14]:= likeli@alpha_, x_, d_, s_D :=
Exp@-HHx - d Cos@alphaDL^2L ê H2 s^2LD H1 ê Sqrt@2 Pi s^2DL

likeli@a, x, d, sD
x = 1 ê 2; s = 1 ê 5;
like = likeli@a, x, d, sD

Out[15]=
‰
-
Hx-d Cos@aDL2

2 s2

2 p s2

Out[17]=
5 ‰

-
25
2

K
1
2
-d Cos@aDO

2

2 p
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Plot likelihood 

In[21]:= gdlike = DensityPlotBlike, 8d, loaspect, hiaspect<, :a, -
p

2
,

p

2
>,

PlotPoints Ø npoints, Mesh Ø False,
ColorFunction Ø HRGBColor@1 - H0.1` + 0.8` Ò1L, 1, 1D &L,

FrameLabel Ø 8"aspect ratio, d", "slant angle, a"<F

Out[21]=

Plot likelihood maxima

‡ There is no unique maximum. The likelihood function has a ridge

In[110]:= gtemp29 = ListPlotBTableB:
N@xD

Cos@alphaD
, alpha>, :alpha, -

p

2.
,

p

2.
, 0.001>F,

ImageSize Ø Small, Axes Ø FalseF

Out[110]=

Plot likelihood together with maximum along the ridge
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Plot likelihood together with maximum along the ridge

In[70]:= gdlike = DensityPlotBlike, 8d, loaspect, hiaspect<, :a, -
p

2
,

p

2
>,

PlotPoints Ø npoints, Mesh Ø False,
ColorFunction Ø HRGBColor@1 - H0.1` + 0.8` Ò1L, 1, 1D &L,

FrameLabel Ø 8"aspect ratio, d", "slant angle, a"<, Frame Ø FswitchF;

glikemax = Show@gdlike, gtemp29D

Out[71]=

‡ Calculate the prior, and find its maximum

The prior probability distribution corresponds to the assumption that surface patches tend to be 
slanted away at the top and have aspect ratios closer to 1.0. We model the prior by a bivariate 
gaussian:

In[72]:= PDF@MultinormalDistribution@8ma, md<, RD, 8a, d<D

Out[72]= PDF@MultinormalDistribution@8ma, md<, RD, 8a, d<D
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In[78]:= R1 = 88.25, 0<, 80, .25<<;
ndist3 = MultinormalDistribution@8Pi ê 4., 1<, R1D;
pdf3 = PDF@ndist3, 8a, d<D;
FindMinimum@-pdf3, 88d, 0<, 8a, 1<<D
gdprior = DensityPlot@pdf3^.4, 8d, loaspect, hiaspect<,

8a, -Pi ê 2, Pi ê 2<, PlotPoints Ø npoints, Mesh Ø False,
ColorFunction -> HRGBColor@1, 1 - H0.1 + 0.8 ÒL, 1 - H0.1 + 0.8 ÒLD &L,
FrameLabel Ø 8"aspect ratio, d", "slant angle, a"<D;

Out[81]= 8-0.63662, 8d Ø 1., a Ø 0.785398<<

In[83]:= Show@gdprior, Graphics@8PointSize@0.05`D, Point@81, 0.785`<D<DD

Out[83]=

‡ Calculate the posterior, and find its maximum

More precisely, we'll calculate a quantity proportional to the posterior. The posterior is equal to the product of the likeli-
hood and the prior, divided by the probability of the image measurement, x. Because the image measurement is fixed, we 
only need to calculate the product of the likelihood and the prior:
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In[84]:= Clear@a, x, d, sD;
likeli@a, x, d, sD * PDF@MultinormalDistribution@8ma, md<, RD, 8a, d<D

Out[85]=
‰
-
Hx-d Cos@aDL2

2 s2 PDF@MultinormalDistribution@8ma, md<, RD, 8a, d<D

2 p s2

In[86]:= gdpost = DensityPlot@Hpdf3 * likeL^.2, 8d, loaspect, hiaspect<,
8a, -Pi ê 2, Pi ê 2<, ColorFunction -> HRGBColor@1, 1, 1 - H0.01 + 0.9 ÒLD &L,
PlotPoints Ø npoints, Mesh Ø False,
FrameLabel Ø 8"aspect ratio, d", "slant angle, a"<, Frame Ø FswitchD

Out[86]=

In[87]:= R1 = 88.25, 0<, 80, .25<<;
ndist3 = MultinormalDistribution@8Pi ê 4., 1<, R1D;
pdf3 = PDF@ndist3, 8a, d<D
FindMinimum@-pdf3 * like, 88d, 1<, 8a, 1<<D

Out[89]= 0.63662 ‰
1
2

H-H-1+dL H4. H-1+dL+0. H-0.785398+aLL-H0. H-1+dL+4. H-0.785398+aLL H-0.785398+aLL

Out[90]= 8-1.17378, 8d Ø 0.881475, a Ø 0.923647<<
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In[92]:= Show@gdpost, Graphics@8PointSize@0.05D, Point@80.88, 0.92<D<DD

Out[92]=

‡ Compute expected loss--i.e. risk, and find its minimum

The expected loss is given by the convolution of the loss with the posterior:

                      risk=posterior*loss, where * means convolve; utility=-risk.

Loss function

The asymmetric utility function corresponds to the assumption that it is more important to have an accurate estimate of 
slant than aspect ratio. The loss function reflects the task. Accurate estimates of slant may be more important for an action 
such as stepping or grasping, whereas an accurate estimation of aspect ratio may be more important for determining object 
shape (circular coffee mug top or not?).
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In[93]:= maploss = TableBH1 - gdelta@x1d, 0.25`DL H1 - gdelta@x2d, 2DL,

:x1d, -3, 3,
6

npoints
>, :x2d, -3, 3,

6

npoints
>F;

gdloss = ListDensityPlot@maploss, Mesh Ø False,
ColorFunction Ø HRGBColor@1 - H0.01 + 0.9 Ò1L, 1 - H0.01 + 0.9 Ò1L, 1D &L,
Frame Ø FalseD

Out[94]=

Convolve posterior with loss function

Convert function description to numerical arrays for convolving

In[95]:= post =

Transpose@Table@like * pdf3,
8d, loaspect, hiaspect, Hhiaspect - loaspectL ê npoints<,
8a, -Pi ê 2, Pi ê 2, Pi ê npoints<DD;

post2 = PadMatrix@post, 0, 16D;
maploss2 = PadMatrix@maploss, 0, 16D;
offset = Floor@Dimensions@maploss2D@@1DD ê 2D;
tempcon = ListConvolve@maploss2, post2, 8-1, -1<D;
risk2 = RotateLeft@tempcon, 8offset, offset<D;
risk = Take@risk2, 817, Dimensions@risk2D@@1DD - 16<,

817, Dimensions@risk2D@@1DD - 16<D;
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In[102]:= grbrisk = ListDensityPlot@Map@Ò^1. &, riskD^.2, Mesh Ø False,
ColorFunction -> HRGBColor@1, 1, 1 - H0.01 + 0.9 ÒLD &L,
FrameLabel Ø 8"aspect ratio, d", "slant angle, a"<, Frame Ø FswitchD;

In[103]:= Position@HriskL, Max@HriskLDD

Out[103]= 88108, 27<<

In[104]:= Show@grbrisk, Graphics@8PointSize@0.05D, Point@827, 108<D<DD

Out[104]=

How is utility represented by the brain?
Natural loss functions may be "hard-wired", embedded in the architecture.

But dynamic changes? The role of reward.
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