
Introduction to Neural Networks
U. Minn. Psy 5038

Gaussian generative models, learning, and inference

‡ Initialize standard library files:

Off@General::spell1D;

Last time

Quick review of probability and statistics
Applications to random sampling
If we know p(x), and are given a function, y=f(x), what is p(y)? 

pY HyL dy = pX HxL dx
This principle is used to make random number generators for general probability densities from the uniform distribution. 
The result is that one can make a random draw from a uniform distribution p(x), from between 0 and 1, and go

to the inverse CDF to read off the value of the random sample from p(y). 



Today

Review of big picture
Examples of computations on continuous probabilities
Examples of computations on discrete probabilities
Introduction to Bayes learning

Recall relationship between "energy" neural networks and Bayesian 
inference

Here we are only talking about inference or estimation based on
patterns of neural activity-- i.e. in the language of neural networks, about " recall ",

rather than learning. Later we will introduce Bayesian learning.

In the general case we can talk about the probability over
all possible values of a neural network ' s state vector : p HV1, V2, ...L

This doesn't distinguish which values are fixed and which are allowed to vary. If some values are fixed, then we can treat 
those as the input, and allow the network's free neurons to vary to maximize a conditional probability:

Relationship between posterior probability and the energy of the state of a Hopfield neural network:

H (the hypothesis space) corresponds to the values of state variables, i.e. patterns of neural activity that are changing {V1, 
V2,...}. d corresponds to "data" or the fixed, clamped values {V1

s, V2
s...}

From the more abstract point of view of statistical inference, we have some variables that are fixed--the "data" d, some we 
let vary to maximize probability--the hypotheses H, and some that we may not care to estimate (n). Let's see how to use 
these distinctions.

Suppose we have p(H,d,n). Two rules of inference:

Marginalize over what you don't care about:
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pHH , dL =‚
n

pHH , d, nL

Condition on what you know:

pHH dL =
pHH , dL

pHdL

Neural population codes and probability distributions
Energy methods show how a population of neurons could interact to compute a single value corresponding to the "most 
probable" solution.

Recent behavioral studies show that humans make decisions that combine information so as to take into account uncer-
tainty. How might neural populations represent uncertainty? Probability distributions? (See Pouget et al., 2006 in the 
Readings).

Recall the ideas of population codes from Lecture 16, where a stimulus attribute might be the orientation of a line, and the 
activity or spike count ri, the response of the ith unit. Each unit i has a tuning function with a preferred orientation.

In lecture 16, we showed how the notion of a population vector has been applied to explaining a diverse range of phenom-
ena including adaptation effects and motor planning, through the computation of a single estimate analogous to the center 
of mass. But do population codes represent just single values? E.g. suppose vector  r repesents the pattern of spike counts 
over a population of orientation-tuned neurons. We saw how to estimate the value of orientation, s̀, which that population 
represents. 
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But what if more information could be represented and used, that includes knowledge of the uncertainty--or more gener-
ally, the posterior distribution of s given r, p(s | r)?

Poisson model, p(r | s) is a reasonable first approximation to the variability that results in spike counts for repeated 
applications of the same stimulus. To compute with distributions requires a mechanism that can combine information from 
more than one distribution. Pouget and colleagues have shown that "poisson-like" distributions have a special status in that 
p(s | r1) p(s | r2) is proportional to p(s | r1 + r2).

Figures adapted from lecture by Alex Pouget.

Mathematica functions for gaussian multivariates & exploring marginals

4 Lect_23_GaussGen.nb



Mathematica functions for gaussian multivariates & exploring marginals

‡ Define PDF, CDF

MultinormalDistributionAm, SE specifies a multinormal Hmultivariate GaussianL distribution with mean vector m and covariance matrix S

In[253]:= m1 = {1,1/2};
r=(1/2)*{{1,2/3},{2/3,4}};
ndist = MultinormalDistribution[m1, r];
pdf = PDF[ndist, {x1, x2}]

Out[256]=
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In[257]:= g1 = ContourPlot@PDF@ndist, 8x1, x2<D, 8x1, -3, 3<, 8x2, -3, 3<D

Out[257]=
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What is the probability of the distribution in the region x1 < .5 › x2 < 2?

In[240]:= grp = RegionPlot@x1 < .5 && x2 < 2, 8x1, -4, 4<, 8x2, -4, 4<,
PlotStyle Ø Directive@Opacity@.25D, EdgeForm@D, FaceForm@GrayDDD;

Show@8 g1, grp<, ImageSize Ø SmallD

Out[241]=

In[242]:= gcdf = ContourPlot[CDF[ndist, {x1, x2}], {x1, -4, 4}, {x2, -4, 4},ImageSize Ø Small];
Show[{ gcdf, grp}, ImageSize Ø Small]

Out[243]=

CDF@ndist, 8.5, 2.0<D

0.225562
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Calculating the marginals.

In[244]:= Clear@x1, x2D;

marginal@x1_D := ‡
-¶

¶
PDF@ndist, 8x1, x2<D „x2;

marginal2@x2_D := ‡
-¶

¶
PDF@ndist, 8x1, x2<D „x1;

In[247]:= mt = Table@8x1, marginal@x1D<, 8x1, -3, 3, .2<D;

g2 = ListPlot@mt, Joined Ø True, PlotStyle Ø 8Red, Thick<, Axes Ø FalseD;

In[249]:= mt2 = Table@8x2, marginal2@x2D<, 8x2, -3, 3, .4<D;
g3 = ListPlot@mt2, Joined Ø True, PlotStyle Ø 8Green, Thick<,

Axes Ø FalseD;

In[251]:= theta = Pi ê 2;
Show@g1,
Epilog Ø 8Inset@g2, 80, -3<, 80, 0<D,

Inset@g3, 8-3, 0<, 80, 0<, Automatic,
88Cos@thetaD, Sin@thetaD<, 8Sin@thetaD, -Cos@thetaD<<D<D

Out[252]=

‡ Finding the mode

For the Gaussian case, the mode vector corresponds to the mean vector. But we can pretend we don't know that, and find 
the maximum and the coordinates where the max occurs:
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In[260]:= FindMaximum@PDF@ndist, 8x1, x2<D, 88x1, 0<, 8x2, 0<<D

Out[260]= 80.168809, 8x1 Ø 1., x2 Ø 0.5<<

‡ Drawing samples

As we've used in earlier lectures, drawing samples is done by:

RandomReal@ndistD

81.07766, 0.280209<

‡ Mixtures of gaussians  with MultinormalDistribution[]

Multivariate gaussian distributions are often inadequate to model real-life problems, that for example might involve more 
than one mode. One solution is to approximate more general distributions by a sum or mixture of gaussians.

In[261]:= Clear@mixD;

In[262]:= r1=0.4*{{1,.6},{.6,1}};
r2=0.4*{{1,-.6},{-.6,1}};
m1 = {1,.5}; m2 = {-1,-.5};
ndist1 = MultinormalDistribution[m1, r1];
ndist2 = MultinormalDistribution[m2, r2];

In[267]:= mix[x_] := 0.5 (PDF[ndist1, x] + PDF[ndist2, x]);
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In[268]:= gg1 = ContourPlot@mix@8x1, x2<D, 8x1, -2, 2<, 8x2, -2, 2<,
PlotRange Ø Full, ImageSize Ø SmallD

Out[268]=

‡ Marginals for mixture

(1)marginal@x1_D := Integrate@mix@8x1, x2<D, 8x2, -Infinity, Infinity<D

In[269]:= Clear@marginalD;
marginal@x1_D :=

0.5 * HNIntegrate@PDF@ndist1, 8x1, x2<D, 8x2, -Infinity, Infinity<D +

NIntegrate@PDF@ndist2, 8x1, x2<D, 8x2, -Infinity, Infinity<DL;

In[271]:= gg2 = Plot@marginal@x1D, 8x1, -2, 2<, PlotStyle Ø 8Red, Thick<,
Axes Ø 8False, False<D;

In[272]:= Clear@marginalD;
marginal@x2_D :=

0.5 * HNIntegrate@PDF@ndist1, 8x1, x2<D, 8x1, -Infinity, Infinity<D +

NIntegrate@PDF@ndist2, 8x1, x2<D, 8x1, -Infinity, Infinity<DL;

In[274]:= gg3 = Plot@0.0333 * marginal@x2D, 8x2, -2, 2<, PlotStyle Ø 8Green, Thick<,
Axes Ø 8False, False<D;
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In[275]:= theta = Pi ê 2;
Show@gg1, ImageSize Ø 200,
Epilog Ø 8Inset@gg2, 80, -3<, 80, 0<D,

Inset@gg3, 8-2, 0<, 80, 0<, Automatic,
88Cos@thetaD, Sin@thetaD<, 8Sin@thetaD, -Cos@thetaD<<D<D

Out[276]=

Which projection (marginal) is more "interesting"--the one onto x1 or onto x2? 

Exploratory projection pursuit

Graphical Models of dependence

‡ Graphs: causal structure and conditional independence

In general, natural  patterns are specified by a high-dimensional joint probability, requiring a complex conditional relation-
ships.  The idea is to represent the probabilistic structure of the joint distribution P(S,L,I) by a Bayes net (e.g. Ripley, 
1996}, which is a graphical model that expresses how variables influence each other.  There are  three basic building 
blocks: converging, diverging, and intermediate nodes.  For example, multiple (e.g. scene) variables causing a given image 
measurement, a single variable producing multiple image measurements, or a cause indirectly influencing an image 
measurement through an intermediate variable.  These types of influence provide a first step towards modeling the joint 
distribution and the means to compute probabilities of the unknown variables given known values.
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Components of the generative structure for image patterns involve converging, diverging,and intermediate nodes. For 
example,these could correspond to:multiple (scene) causes {shape S1, illumination S2 giving rise to the same image 
measurement, I ; one cause, S influencing more than one image measurement, {color, I1, brightness, I2}; a scene (or other) 
cause S, {object identity, S} influencing an image measurement (image contour) through an intermediate variable L (3D 
shape) .

The arrows tell us how to factor the joint probability into conditionals. So for the three examples above, we have:

p(S1,S2,I)=p(I|S1,S2)p(S1)p(S2)

p(S,I1,I2)=p(I1|S)p(I2|S)p(S)

p(S,L,I)=p(I|L)p(L|S)p(S)

‡ Primary, secondary variables.

The following figure draws a parallel between the causal structure, as determined by the generative model, for signal 
detection theory (as in the light detection problem), and the general problem of visual inference.

We can interpret the causal structure in terms of conditional probability.

The top panel shows one possible generative graph structure for an  ideal observer problem in classical signal detection 
theory (SDT).  The data are determined by the signal hypotheses plus (additive gaussian) noise.  Knowledge is represented 
by the joint probability p(x,H,n)=p(x|H,n)p(H)p(n).  The lower panel shows a simplified example of the generative struc-
ture for perceptual inference from a pattern inference theory perspective.  The image measurements (x) are determined by 
a typically non-linear function (\phi) of primary signal variables (S_e) and confounding secondary variables (S_g).  
Knowledge is represented by the joint probability p(x,S_e,S_g).  Both scene and image variables can be high  dimensional 
vectors. In general, the causal structure of natural image patterns is more complex and consequently requires elaboration 
of its graphical representation. For SDT and pattern inference theory, the task is to make a decision about the signal 
hypotheses or primary signal variables, while discounting the noise or secondary variables.  Thus optimal perceptual 
decisions are determined by p(x,S_e), which is derived by summing over the secondary variables (i.e. marginalizing with 
respect to the secondary variables): ŸS_gpHx, S_e, S_gL „S_g.
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We can interpret the causal structure in terms of conditional probability.

The top panel shows one possible generative graph structure for an  ideal observer problem in classical signal detection 
theory (SDT).  The data are determined by the signal hypotheses plus (additive gaussian) noise.  Knowledge is represented 
by the joint probability p(x,H,n)=p(x|H,n)p(H)p(n).  The lower panel shows a simplified example of the generative struc-
ture for perceptual inference from a pattern inference theory perspective.  The image measurements (x) are determined by 
a typically non-linear function (\phi) of primary signal variables (S_e) and confounding secondary variables (S_g).  
Knowledge is represented by the joint probability p(x,S_e,S_g).  Both scene and image variables can be high  dimensional 
vectors. In general, the causal structure of natural image patterns is more complex and consequently requires elaboration 
of its graphical representation. For SDT and pattern inference theory, the task is to make a decision about the signal 
hypotheses or primary signal variables, while discounting the noise or secondary variables.  Thus optimal perceptual 
decisions are determined by p(x,S_e), which is derived by summing over the secondary variables (i.e. marginalizing with 
respect to the secondary variables): ŸS_gpHx, S_e, S_gL „S_g.

Influences between variables are represented by conditioning, and a graphical model expresses the conditional independen-
cies between variables.  Two random variables may only become independent, however, once the value of some third 
variable is known.  This is called conditional independence.Recall from above that two random variables are independent 
if and only if their joint probability is equal to the product of their individual probabilities.  Thus, if p(A,B) = p(A)p(B), 
then A and B are independent.  If p(A,B|C) = p(A|C)p(B|C), then A and B are conditionally independent.  When corn 
prices drop in the summer, hay fever incidence goes up.  However, if the joint on corn price and hay fever is conditioned 
on ``ideal weather for corn and ragweed'', the correlation between corn prices and hay fever drops.  This is because Corn 
price and hay fever symptoms are conditionally independent. 

There is a correlation between eating ice cream and drowning. Why? What event should you condition on to make the 
dependence go away?

‡ What is noise? Primary and secondary variables in SDT and in pattern inference theory

Noise is whatever you don't care to estimate, but contributes to the data.

Optimal Inference and task dependence: Fruit example 
(due to James Coughlan; see Yuille, Coughlan, Kersten & Schrater).

Figure from Yuille, Coughlan, Kersten & Schrater.

The graph specifies how to decompose the joint probability:

 p[F, C, Is, Ic ] = p[ Ic | C ] p[C | F ] p[Is | F ] p[F ]

Generative model: The prior model on hypotheses, F & C
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Generative model: The prior model on hypotheses, F & C
More apples (F=1) than tomatoes (F=2), and:

In[286]:= ppF@F_D := If@F ã 1, 9 ê 16, 7 ê 16D;
TableForm@Table@ppF@FD, 8F, 1, 2<D, TableHeadings -> 88"F=a", "F=t"<<D

Out[287]//TableForm=

F=a 9

16

F=t 7

16

The conditional  probability cpCF[C|F]:

In[288]:= cpCF@F_, C_D := Which@F ã 1 && C ã 1, 5 ê 9, F ã 1 && C ã 2, 4 ê 9,
F ã 2 && C ã 1, 6 ê 7, F ã 2 && C ã 2, 1 ê 7D;

TableForm@Table@cpCF@F, CD, 8C, 1, 2<, 8F, 1, 2<D,
TableHeadings -> 88"C=r", "C=g"<, 8"F=a", "F=t"<<D

Out[289]//TableForm=

F=a F=t

C=r 5

9

6

7

C=g 4

9

1

7

So the joint is:

In[290]:= jpFC@F_, C_D := cpCF@F, CD ppF@FD;
TableForm@Table@jpFC@F, CD, 8F, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<, 8"C=r", "C=g"<<D

Out[291]//TableForm=

C=r C=g

F=a 5

16

1

4

F=t 3

8

1

16

We can marginalize to get the prior probability on color alone is:

In[292]:= ppC@C_D := ‚
F=1

2

jpFC@F, CD

Question: Is fruit identity independent of material color--i.e. is F independent of C? Check whether the joint probability 
on Fruit and Color can be factored into the product of the prior probabilities on Fruit and Color.
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Question: Is fruit identity independent of material color--i.e. is F independent of C? Check whether the joint probability 
on Fruit and Color can be factored into the product of the prior probabilities on Fruit and Color.

‡ Answer

No.

In[293]:= TableForm@Table@jpFC@F, CD, 8F, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<, 8"C=r", "C=g"<<D

TableForm@Table@ppF@FD ppC@CD, 8F, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<, 8"C=r", "C=g"<<D

Out[293]//TableForm=

C=r C=g

F=a 5

16

1

4

F=t 3

8

1

16

Out[294]//TableForm=

C=r C=g

F=a 99

256

45

256

F=t 77

256

35

256

Generative model: The likelihood model--probabilities of measurements, i.e. some 
features given hypotheses
Suppose that we have gathered some "image statistics" which provides us knowledge of how the image measurements for 
shape Is, and for color Ic depend on the type of fruit F, and material color, C. For simplicity, our measurements are 
discrete and binary (a more realistic case, they would have continuous values), say Is = {am, tm}, and Ic = {rm, gm}.

P(I_S= am, tm | F=a) = {11/16, 5/16}

P(I_S= am, tm | F=t) = {5/8, 3/8}

P(I_C= rm, gm | C=r) = {9/16, 7/16}

P(I_C= rm, gm | C=g) = {1/2, 1/2}

We use the notation am, tm, rm, gm because the measurements are already suggestive of the likely cause. So there is a 
correlation between apple and apple-like shapes, am; and between red material, and "red" measurements. In general, there 
may not be an obvious correlation like this.

We define a function for the  probability of Ic given C,  cpIcC[Ic | C]:
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In[295]:= cpIcC@Ic_, C_D := Which@Ic ã 1 && C ã 1, 9 ê 16, Ic ã 1 && C ã 2,
7 ê 16, Ic ã 2 && C ã 1, 1 ê 2, Ic ã 2 && C ã 2, 1 ê 2D;

TableForm@Table@cpIcC@Ic, CD, 8C, 1, 2<, 8Ic, 1, 2<D,
TableHeadings -> 88"Ic=rm", "Ic=gm"<, 8"C=r", "C=g"<<D

Out[296]//TableForm=

C=r C=g

Ic=rm 9

16

1

2

Ic=gm 7

16

1

2

The  probability of Is conditional on F is cpIsF[Is | F]:

In[297]:= cpIsF@Is_, F_D := Which@Is ã 1 && F ã 1, 11 ê 16, Is ã 1 && F ã 2,
5 ê 8, Is ã 2 && F ã 1, 5 ê 16, Is ã 2 && F ã 2, 3 ê 8D;

TableForm@Table@cpIsF@Is, FD, 8Is, 1, 2<, 8F, 1, 2<D,
TableHeadings -> 88"Is=am", "Is=tm"<, 8"F=a", "F=t"<<D

Out[298]//TableForm=

F=a F=t

Is=am 11

16

5

8

Is=tm 5

16

3

8

The total joint probability
We now have enough information to put probabilities on the 2x2x2 "universe" of possibilities, i.e. all possible combina-
tions of fruit, color, and image measurements. Looking at the graphical model makes it easy to use the product rule to 
construct the total joint, which is:

 p[F, C, Is, Ic ] = p[ Ic | C ] p[C | F ] p[Is | F ] p[F ]:

In[299]:= jpFCIsIc@F_, C_, Is_, Ic_ D :=
cpIcC@ Ic, C D cpCF@F, C D cpIsF@Is, F D ppF@F D

Usually, we don't need the probabilities of the image measurements (because once the measurements are made, they are 
fixed and we want to compare the probabilities of the hypotheses. But in our simple case here, once we have the joint, we 
can calculate the probabilities of the image measurements through marginalization p(Is,Ic)=⁄C⁄F pHF, C, Is, IcL, too:

In[300]:= jpIsIc@Is_, Ic_D := ‚
C=1

2

‚
F=1

2

jpFCIsIc@F, C, Is, Ic D

Three MAP tasks
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Three MAP tasks
We are going to show that the best guess (i.e. maximum probability) depends on the task. 

‡ Define argmax[] function:

In[301]:= argmax@x_D := Position@x, Max@xDD;

‡ Pick most probable fruit AND color--Answer "red tomato"

First, suppose the task is to make the best bet as to the fruit AND material color. To make it concrete, suppose that we see 
an "apple-ish shape" with a reddish color, i.e., we measure Is=am=1, and Ic = rm=1. The measurements suggest "red 
apple", but to find the most probable, we need to take into account the priors too in order to make the best guesses. p(F,C | 
Is, Ic) is given by:

In[302]:= FCcIsIc@F_, C_, Is_, Ic_D := jpFCIsIc@F, C, Is, Ic D ê jpIsIc@Is, IcD

In[303]:= TableForm@FCcIsIcTable = Table@FCcIsIc@F, C, 1, 1 D, 8F, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<, 8"C=r", "C=g"<<D

Max@FCcIsIcTableD
argmax@FCcIsIcTableD

Out[303]//TableForm=

C=r C=g

F=a 55

157

308

1413

F=t 60

157

70

1413

Out[304]=
60

157

Out[305]= 882, 1<<

Note that we don't have to calculate the conditional. We can use the fact that p(F,C | Is, Ic) = pHF,C,Is,IcL
pHIs,IcL

µ∝ p(F, C , 

Is=1, Ic=1). I.e. the conditional is proportional to the function specified by the joint evaluated at Is=1, and Ic=1.
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In[307]:= TableForm@
jpFCIsIcTable = Table@jpFCIsIc@F, C, 1, 1 D, 8F, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<, 8"C=r", "C=g"<<D

Max@jpFCIsIcTableD
argmax@jpFCIsIcTableD

Out[307]//TableForm=

C=r C=g

F=a 495

4096

77

1024

F=t 135

1024

35

2048

Out[308]=
135

1024

Out[309]= 882, 1<<

‡ Question: Is p(F, C, Is=1, Ic=1) a joint probability on F and C? (Answer: No.)

Redefine jpFCcIsIcTable and jpFCIsIcTable, without the TableForm[] wrapper and calculate:

In[332]:= Total@jpFCcIsIcTable, 82<D
Total@jpFCIsIcTable, 82<D

In either case, we conclude that "Red tomato" is the most probable once we take into account the difference in priors.

‡ Pick most probable color--Answer "red"

Same measurements as before. But now suppose we only care about the true material color, and not the identity of the 
object. Then we want to integrate out or marginalize with respect to the shape or fruit-type variable, F. In this case, we 
want to maximize the posterior:

p(C | Is=1, Ic=1)=⁄F=1
2 pHF, C Is = 1, Ic = 1L

In[334]:= pC@C_, Is_, Ic_D := ‚
F=1

2

jpFCcIsIc@F, C, Is, Ic D

Revise cell to work with Mathematica 7.
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TableForm@pCTable = Table@pC@C, 1, 1D, 8C, 1, 2<D,
TableHeadings Ø 88"C=r", "C=g"<<D;

pCTable = Table@pC@C, 1, 1 D, 8C, 1, 2<D
Max@pCTableD
argmax@pCTableD

Answer is that the most probable material color is C = r, "red".

‡ Pick most probable fruit--Answer "apple"

Same measurements as before. But now, we don't care about the material color, just the identity of the fruit. Then we want 
to integrate out or marginalize with respect to the material variable, C. In this case, we want to maximize the posterior:

p(F | Is, Ic)

In[316]:= pF@F_, Is_, Ic_D := ‚
C=1

2

jpFCcIsIc@F, C, Is, Ic D

Revise cell to work with Mathematica 7.

In[317]:= TableForm@pFTable = Table@pF@F, 1, 1 D, 8F, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<<D

Max@pFTableD
argmax@pFTableD

The answer is "apple". So to sum up, for the same data measurements, the most probable fruit AND color is "red tomato", 
but the most probable fruit is "apple"!

‡ Important "take-home message": Optimal inference depends on the precise definition of the task

Try expressing the consequences using the frequency interpretation of probability.

Bayesian learning of univariate Gaussian mean: MAP
From a statistical point of view, one form of learning is "density estimation" from histogram measurements. In high 
dimensions this is hard, but is easier if we have a low-dimensional parametric model for the density--i.e. the density is 
modeled in terms of a few parameters. So for example, the 1D Gaussian could be approximated by a  huge list of numbers 
("statistics")--one for each bin, each number is an estimate of the probability of the value of the random variable falling in 
that bin. But because it is Gaussian, we can be more efficient by representing the density in terms of just two numbers 
(also "statistics", but just the mean and variance), and a formula.

In this context, learning becomes parameter estimation.

‡ A Bayesian learning example: Suppose we know the data comes from a Gaussian generative process, 

but we don't know the mean?
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‡

A Bayesian learning example: Suppose we know the data comes from a Gaussian generative process, 

but we don't know the mean?

Suppose we have a set of samples that come from a Gaussian distribution with known variance s2, but unknown mean m.

(2)
xi = noise, where noise~N@m, sD, or equivalently
xi = m + noise, where noise~N@0, sD

In[277]:= ndist0 = NormalDistribution@m, sD;

Although we don't know the mean, we can assume a Gaussian prior on the mean:

(3)m~N@m0, s0D

In[278]:= ndistm = NormalDistribution@m0, s0D;
PDF@ndistm, mD

Out[279]=
‰
-
Hm-m0L2

2 s0
2

2 p s0

I.e. we make an initial guess of the mean's mean (m0) and standard deviation (s0). But we are willing to change our 
estimate of the mean given new data. If we are really uncertain at the beginning,, we can start of with a large standard 
deviation, and as we gather data, the uncertainty about the value of the mean will decrease.

Suppose the generative model N[m, s] produces three i.i.d. (independent, identically distributed) samples x1, x2, x3.What 
is the MAP estimate of m? Which value of  m makes the posterior biggest? We use Bayes rule:

(4)p Hm x1, x2, x3L =
p Hx1, x2, x3 mL p HmL

p Hx1, x2, x3L

p Hx1 mL is given by :

PDF@ndist0, x1D

‰
-
Ix1-mM

2

2s2

2 p s

Because the samples are drawn independently, the p Hx1, x2, x3 mL is the product of three terms, so the numerator is 
p Hx1 mLp Hx2 mLp Hx3 mLtimes the prior p HmL:
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In[280]:= PDF@ndist0, x1D * PDF@ndist0, x2D * PDF@ndist0, x3D * PDF@ndistm, mD

Out[280]=
‰
-
H-m+x1L

2

2 s2
-
H-m+x2L

2

2 s2
-
I-m+x3M

2

2 s2
-
Hm-m0L2

2 s0
2

4 p2 s3 s0

‡ Calculating the MAP estimate of mean

To find the value of the mean that is largest given our three samples, and our prior assumption, we find m where 
p Hx1, x2, x3 mL p HmLis biggest:

In[281]:= g = PDF@ndist0, x1D * PDF@ndist0, x2D * PDF@ndist0, x3D * PDF@ndistm, mD;
t = Log@gD;
t1 = PowerExpand@tD
t2 = D@t1, mD

Solve@-t2 ã 0, mD

Out[283]= -2 Log@2D - 2 Log@pD - 3 Log@sD - Log@s0D -

H-m + x1L2

2 s2
-
H-m + x2L2

2 s2
-
H-m + x3L2

2 s2
-
Hm - m0L2

2 s0
2

Out[284]=
-m + x1

s2
+
-m + x2

s2
+
-m + x3

s2
-
m - m0

s0
2

Out[285]= ::m Ø
m0 s2 + x1 s0

2 + x2 s0
2 + x3 s0

2

s2 + 3 s0
2

>>

In general, one can update from n samples in batch mode:

(5)::m Ø

m0

s02
+ 1

s2
⁄i=1
n xi

n

s2
+ 1

s02

>>

For the multi-variate case, see Duda and Hart.
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Using a similar derivation to that above, find the optimal rule for integrating two measurements to 
estimate the mean. Assume  the Gaussian case, with conditional independence (as represented in graph 
below):

Answer:

m =
r1

r1 + r2
x1 +

r2

r1 + r2
x2

where ri = 1/si
2. Ma et al. (2006) showed conditions under which how neural populations could achieve optimal estimates 

by summing spikes.

What is the influence of the initial estimate of the mean as learning goes on? What is the estimate of the 
mean as n gets large?

Appendices

Using Mathematica lists to manipulate discrete priors, likelihoods, and posteriors

‡ A note on list arithmetic

We haven't done standard matrix/vector operations above to do conditioning. We've take advantage of how  Mathematica 
divides a 2x3 array by a 2-element vector:
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M=Array[m,{2,3}]
X = Array[x,{2}]

mH1, 1L mH1, 2L mH1, 3L
mH2, 1L mH2, 2L mH2, 3L

8xH1L, xH2L<

M/X

mH1,1L

xH1L

mH1,2L

xH1L

mH1,3L

xH1L
mH2,1L

xH2L

mH2,2L

xH2L

mH2,3L

xH2L

‡ Putting the probabilities back together again to get the joint

Transpose@Transpose@pHxD pxD

Ipx pHx¬M¬

pxH pH

pH pxH

‡ Getting the posterior from the priors and likelihoods:

One reason Bayes' theorem is so useful is that it is often easier to formulate the likelihoods (e.g. from a causal or generative-
model of how the data could have occurred), and the priors (often from heuristics, or in computational vision empirically 
testable models of the external visual world). So let's use Mathematica to derive p(H|x) from p(x|H) and p(H) , (i.e. pHx 
from pxH and pH ).

px2 = Plus üü HpxH pHL

pH + pxH
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Transpose@Transpose@HpxH pHLD ê Plus üü HpxH pHLD

HpH pxHL¬

pH + pxH

¬

‡ Show that this joint probability has a uniform prior (i.e. both priors equal). 

p = 881 ê 8, 1 ê 8, 1 ê 4<, 81 ê 4, 1 ê 8, 1 ê 8<<

1
8

1
8

1
4

1
4

1
8

1
8

Marginalization and conditioning: A small dimensional example using list 
manipulation in Mathematica 

‡ A discrete joint probability

All of our knowledge regarding the signal discrimination problem can be described in terms of the joint probability of the 
hypotheses, H and the possible data measurements, x. The probability function assigns a number to all possible 
combinations:

p[H, x]

That is, we are assuming that both the hypotheses and the data are discrete random variables.

H = :
S1
S2

x e 81, 2, ...<

Let's assume that x can only take on one of three values, 1, 2, or 3. And suppose the joint probability is:

p = ::
1

12
,

1

12
,
1

6
>, :

1

3
,
1

6
,
1

6
>>

1
12

1
12

1
6

1
3

1
6

1
6
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TableForm@p, TableHeadings -> 88"H=S1", "H=S2"<, 8"x=1", "x=2", "x=3"<<D

x=1 x=2 x=3

H=S1 1
12

1
12

1
6

H=S2 1
3

1
6

1
6

The total probability should sum up to one. Let's test to make sure. We first turn the list of lists into a singel list of scalars 
using Flatten[]. And then we can sum either with Apply[Plus,Flatten[p]].

Plus @@ Flatten[p]

1

We can pull out the first row of p like this:

p@@1DD

:
1

12
,

1

12
,

1

6
>

:
1

12
,

1

12
,

1

6
>

:
1

12
,

1

12
,

1

6
>

Is this the probability of x? No. For a start, the numbers don't sum to one. But we can get it through the two processes of 
marginalization and conditioning.

‡ Marginalizing

What are the probabilities of the data, p(x)? To find out, we use the sum rule to sum over the columns:

px = Apply@Plus, pD

:
5

12
,

1

4
,

1

3
>

"Summing over "is also called marginalization or "integrating out".  Note that marginalization turns a probability 
function with higher degrees of freedom into one of lower degrees of freedom. 

What are the prior probabilities? p(H)? To find out, we sum over the rows:
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What are the prior probabilities? p(H)? To find out, we sum over the rows:

pH = Apply@Plus, Transpose@pDD

:
1

3
,

2

3
>

‡ Conditioning

Now that we have the marginals, we can get use the product rule to obtain the conditional probability through condition-
ing of the joint:

p@ x HD =
p@H, xD

p@HD

Set::write : Tag List in
1
12

1
12

1
6

1
3

1
6

1
6

@x HD is Protected. à

1
12

1
12

1
6

1
3

1
6

1
6

@H , xD

1
12

1
12

1
6

1
3

1
6

1
6

@HD

In the Exercises, you can see how to use Mathematica to do the division for conditioning. The syntax is simple:

pxH = p ê pH

1
4

1
4

1
2

1
2

1
4

1
4

Note that the probability of x conditional on H sums up to 1 over x, i.e. each row adds up to 1. But, the columns do not. 
p[x|H] is a probability function of x, but a likelihood function of H. The posterior probability is obtained by conditioning 
on x:

Lect_23_GaussGen.nb 25



p@ H xD =
p@H, xD

p@xD

Set::write : Tag List in
1
12

1
12

1
6

1
3

1
6

1
6

@H xD is Protected. à

1
12

1
12

1
6

1
3

1
6

1
6

@H , xD

1
12

1
12

1
6

1
3

1
6

1
6

@xD

Syntax here is a bit more complicated, because the number of columns of px don't match the number of rows of p. We use 
Transpose[] to exchange the columns and rows of p before dividing, and then use Transpose again to get back the 2x3 
form:

pHx = Transpose@Transpose@pD ê pxD

1
5

1
3

1
2

4
5

2
3

1
2

Plotting the joint

The following BarChart[] graphics function requires in add-in package (<< Graphics`Graphics`), which is specified at 
the top of the notebook. You could also use ListDensityPlot[].
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BarChart@pP1T, pP2TD

Marginalization and conditioning: An example using Mathematica functions

‡ A discrete joint probability

All of our knowledge regarding the signal discrimination problem can be described in terms of the joint probability of the 
hypotheses, H and the possible data measurements, x. The probability function assigns a number to all possible 
combinations:

p[H, x]

That is, we are assuming that both the hypotheses and the data are discrete random variables.

H = :
S1
S2

x e 81, 2, ...<

Let's assume that x can only take on one of three values, 1, 2, or 3. And suppose the joint probability is:
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p@H_, x_D := Which@H ã 1 && x ã 1, 1 ê 12, H ã 1 && x ã 2, 1 ê 12,
H ã 1 && x ã 3, 1 ê 6, H ã 2 && x ã 1, 1 ê 3, H ã 2 && x ã 2, 1 ê 6,
H ã 2 && x ã 3, 1 ê 6D;

SetDelayed::write : Tag List in
1
12

1
12

1
6

1
3

1
6

1
6

@H_, x_D is Protected. à

TableForm@Table@p@H, xD, 8H, 1, 2<, 8x, 1, 3<D,
TableHeadings -> 88"H=s1", "H=s2"<, 8"X=1", "X=2", "X=3"<<D

X=1 X=2 X=3

H=s1

1
12

1
12

1
6

1
3

1
6

1
6

@1, 1D

1
12

1
12

1
6

1
3

1
6

1
6

@1, 2D

1
12

1
12

1
6

1
3

1
6

1
6

@1, 3D

H=s2

1
12

1
12

1
6

1
3

1
6

1
6

@2, 1D

1
12

1
12

1
6

1
3

1
6

1
6

@2, 2D

1
12

1
12

1
6

1
3

1
6

1
6

@2, 3D

The total probability should sum up to one. Let's test to make sure. We first turn the list of lists into a singel list of scalars 
using Flatten[]. And then we can sum either with Apply[Plus,Flatten[p]].

Sum@p@H, xD, 8H, 1, 2<, 8x, 1, 3<D

1
12

1
12

1
6

1
3

1
6

1
6

@1, 1D +

1
12

1
12

1
6

1
3

1
6

1
6

@1, 2D +

1
12

1
12

1
6

1
3

1
6

1
6

@1, 3D +

1
12

1
12

1
6

1
3

1
6

1
6

@2, 1D +

1
12

1
12

1
6

1
3

1
6

1
6

@2, 2D +

1
12

1
12

1
6

1
3

1
6

1
6

@2, 3D

We can pull out the first row of p like this:

Table@p@1, xD, 8x, 1, 3<D

:

1
12

1
12

1
6

1
3

1
6

1
6

@1, 1D,

1
12

1
12

1
6

1
3

1
6

1
6

@1, 2D,

1
12

1
12

1
6

1
3

1
6

1
6

@1, 3D>

Is this the probability of x? No. For a start, the numbers don't sum to one. But we can get it through the two processes of 
marginalization and conditioning.

‡ Marginalizing

28 Lect_23_GaussGen.nb



‡

Marginalizing

What are the probabilities of the data, p(x)? To find out, we use the sum rule to sum over the columns:

px@x_D := Sum@p@H, xD, 8H, 1, 2<D;

SetDelayed::write : Tag List in :
5
12
,
1
4
,
1
3
>@x_D is Protected. à

Table@px@xD, 8x, 1, 3<D

::
5

12
,

1

4
,

1

3
>@1D, :

5

12
,

1

4
,

1

3
>@2D, :

5

12
,

1

4
,

1

3
>@3D>

"Summing over "is also called marginalization or "integrating out".  Note that marginalization turns a probability 
function with higher degrees of freedom into one of lower degrees of freedom. 

What are the prior probabilities? p(H)? To find out, we sum over the rows:

pH@H_D := Sum@p@H, xD, 8x, 1, 3<D;

SetDelayed::write : Tag List in :
1
3
,
2
3
>@H_D is Protected. à

Table@pH@HD, 8H, 1, 2<D

::
1

3
,

2

3
>@1D, :

1

3
,

2

3
>@2D>

‡ Conditioning

Now that we have the marginals, we can get use the product rule to obtain the conditional probability through condition-
ing of the joint:
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p@ x HD =
p@H, xD

p@HD

Set::write : Tag List in
1
12

1
12

1
6

1
3

1
6

1
6

@x HD is Protected. à

1
12

1
12

1
6

1
3

1
6

1
6

@H , xD

1
12

1
12

1
6

1
3

1
6

1
6

@HD

We use function definition in Mathematica to do the division for conditioning. The syntax is simple:

pxH@H_, x_D := p@H, xD ê pH@HD;

SetDelayed::write : Tag List in
1
4

1
4

1
2

1
2

1
4

1
4

@H_, x_D is Protected. à

Table@pxH@H, xD, 8H, 1, 2<, 8x, 1, 3<D

1
4

1
4

1
2

1
2

1
4

1
4

@1, 1D
1
4

1
4

1
2

1
2

1
4

1
4

@1, 2D
1
4

1
4

1
2

1
2

1
4

1
4

@1, 3D

1
4

1
4

1
2

1
2

1
4

1
4

@2, 1D
1
4

1
4

1
2

1
2

1
4

1
4

@2, 2D
1
4

1
4

1
2

1
2

1
4

1
4

@2, 3D

Note that the probability of x conditional on H sums up to 1 over x, i.e. each row adds up to 1. But, the columns do not. 
p[x|H] is a probability function of x, but a likelihood function of H. The posterior probability is obtained by conditioning 
on x:
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p@ H xD =
p@H, xD

p@xD

Set::write : Tag List in
1
12

1
12

1
6

1
3

1
6

1
6

@H xD is Protected. à

1
12

1
12

1
6

1
3

1
6

1
6

@H , xD

1
12

1
12

1
6

1
3

1
6

1
6

@xD

pHx@H_, x_D := p@H, xD ê px@xD;

SetDelayed::write : Tag List in
1
5

1
3

1
2

4
5

2
3

1
2

@H_, x_D is Protected. à

Table@pHx @H, xD, 8H, 1, 2<, 8x, 1, 3<D

1
5

1
3

1
2

4
5

2
3

1
2

@1, 1D

1
5

1
3

1
2

4
5

2
3

1
2

@1, 2D

1
5

1
3

1
2

4
5

2
3

1
2

@1, 3D

1
5

1
3

1
2

4
5

2
3

1
2

@2, 1D

1
5

1
3

1
2

4
5

2
3

1
2

@2, 2D

1
5

1
3

1
2

4
5

2
3

1
2

@2, 3D

Plotting the joint

We use ListDensityPlot[].
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ListDensityPlot@Table@p@H, xD, 8H, 1, 2<, 8x, 1, 3<DD

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

‡ Random number generator, a non-Gaussian example: The von Mises distribution, with Matlab code 

(courtesy, Paul Schrater)
function pofx = vonMisespdf(x,mu,sigma)

% For -pi <= x <= pi

% force x-mu within -pi to pi

y = angle(exp(i*(x-mu)));

kappa = 1/(sigma)^2;

%kappa = sigma;

pofx = exp(kappa*cos(y))/(2*pi*besseli(0,kappa));

function vonrand = vonMisesrand(nrand,mu,sigma)

% inverse cumulative method, executed by table lookup with

% linear interpolation

% build sampled cdf

x = (-pi:2*pi/(2e3):pi);

pofx = vonMisespdf(x,0,sigma);

cofx = cumsum(pofx/sum(pofx));

u = rand(1,nrand);

vonrand = interp1(cofx,x,u)+mu;
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function vonrand = vonMisesrand(nrand,mu,sigma)

% inverse cumulative method, executed by table lookup with

% linear interpolation

% build sampled cdf

x = (-pi:2*pi/(2e3):pi);

pofx = vonMisespdf(x,0,sigma);

cofx = cumsum(pofx/sum(pofx));

u = rand(1,nrand);

vonrand = interp1(cofx,x,u)+mu;
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