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Cortical maps
Work in monkey, and human brain, shows that the cortex is characterized by numerous distinct areas. It has been esti-
mated that there are more than 30 visual areas alone in the macaque cortex. The earlier areas typically show a spatial 
topographic representation of visual space--nearby regions of visual space map to nearby regions of cortex. The so-called 
retinotopic map of the primary visual area (V1) is the clearest example of this (cf. Engel et al., 1994).  Other visual areas 
of the brain also show geometrical organization (Wandell et al. 2005). We earlier saw that more abstract features, such as 
orientation, show spatial organization where similar orientations map to nearby spatial locations. Other areas of the brain 
show spatial organization of "non-spatial features".  For example, the auditory cortex has tonotopic maps in which the 
spatial order of cell responses corresponds to pitch or acoustic frequency (Talavage et al. (2004) describe neuroimaging 
results in humans). The somatosensory cortex also shows a spatial organization (the "cortical homunculus").

In regions of the cortex with no obvious maps, it is quite possible that other kinds of maps wait to be discovered. Tanaka 
and colleagues (Tanaka, 1996; 2003) have shown that region TE of the monkey inferotemporal cortex has columns with 
cells that have similar visual shape preferences. Along the surface of the cortex, receptive field properties may correspond 
to other kinds of variation, such as rotation in depth of a face, over limited extents (on the order of 1 mm or so).

The widespread use of spatial organization in cortex suggests the possibility of a general constraint underlying the develop-
ment of neural receptive field organization. We know more about primary visual cortex than any other area, so let's take a 
closer look at what it does.



Quantitative modeling of the retinotopic map to V1
We've learned that primary cortex is spatially organized so that nearby image points map to nearby cortical points. Can we 
say more about the metrical structure of this mapping? As one moves from an image point above the foveal/fixation point  
(i.e. starting at a point a fixed distance along the vertical meridian) along an arc (say counter-clockwise), the correspond-
ing point on V1 moves up in a roughly straight line from the lower bank (towards the lingual gyrus) of calcarine the to the 
midline and then up on the upper bank (towards the cuneus). In other words, retinal rings map  (approximately) to vertical 
cortical lines. If one moves from the fovea along a "spoke" to the periphery, the corresponding point on V1 moves from 
near the pole (most posterior point) of the occipital cortex toward interior and anterior region of V1. In other words, retinal 
spokes map (approximately) to horizontal lines. The change from image coordinates to cortical coordinates has been 
modeled as a log polar  or complex log map (Schwarz, 1977). For a demo, see smallRetinaCortexMap.nb or this demo. 
These topographic properties are used to distinguish the boundaries between visual areas such as V1 and V2.

Let's treat the cortex as a 2D sheet. The topographical map says how to map retinal positions to cortical positions: i.e. take 
2D inputs to 2D outputs.  But we know that cortex represents more than positional features. Cells show selectivity for the 
degree of ocularity, orientation, motion,...This suggests that a functional role for the spatial organization of cortex is to 
map N-D inputs (in feature space) to 2-D outputs (topographic cortical space), where N>2.

Dimension reduction framework for understanding cortical maps
Primary visual cortex does not simply have the job of representing nearby retinal points at nearby cortical locations. Much 
physiological research has shown that V1 brings together information from the two eyes, along similar orientations, as 
well as location. Together with anatomical studies, it is now commonly accepted that in many species, including humans, 
neurons with similar orientation preferences and various degrees of relative input from the two eyes are organized into 
"hypercolumns" (See Figure below, and earlier Lecture).  (A major puzzle, however, is the observation that not all species 
have ocular dominance columns, and the function of such columns is not understood (Horton and Adams, 2005). ) Hyper-
columns preserve spatial contiguity and smoothness of the placement of neurons selective for features of the input. 

This observation suggests that a general principle may account for the organization and development of cortical maps: 
Neighboring points in feature or parameter space (e.g. orientation, ocular dominance, as well as retinal position) should 
map to nearby points on the 2D cortical sheet. (See: Durbin & Mitchison, 1990)

The underlying assumption is that most operations performed in the cortex are local, thus the related input for these 
computations should be physically near the computing units.  For example, one task of vision is to go beyond the mere 
detection of contour segments, but to  link contours that are likely to belong together to form a global object outline. Thus 
it would make sense to have the cells that signal similar orientations to be near. Visual information from the two eyes is 
close in the world, but separated by a great distance anatomically in the left and right eyes. This information needs to be 
brought physically together to process the two images binocularly, for example, to compute stereoscopic depth.  Further, 
operations that occur frequently, that need to combine many sources of information, and that need to be done quickly 
could be done more efficiently if the brain could avoid having too many long connections. 

But there seems to be a problem: How to map a high dimensional feature vector to a 2-dimensional surface?
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Minimum wiring length constraint

‡ Nematode

A number of people have sought a simple organizational principle that would predict the spatial layout of neurons. One 
such principle is that the layout of nervous system components minimizes total connection cost. Christopher Cherniak, a 
philosopher at the University of Maryland calculated the total wiring length for the ~40,000,000 (11!) possible layouts of 
the 11 hypothetically "moveable" ganglia (connecting 302 neurons) in the nematode worm C. elegans. Remarkably, he 
reported that the layout the worm actually has is indeed the one with the shortest total connection length (Cherniak, 1991, 
1995, 2004).  Similar arguments have been made by Cherniak and others for the layout of the multiple areas of cortex.  
(But see Young, 1994). The problem of minimizing connection lengths is also encountered in VLSI component layout in 
the design of computer chips. 

11!

39 916 800

Why is the brain in the head? (See Cherniak)

Can you think of exceptions to a minimum wiring constraint?

‡ Minimum wiring length & dimensionality reduction in cortical maps

One interesting biological application of the idea of reducing the cost of orderings was published by Durbin and Mitchison 
in Nature (1990).

Let's look at a simple and small version of the problem that Durbin and Mitchison addressed, that of mapping a higher 
dimensional parameter space to one of lower dimension. Suppose we have a 2D feature space that we wish to map to a 
"1D cortex". Points in the NxN 2D feature space can be represented by indices (i,j) or with an appropriate mapping by an 
index number, fij (that ranges from 1 to N2) assigned to the (i,j)th coordinate. Then  fij specifies the position in the 1D 

representation.

In standard raster ordering for images (e.g. the signal sent to your TV), matrix rows are laid out one after the next in one 
long vector. This is exactly what we've done earlier when we take an image in matrix format and use Flatten[] to convert 
it to a vector. While nearby horizontal pixels are still close, nearby vertical pixels in the image now become far apart in the 
vector representation.  f(i,j+1) - f(i,j) = 1, but f(i+1,j) - f(i,j) = N. A question of mathematical interest is whether there are 
other possible orderings that give lower costs, for example in the sense of minimizing the sum of the distances.
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There are several ways of assigning costs for various orderings.  Mitchison and Durbin analysed the following connection 
cost:

If q = 1, then the standard "raster" ordering, the index,

What are the inverse functions that map  fij ->{i,j}?

gives a cost of:

It is not computationally  feasible to find the minimum cost for dimensional reduction mappings of higher dimension, for 
example from (x,y,r,theta)->(x',y') as one would like to do for the formation of retinotopic and orientation maps in V1. The 
alternative is to see whether some biologically plausible rules could act to accomplish an efficient mapping of the higher 
dimensional feature space onto the 2D cortex.

Two biologically plausible rules are: 1) there are competitive winner-take-all interactions selective for distinct inputs 2) 
the units also strengthen their responses to those stimuli that their neighbors respond to. The first rule divides up the input 
domain, and the second rule imposes a continuity constraint on the formation of a map. Durbin and Mitchison developed 
an algorithm which applied these rules and showed that the kind of 2D maps which developed looked very much like the 
visual cortical maps, revealed from photo-sensitive dye studies (e.g. T'so et al., 1990). 

Let's look at the general problem of how to get nearby neurons to be selective for "nearby" features. For that, we'll step 
back in time to the classic work of Teuvo Kohonen.

Kohonen's algorithm for topology-preserving mappings
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Kohonen's algorithm for topology-preserving mappings

‡ Theory

The Finnish scientist, Teuvo Kohonen,  was the first to develop topology-preserving adaptive maps for neural networks  
(Kohonen, T. , 1984).  Let's look at the basic structure of  a simple adaptive map.We consider a simple feedforward 
network, and the question is how should the weights adapt to the input patterns so that nearby features map to nearby 
neurons.

Kohonen boiled the essential features of self-organizing topology-preserving maps down to two basic processes: 

1. Find the neuron that shows the most activity among a set of neurons in response to a specific randomly sampled input. 
We assume that maximum activity occurs for patterns which match the receptive field (i.e. as with a cross-correlator).

2. Define a set of neighbors around this maximum, and make these neighbors more likely to respond to that input in the 

future by making their weights more like the input. Typically the neighborhood Nc starts off large, and is gradually 

reduced over time.

Let x be an n-dimensional vector representing a feature sample. Let mi be a n-dimensional vector representing the weights 

of the ith unit.  Let x(tk) and mc(tk) be the vector and weight values at time tk  for neuron c. We will follow an example by 

Kohonen and use the following rules: 

1. Similarity matching.  Find unit c such that:

The idea is to find the neuron that responds best to the input pattern x. In this example, the one that responds best is the 
one whose weights are the best match to the input pattern itself.

Exercise

What is the relationship between: 1) the "distance" between an input vector and a neuron's weights and 2) the dot product 
between the input and the neuron's weights?

2. Updating. Update the weights for unit c, and all the units within c's neighborhood:

The idea is to adjust the weight vector m in a direction that brings it closer to the input pattern x. a(tk) controls the learning 
rate. In our simulations below, we'll ramp it down linearly.

Exercise
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Exercise

What is the steady-state solution for this learning rule?

Demonstration of Kohonen's algorithm for mapping 2D features to a 1D 
line

Let's simplify the problem. Imagine a 1D visual cortex, i.e. the neurons are arranged in a straight line (rather than a 2D 
sheet). But the input images are 2D. We want to map 2D to 1D. In general,  the input could represent abstract 2D features 
specified by continous valued inputs (e.g. 2 units whose values represent x and y positions), and these get mapped to a 
discrete set of output units whose position is correlated with the feature values. The biologically realistic retina to cortex 
problem is set up differently--the inputs themselves are arranged in a 2D spatial array and get mapped to a 2D cortical 
sheet. However, as discussed above, when one considers other features such as orientation, we have a problem in which a 
higher dimensional feature space (e.g. a 3D space representing 2D position and oriention) is mapped to a lower dimen-
sional space (a 2D space representing location of neurons on the cortical sheet).

‡ Define functions

In[153]:= (*ramp[] is used below to define both the a() term,
and the rate of change of the neighborhood size *)

ramp[x_,yint_,end_,plat_] :=
If[(x>=end)||(-2*x*yint/end+yint<plat),plat,
-2*x*yint/end+yint];

(*rv randomly samples the 2D "feature space"*)
rv := {RandomReal[],RandomReal[]};

(*These are alternative samplings to try
rvdiscrete := 1/8 + (Floor[(4 rv)]/4);
rvline := {xx=RandomReal[],xx};*)

‡ Neighborhood function

The neighborhood function determines the neighbors, and thus the topology of the connections between the neurons. In 
our example, the neigborhood is 1-D and is defined along a line.

neigh[] is a  neighborhood function that produces a list of indices for the neighbors of unit c. We will not use a toroidal 
geometry here. Instead, neigh[] generates shorter lists of indices near the borders, so the min_ and max_ of the range need 
to be specified. This neighborhood function only defines neighbors along a line, i.e. in one dimension. You could elaborate 
this algorithm to find maps from 2D to 2D, allowing neighbors to be nearby regions of 2D space. 
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In[158]:= neigh[c_,numneigh_,min_,max_]:=Module[{i,nn,temp},
temp = numneigh/2;
nn={};
For[i=c-temp,(i<=c+temp)&&(i<=max),i++,

If[i>=min,nn=Join[nn,{i}]];
];

Return[nn];
];

‡ Initializing the simulation parameters

n is the number of nodes in the 1D line. mu  is the matrix with the weights that will get updated according to the above 
update rule. niter is the number of iterations. 

numneigh0 is the intial neighborhood size. If this is too small, the topography map can get tangled. We will start off with 
a neighborhood size that is 60-80% of the total size, n. Execute the cell below, first with n = 10, so you can see what is 
being represented. Then set n=600 for the simulation below.

In[219]:= n = 600;
mu = Table@rv, 8j, 1, n<D;
g1 = ListPlot@mu, PlotRange Ø 88-0.25, 1<, 8-0.25, 1<<,

AspectRatio Ø 1, Joined Ø True, ImageSize Ø SmallD;

niter = 4000; numneigh0 = FloorB
0.6 * n

2
F; eta@t_D := ramp@t, 0.9, niter, 0.1D;

numneigh@t_D := 2 Floor@ramp@t, numneigh0, niter, 2DD;
g1

Out[223]=
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Let's take a look at how the neighborhood size and α =eta, decrease with the number of iterations, t :
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In[203]:= Plot@eta@tD, 8t, 1, niter<D;
Plot@numneigh@tD, 8t, 1, niter<, PlotRange Ø 80, 2 numneigh0<,
ImageSize Ø SmallD

Out[203]=
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‡ The algorithm

We will make a series of plots, showing the first ten iterations, and after that sampling every 50. The plots will show how 
the matrix mu (which evolves the topography of a 1D line, because of the way we defined the neigh[] function) gradually 
fits itself to the geometry of the 2D input space.

We'll use hue to colorcode the positions of the units along the line. So unit 1 (and others near it) on the left are reddish 
orange, ones near the middle (neuron #200) are greenish blue, and

on the right (near neuron #400), they are magenta-reddish.

In[228]:= gcolor2 = GraphicsBTableB:HueB
i

n
F, PointSize@0.02`D, PointB:

i

n
,
n

2
>F>,

8i, 1, n<FF;

ShowBgcolor2, Background Ø RGBColor@0, 0, 0D, AspectRatio Ø
1

10
F

Out[229]=

In[230]:= gcolor = Graphics@Table@8Hue@i ê nD, PointSize@0.01D, Point@mu@@iDDD<,
8i, 1, n<DD;
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In[231]:= Dynamic@Show@gcolor, Background -> RGBColor@0, 0, 0D, AspectRatio -> 1 ,
ImageSize Ø SmallDD

Out[231]=

In[232]:= For[t=1,t<=niter,t++,
If[(Mod[t,50]==1) || t<=10,

gcolor = Graphics[Table[{Hue[i/n],PointSize[0.01],
Point[mu[[i]]]},{i,1,n}]];

];

 (*Pick a uniformly distributed "feature" sample from a 2D array*)
 

x=rv;

 (*Do the similarity matching. mini is the unit whose weights best match the input *)
 

diffs = Map[Norm,Transpose[Transpose[mu]-x]];
minarg = Min[diffs];
mini = Part[Position[diffs,minarg],1,1];

 (*Make a list, j,  of the neighbors for this index,at this tth iteration *)

 
j=neigh[mini,numneigh[t],1,n];

 (*Update the weights in the neighborhood of i to move them 
    towards feature x, by eta proportion of the difference*)
    

For[s=1,s<=Length[j],s++,
mu[[ j[[s]] ]] = mu[[ j[[s]] ]] + 
eta[t] (x-mu[[j[[s]] ]])

];
];

Let's summarize what we have done. There are n (= 600) "neurons", each with 2 input weights, represented by matrix mu. 
We imagine representing the weights of these 400 neurons by a location in weight space. To the extent that a neuron's 
weights define a template for feature matching, nearby points in weight-space should correspond to nearby points in input 
or "feature space". So you can also think of the two dimensions of our plot as representing two dimensions in feature 
space. Neural selectivity divides up and covers feature space. The weight vectors are represented in the same coordinate 
system as the input vectors in order to show which neuron each weight vector belongs.

A point for each neuron is represented by a different hue in the graph above--neurons with similar hues are neighbors 
along a line, i.e. next to each other in our 1D "cortex". We randomly sampled a location in the 2-dimensional input space 
defined by the unit square. Thus, initially for example, "reddish" points (that are close on the 1D cortex) were scattered all 
over in weight space. Nearby neighbors could be activated by quite different stimulus features. Not good.

 We then surveyed the n neurons to see which one had input weights that were closest to the sampled location. Note that 
we didn't have to calculate the response of the unit--which if linear would be the cross-correlation of the input with its 
weights. Then we adjusted the 2 weights of that neuron to move them closer to the sampled input point. Further, we 
adjusted the weights of all of the neighbors of that neuron (i.e. those with similar hues) to be closer too. We reduced the 
size of the neighborhood as the number of iterations increased. So a unit's weights are less affected by distant neurons as 
time goes on. The end result is that nearby points in feature space tend to activate nearby neurons that are arrayed in a 1-D 
line. For other interesting examples, and for a discussion of the relationship of Kohonen maps to space-filling curves, see 
Kohonen (1984).
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Let's summarize what we have done. There are n (= 600) "neurons", each with 2 input weights, represented by matrix mu. 
We imagine representing the weights of these 400 neurons by a location in weight space. To the extent that a neuron's 
weights define a template for feature matching, nearby points in weight-space should correspond to nearby points in input 
or "feature space". So you can also think of the two dimensions of our plot as representing two dimensions in feature 
space. Neural selectivity divides up and covers feature space. The weight vectors are represented in the same coordinate 
system as the input vectors in order to show which neuron each weight vector belongs.

A point for each neuron is represented by a different hue in the graph above--neurons with similar hues are neighbors 
along a line, i.e. next to each other in our 1D "cortex". We randomly sampled a location in the 2-dimensional input space 
defined by the unit square. Thus, initially for example, "reddish" points (that are close on the 1D cortex) were scattered all 
over in weight space. Nearby neighbors could be activated by quite different stimulus features. Not good.

 We then surveyed the n neurons to see which one had input weights that were closest to the sampled location. Note that 
we didn't have to calculate the response of the unit--which if linear would be the cross-correlation of the input with its 
weights. Then we adjusted the 2 weights of that neuron to move them closer to the sampled input point. Further, we 
adjusted the weights of all of the neighbors of that neuron (i.e. those with similar hues) to be closer too. We reduced the 
size of the neighborhood as the number of iterations increased. So a unit's weights are less affected by distant neurons as 
time goes on. The end result is that nearby points in feature space tend to activate nearby neurons that are arrayed in a 1-D 
line. For other interesting examples, and for a discussion of the relationship of Kohonen maps to space-filling curves, see 
Kohonen (1984).

Although we motivated Kohonen topology-preserving networks with the problem of feature mapping in cortex, there is a 
large range of applications that extend outside the problem we've considered (e.g. regression, Cherkassky & Lari-Najafi, 
1991). 
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Exercises

Compute the connection cost for the Kohonen adaptive map in the above example. Compare it to a 
raster scheme.

Try sampling from rvline,and watch how the algorithm learns the topology of the 1D input space.

Try playing with the intial neighborhood size, numneigh0.What happens if it starts off small,(e.g.let the 
number of neighbors be fixed at 2 throughout the similation).

Define a 2D feature input space which is not rectangular. For example, rvcould sample from a triangular 
or circular region within the unit square.
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