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Sculpting energy landscapes: interpolation and gradient descent
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Using energy and gradient descent to derive update rules
Earlier we studied how to set up the weights in a discrete response TLU network for the correspondence problem in 
stereopsis. The weights were determined by an analysis of the constraints needed to find a unique correspondence between 
the pixels in the left and right eyes. We didn't compute energy in that example, but pointed out that energy could play a 
useful role as an index to describe how well the network's state vector was moving towards the correct answer in state 
space. In particular, the energy function contains information about  the stable points in state space.

In effect, we sculpted the energy landscape by hand-wiring the weights according to the constraints that were determined 
heuristically.

In the TIP examples, we reconstructed stored letters from partial information. In that case, the weights were determined by 
Hebbian learning. So the energy landscape was sculpted by state vectors to be stored.

But we can also do things the other way around. Rather than figuring out the weights for a Hopfield-style network that has 
a known relationship to an energy function, we first specify the energy function, and then figure out an update rule that 
will descend the energy landscape. 

We followed an analogous strategy when we set up an error function in terms of weights, and then did gradient descent to 
find the weights that minimized the error to learn the weights. But one can also set up the analog to the error function 
(weights variable), that is an energy function of the state vector (weights fixed), and then use gradient descent to derive a 
rule to find minima of this energy function. From the point of view of neural networks, this update rule may look nothing 
like what neurons do. But it may be the best way to start--that is, by sculpting the energy function directly, not worrying 
about "weights", and then see what emerges in terms of an update rule.

We are going to follow this strategy in this notebook on a simple problem of interpolation. It will turn out that our update 
rule is the simplest neural model--a linear summer. However, this kind of analysis provides a starting point for more 
complicated energy functions with correspondingly non-linear update rules.

The energy function is sometimes referred to as a cost function or objective function.

In the second main part of this notebook (Deriving learning rules), we return to the problem of deriving learning rules 
from cost functions over weights using gradient descent. We apply it to the problem of self-organization where the goal is 
to learn a decorrelating set of weight vectors, which (unlike PCA) are not necessarily orthogonal.

Our main tool is gradient descent. Given an objective or energy function, there are often better tools for finding the 
minimum (e.g. see Hertz et al.). But gradient descent is a simple and intuitive starting point.
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Interpolation problems in perception
A major theoretical problem in vision has to do with the fact that local changes in image intensities are usually ambiguous 
in natural images. A change in shading can mean an change in shape (or a change in illumination, e.g. a cast shadow). A 
change in image color can mean a change in the reflectivity of a surface (or a change in the illumination--two quite 
different causes). Changes of intensity of pixels in time provide information about surface structure, and the viewer's 
relation to that surface. In order to solve problems such as those above, researchers have studied special cases: shape-from-
shading, reflectivity from color (color constancy), optic flow field from the flow of intensities, and more. One recurring 
theme in these problems is that the data available in the image does not fully constrain the estimate of the surface or 
surface properties one would like to compute. 

Earlier we studied the random dot stereogram in which each image had many local features densely packed, but there was 
ambiguity in matching left eye pixels to those in the right. Here another stereo example. This time there are few features 
sparsely packed.
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gleft =

Show@Graphics@8Hue@0.6`D, Rectangle@80, 0<, 8backwidth, backheight<D,
Hue@0.27`D, Rectangle@8x0 - vwidth, y0 - vheight<,
8x0 + vwidth, y0 + vheight<D, Hue@0.27`D,

Rectangle@8x0 - hwidth, y0 - hheight<, 8x0 + hwidth, y0 + hheight<D<D,
AspectRatio Ø Automatic, DisplayFunction Ø IdentityD;

gright =

Show@Graphics@8Hue@0.6`D, Rectangle@80, 0<, 8backwidth, backheight<D,
Hue@0.27`D, Rectangle@8x0 - vwidth - 1, y0 - vheight<,
8x0 + vwidth - 1, y0 + vheight<D, Hue@0.27`D,

Rectangle@8x0 - hwidth, y0 - hheight<, 8x0 + hwidth, y0 + hheight<D<D,
AspectRatio Ø Automatic, DisplayFunction Ø IdentityD;

Show@GraphicsRow@8gright, gleft<D, DisplayFunction Ø $DisplayFunctionD
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Try a motion analog: Show[gleft,DisplayFunctionÆ $DisplayFunction]; Show[gright,DisplayFunctionÆ 
$DisplayFunction]; and then group the two pictures, and play as a slow movie

If you can cross your eyes, so that the left image is in the right eye, and the right image in the left, you will see a green 
horizontal bar floating out in front of a green vertical bar. So-called "free-fusing" isn't easy, but when you've got it, you 
should see a total of three green crosses. The one in the middle is the one in which the two images are fused by your brain--
and this is the one we are talking about.

The interesting point here is that even though there is no local information in the image to support the percept of a horizon-
tal occluding bar, observers still see an illusory completion. It looks a bit like the figure below, except that the color of the 
horizontal bar is changed here slightly just for illustration.

Show@Graphics@8Hue@0.6`D, Rectangle@80, 0<, 8backwidth, backheight<D,
Hue@0.42`D, Rectangle@8x0 - hwidth, y0 - hheight<,
8x0 + hwidth, y0 + hheight<D, Hue@0.27`D,

Rectangle@8x0 - vwidth, y0 - vheight<, 8x0 + vwidth, y0 + vheight<D<D,
AspectRatio Ø Automatic, ImageSize Ø SmallD

The visual system seems to interpolate  a surface between salient points--in this case the salient points are the vertical 
edge segments of the horizontal bar. 

(Side note: The perceptual interpolation in the above example is not straightforward. In fact, one's first guess might be that 
observers should not see the horizontal bar as a plane, but rather they would interpolate a surface that on the left is close to 
the viewer, but then descends back towards the depth of the vertical bar, stays there, and then comes back towards the 
viewer on the right. Why people usually don't see this has been studied by: Nakayama, K., & Shimojo, S. (1992).)

We will study a simpler case of interpolation--namely filling in a line between feature points. We will do this by construct-
ing an energy function first, and then calculating an update rule by gradient descent. But the same principles apply to 
computational models of stereopsis, shape-from-shading, optic flow and other problems in early visual processing.

Energy: Data and smoothness terms
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Energy: Data and smoothness terms
Suppose we have a set of points {i, di}, where i indexes the point, and di is the height.
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We would like to find a smooth function, f[i]~di, that approximately fits the data points. However, we'll assume we don't 
have specific knowledge of the parametric form of the underlying function. In other words, we don't want to assume 
linear, quadratic, or general polynomial fits, or sinusoidal fits. We could just connect the dots. But if there is any wiggly 
noise, we'd have lots of wiggles that shouldn't be there. We want a "smoother fit".

We assume that there are two constraints that will guide the problem of sculpting an energy function to reconstruct a line 
(or surface): 

1. Fidelity to the data; 2) Smoothness of the fit.

Suppose {di} are the data points, where the i's come from a subset, D of the total domain over which our reconstructed 

function, f is defined. Fidelity to the data can be represented by an energy term that is big if the estimate of f is too far 
away from the data:

Smoothness can be represented by an energy cost in which near-by values of the estimate, f, are required to be close:

We combine two constraints by adding:

λ is a free parameter that allows us to control how much the smoothing should dominate the data or fidelity term. Note we 
assume that the smoothness term is independent of the data, and is equivalent to assuming a Bayesian prior in statistics 
(Poggio et al., 1988; Kersten et al., 1987).

If we wish to start off with some initial guess for the values of f, we can successively improve our estimate by sliding 

down the slope of E in the steepest direction. This says that the rate of change of fi in time should be proportional to the 

negative slope of E in the direction of fi
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λ is a free parameter that allows us to control how much the smoothing should dominate the data or fidelity term. Note we 
assume that the smoothness term is independent of the data, and is equivalent to assuming a Bayesian prior in statistics 
(Poggio et al., 1988; Kersten et al., 1987).

If we wish to start off with some initial guess for the values of f, we can successively improve our estimate by sliding 

down the slope of E in the steepest direction. This says that the rate of change of fi in time should be proportional to the 

negative slope of E in the direction of fi

‡ Proof, in case you are still wondering:

For step Δt, the biggest decrease in E is when cosθ = -1. In other words, when the vectors “E and df are pointing in 
opposite directions. So if we make a change df in proportion to -“E for each time step Dt, we will reduce the energy.

df µ∝ -“E

In the limit DtØ0, we can set:

As mentioned above, we've encountered gradient descent when we calculated the derivative of the error function with 
respect to the weights.

Taking the derivative:

 (We use Mathematica  below to verify the pattern of the terms in the derivative.) Or in discrete time steps of dt, 

(Note: There is a slightly messy issue of book-keeping in that, we have to pay attention to when we are updating f's that 
don't have data support. We show one way to handle that below.) 

With a little inspection, you can see that the value of f at time t+dt, is just the weighted sum of the values of f at time t, and 
the data, d. A weighted sum calculation is exactly what our linear model of a neuron does. So we've derived an update rule 
for our energy function that could be implemented with a standard neural model.

What is the weight matrix? Are the diagonals zero? Is the matrix symmetric?

It turns out that as long as the energy function is a quadratic function of the f's, the update rule will be linear. Why?

The power of this approach is that one can construct more complicated energy functions, and derive gradient descent 
update rules that are not linear but can be used to find solutions. For example, the world we see is not constructed from 
one smooth surface, but is better modeled as a set of surfaces separated by discontinuities. An energy function can be 
constructed that explicitly models these discontinuities and their effects on the interpolated values. The energy function in 
this case is no longer quadratic, and the update rule computes more than a weight sum. This usually brings the additional 
problem of local energy minima that we will study in the next lecture.

For  examples of constructing a more complicated energy functions with discontinuities, see: Kersten, D. J. (1991) and 
Kersten and Madarsmi (1995).
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With a little inspection, you can see that the value of f at time t+dt, is just the weighted sum of the values of f at time t, and 
the data, d. A weighted sum calculation is exactly what our linear model of a neuron does. So we've derived an update rule 
for our energy function that could be implemented with a standard neural model.

What is the weight matrix? Are the diagonals zero? Is the matrix symmetric?

It turns out that as long as the energy function is a quadratic function of the f's, the update rule will be linear. Why?

The power of this approach is that one can construct more complicated energy functions, and derive gradient descent 
update rules that are not linear but can be used to find solutions. For example, the world we see is not constructed from 
one smooth surface, but is better modeled as a set of surfaces separated by discontinuities. An energy function can be 
constructed that explicitly models these discontinuities and their effects on the interpolated values. The energy function in 
this case is no longer quadratic, and the update rule computes more than a weight sum. This usually brings the additional 
problem of local energy minima that we will study in the next lecture.

For  examples of constructing a more complicated energy functions with discontinuities, see: Kersten, D. J. (1991) and 
Kersten and Madarsmi (1995).

Example: Reconstructing a smooth line, interpolation using 
smoothness

First-order smoothness

‡ A generative model: Sine wave with random missing data points

Suppose we have sampled a function at a discrete random set of points xs. Multiplying the sine function by the vector xs 
picks out the values at the sample points at each location of the vector where xs is one, and sets the others to zero.

size = 60; xs = Table@RandomInteger@1D, 8i, 1, size<D;

data = TableBNBSinB
2 p j

10
F xsPjTF, 8j, 1, size<F;

g3 = ListPlotBTableBNBSinB
2 p j

10
FF, 8j, 1, size<F, Joined Ø True,

DisplayFunction Ø Identity, PlotStyle Ø 8RGBColor@0, 0.5`, 0D<F;

g2 = ListPlot@data, Joined Ø False, PlotStyle Ø 8RGBColor@0.75`, 0.`, 0D<,
Prolog Ø AbsolutePointSize@5DD;
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Show@g2, g3D
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We are not going to fit the dots on the abscissa. These are places where data is missing, analogous to the stereo interpola-
tion regions with uniform regions where there are no points to match. The non-zero data are analogous to the disparity 
values from the two eyes.

We would like to find a smooth function, f[], approximation to the non-zero data points, given the assumption that we 
don't know what the underlying function actually is. 

We have one constraint already--the fidelity constraint that requires that the function f should be close to the non-zero 
data, d. We will use this to construct the "energy" term that measures how close they are in terms of the sum of the 
squared error.

We need another constraint--smoothness--to get the in-between points. There are many ways of doing this. If we had a 
priori knowledge that the underlying curve was periodic, we'd try fitting the data with some combination of sinusoids. 
Suppose we don't know this, but do have reason to believe that the underlying function is smooth in the sense of nearby 
points being close. As above, let's assume that the difference between nearby points should  be small. That is, the sum of 
the squared errors, f[i+1] - f[i], gives us the second part of our energy function.

 Let's make up a small 8 element energy vector:

energyvector =
Table[(f[i+1] - f[i])^2 + s[i] (d[i] - f[i])^2,

{i,1,8}];

energy = Sum[energyvector[[j]],{j,1,8}];

The s[i] term is the "filter"  (the same as xs above) that only includes data points in the data part of the energy function. It 
is zero for i's where there are no data, and one for the points where there are data.

We would like to find the f[] that makes this energy a minimum. We can do this by calculating the derivative of the energy 
with respect to each component of f,  and moving the state vector in a direction to minimize the energy--i.e. in the direc-
tion of the negative of the gradient.

It can be messy to keep track of all the indices in these derivatives, so let's let Mathematica calculate the derivative for 
f[3]. From this we can see the pattern for any index.
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The s[i] term is the "filter"  (the same as xs above) that only includes data points in the data part of the energy function. It 
is zero for i's where there are no data, and one for the points where there are data.

We would like to find the f[] that makes this energy a minimum. We can do this by calculating the derivative of the energy 
with respect to each component of f,  and moving the state vector in a direction to minimize the energy--i.e. in the direc-
tion of the negative of the gradient.

It can be messy to keep track of all the indices in these derivatives, so let's let Mathematica calculate the derivative for 
f[3]. From this we can see the pattern for any index.

D[energy, f[3]]

2 H-f@2D + f@3DL - 2 H-f@3D + f@4DL - 2 Hd@3D - f@3DL s@3D

Simplify[%]

-2 Hf@2D + f@4D + d@3D s@3D - f@3D H2 + s@3DLL

Now we could generate the full set of derivatives, set them equal to zero and solve for f, using standard linear algebra to 
solve a set of linear equations. This will work because the energy function is quadratic in elements of  f, and thus the 
derivatives are linear in f.The interpolation function is then a matrix operation on the data. Life won't always be that easy, 
and the situation often arises in which the energy function is not quadratic. 

So the alternative, which can work in the non-linear case, is to use what we introduced above--gradient descent. We can do 
this by expressing the derivative in terms of two matrix operations: One on the function to be estimated, f, and one on the 
data. 

Let's set up these two matrices, Tm and Sm such that the gradient of the energy is equal to:

 Tm . f - Sm . f.  Sm will be our filter to exclude non-data points. Tm will express the "smoothness" constraint.

Sm = DiagonalMatrix[xs];
Tm = Table[0,{i,1,size},{j,1,size}];
For[i=1,i<=size,i++,Tm[[i,i]] = xs[[i]]+2];
For[i=1,i<size,i++, Tm[[i+1,i]] = -1];
For[i=1,i<size,i++, Tm[[i,i+1]] = -1];

dt = 0.1; 
Tf[f1_] := f1 - dt (Tm.f1 - Sm.data);

We will initialize the state vector to zero, and then run the network for 30 iterations:

f = Table[0,{i,1,size}];
result = Nest[Tf,f,30];

Here is our smoothed function:
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g1 = ListPlot@result, Joined Ø TrueD
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You can see below that the function was not interpolated--the fit doesn't not pass through the data points. If we wanted 
more fidelity to the data, we could control this by increasing the weight given to the data part of the energy term relative to 
the smoothness part.

Show@8g1, g2, g3<D
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Exercise:

Decrease the parameter controlling smoothness to see if you get better fidelity.

Sculpting for interpolation using second order smoothness constraints
This section elaborates the energy function (and weight matrix) to require that both first and second order differences be 
small.

Clear[energy,energyvector,f,d,s,data];

energyvector = 
Table[(f[i+1] - f[i])^2 + (f[i+2] - 2 f[i] + f[i+1])^2 + s[i] (d[i] - f[i])^2,{i,1,8}];

energy = Sum[energyvector[[j]],{j,1,8}];

By taking the derivative of the energy with respect to one of the interpolation depths, say f[3], we can see the pattern of the 
weights for the gradient descent update rule:

D[energy, f[3]]

2 H-f@2D + f@3DL + 2 H-2 f@1D + f@2D + f@3DL - 2 H-f@3D + f@4DL +

2 H-2 f@2D + f@3D + f@4DL - 4 H-2 f@3D + f@4D + f@5DL - 2 Hd@3D - f@3DL s@3D

Simplify[%]

-2 H2 f@1D + 2 f@2D - 8 f@3D + 2 f@4D + 2 f@5D + d@3D s@3D - f@3D s@3DL

Now we simulate the sampled data, and then set up the weight matrix:

size = 120; xs = Table@RandomInteger@1D, 8i, 1, size<D;

data = TableBNBSinB
2 p j

20
F xsPjTF, 8j, 1, size<F; Sm = DiagonalMatrix@xsD;

Tm = Table@0, 8i, 1, size<, 8j, 1, size<D;
For@i = 1, i § size, i++, TmPi, iT = xsPiT + 8D;
For@i = 1, i < size, i++, TmPi + 1, iT = -2D;
For@i = 1, i < size, i++, TmPi, i + 1T = -2D;
For@i = 1, i < size - 1, i++, TmPi + 2, iT = -2D;
For@i = 1, i < size - 1, i++, TmPi, i + 2T = -2D;

We will give the smoothness term a little more weight relative to the fidelity term:
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We will give the smoothness term a little more weight relative to the fidelity term:

dt = 0.1;
l=.25;
Tf[f1_] := f1 - dt (l*Tm.f1 - Sm.data);

f = Table[0,{i,1,size}];
result = Nest[Tf,f,30];

g1 = ListPlot@result, Joined Ø True, PlotRange Ø 8-1, 1<,
DisplayFunction Ø IdentityD;

g2 = ListPlot@data, Joined Ø False, PlotRange Ø 8-1, 1<,
PlotStyle Ø 8RGBColor@0.75`, 0.`, 0D<, Prolog Ø AbsolutePointSize@5D,
DisplayFunction Ø IdentityD;

Show@g1, g2, DisplayFunction Ø $DisplayFunctionD
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Try different values of the smoothing weight

Deriving learning rules
In the previous section, we "sculpted" an energy function based on fidelity and smoothness constraints. The sculpting 
determined the parameters (or weights). Then we used gradient descent to derive an update rule from the energy function. 
The update rule allowed us to find values of the state vector (i.e. the estimates to the data) that satisfied the condition that 
the energy function be minimized.

Can we do a similar thing to derive weight adjustment rules for learning? In other words construct something like an 
energy function, but where the weights are the variables, rather than the neural activities? We've already done that when 
we derived learning rules for Widrow-Hoff and back-prop. Widrow-Hoff produced a learning rule that was similar to the 
Hebb rule, but used the outer product to associate predicted error with the input. Let's look at another example, but this 
time in self-organization.

We re-visit the decorrelation problem which came up in the context of contingent adaptation. We'll see how to construct 
cost functions that embody desired constraints on the weights, and then use gradient descent to derive a self-organizing 
learning rule. Similar to Widrow-Hoff, we will derive a rule for a single sample, rather than for a whole collection.

As before, there is no guarantee that the learning rule will have neural plausibility; however, it does provide a solution to 
optimizing our constraints.

An example from decorrelation

The generative model
Suppose we have a two-dimensional input. The elements are correlated, and one has a higher variance than the other. 
Similar to that used for the PCA demonstrations. Uses the Multinormal add-on package. Define the covariance matrix r, 
and let the mean vector be {0,0}:

<< MultivariateStatistics`

(r = {{4, .6}, {.6, .2}};
ndist = MultinormalDistribution[{0, 0}, r]);
rv :=RandomReal[ndist];
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rv

8-3.94053, -0.496396<

npoints = 400;
rvsamples = Table[rv,{n,1,npoints}];

g1 = ListPlot@rvsamples, PlotRange Ø 88-8, 8<, 8-8, 8<<, AspectRatio Ø 1D;
Show@g1D
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Find weights such that 1) they define a linear basis; 2) may be orthogonal, 
normalized, or non-orthogonal

‡ Algebra: 

xv is any vector in the two-dimensional space spanned by basis vectors wv1 and wv2.

Recall from the notebook review of linear algebra, that if the basis vectors are orthogonal and normalized (i.e. orthonor-
mal), then xv is the weighted sum of the basis vectors, where the lengths are given by xv.wv1 and xv.wv2. If the basis 
vectors are the rows of W, then we have:

xv = W.xv.W

Let's construct a cost (an energy term), e, to basis weights deviating away from orthonormal. A simple cost that we have 
seen before is the sum of squared error terms: e=(xv-W.xv.W).(xv-W.xv.W);

xv = 8x1, x2<; wv1 = 8w11, w12<; wv2 = 8w21, w22<;
W = 88w11, w12<, 8w21, w22<<;
e = Hxv - W.xv.WL.Hxv - W.xv.WL;

‡ Rule 1: Find orthonormal basis

We can derive a local rule that will try to encourage the orthonormal assumption by calculating the gradient of e with 
respect to all four weights:

deltaW1@w11_, w12_, w21_, w22_, x1_, x2_D :=
Evaluate@88D@e, w11D, D@e, w12D<, 8D@e, w21D, D@e, w22D<<D

You can try this rule in the simulation below simply by replacing deltaW3 with deltaW1.

‡ Rule 2: Find decorrelating basis

If in addition, we want to discourage both outputs from being high at the same time, i.e. we want to encourage decorrela-
tion, we can include the product of the outputs as a constraint. This product will tend to be small if one or the other output 
is high but not both at the same time. It will also tend to be small if both are small; however, this can be counteracted by 
including the orthonormal constraint of Rule 1:

e3 = e + 2 * Hxv.wv1L * Hxv.wv2L;

H*e3=Hxv.wv1L*Hxv.wv2L;*L
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deltaW3@w11_, w12_, w21_, w22_, x1_, x2_D :=
Evaluate@88D@e3, w11D, D@e3, w12D<, 8D@e3, w21D, D@e3, w22D<<D

Try them out: learning simulation

npoints = 400; rvsamples = Table@rv, 8n, 1, npoints<D;
g1 = ListPlot@rvsamples, PlotRange Ø 88-4, 4<, 8-4, 4<<, AspectRatio Ø 1D;
Show@g1D
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npoints = 2000; p1 = {}; α = 0.005;size = 2;
W0=Table[Random[],{i,1,size},{j,1,size}];
x=Table[0,{i,1,size}];

For[i=1,i<=npoints,i++,
{x[[1]],x[[2]]}=rv;
W0=W0-α deltaW3[W0[[1,1]],W0[[1,2]],W0[[2,1]],W0[[2,2]],x[[1]],x[[2]]];
If[Mod[i,50]==0,

p1 = Join[p1,{{W0[[1,2]]/W0[[1,1]],
W0[[2,2]]/W0[[2,1]] }}]];
(*Print[W0,deltaWW[W0[[1,1]],W0[[1,2]],W0[[2,1]],W0[[2,2]],x[[1]],x[[2]]]]*)

];

gg1 = ListPlot@HÒ1P2T &L êü p1, Joined Ø True,
PlotStyle Ø 8RGBColor@0, 0.5`, 0D<D;

gg2 = ListPlot@HÒ1P1T &L êü p1, Joined Ø True,
PlotStyle Ø 8RGBColor@0, 0, 1D<D;

gnetwork = Plot@8s p1PLength@p1DTP1T, s p1PLength@p1DTP2T<,
8s, -6, 6<, PlotRange Ø 88-6, 6<, 8-6, 6<<, AspectRatio Ø 1,
DisplayFunction Ø IdentityD;

Show@GraphicsRow@8Show@8gg1, gg2<D, Show@gnetwork, g1, Axes Ø FalseD<DD
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