
Introduction to Neural Networks
U. Minn. Psy 5038

Lecture 10

Non-linear models
The perceptron

Initialization

In[1]:= Off[SetDelayed::write]
Off[General::spell1]

Introduction

Last time

‡ Summed vector memories

‡ Introduction to statistical learning

Linear interpolation interpretation of linear heteroassociative learning and recall

In[583]:= f1 = 80, 1, 0<; f2 = 81, 0, 0<; g1 = 80, 1, 3<; g2 = 81, 0, 5<;
W = Outer@Times, g1, f1D;

W maps f1 to g1:

In[585]:= W.f1

Out[585]= 80, 1, 3<

Similarly, the outer product of f2 and g2 maps f2 to g2:

In[586]:= W = Outer@Times, g2, f2D;
W.f2

Out[587]= 81, 0, 5<

Because of the orthogonality of f1 and f2, the sum of the two outer products Wt still maps f1 to g1 (and f2 to g2):

In[588]:= Wt = Outer@Times, g1, f1D + Outer@Times, g2, f2D;
Wt.f1

Out[589]= 80, 1, 3<

Define an interpolated point fi somewhere between f1 and f2, the position being determined by parameter a.

In[590]:= fi = a * f1 + H1 - aL * f2;

Wt maps fi to some point in output space (below, we'll call it gt):

In[591]:= Wt.fi

Out[591]= 80.971435, 0.0285649, 4.94287<

(An interpolated point gt between g1 and g2 can also be defined as: gt = b*g1 + (1 - b)*g2).

Let's take a look at the state space representations of the input and output activity vectors:

2 Lect_10_Perceptron.nb

In[592]:= Manipulate@
fi = a * f1 + H1 - aL * f2;
gt = Wt.fi;
GraphicsRow@
8ListPointPlot3D@8f1, f2, fi<, PlotStyle Ø PointSize@0.1D,

Ticks Ø None, AxesLabel Ø 8"fx", "fy", "fz"<D,
ListPointPlot3D@8g1, g2, gt<, PlotStyle Ø PointSize@0.1D,
Ticks Ø None, AxesLabel Ø 8"gx", "gy", "gz"<D<, ImageSize Ø SmallD,

88a, .4<, 0, 1<D

Out[592]=

a

fx
fy

fz

gx
gy

gz

Lect_10_Perceptron.nb 3

‡ Generative modeling and statistical sampling

Today

‡ Non-linear models for classification

Introduction to non-linear models
By definition, linear models have several limitations on the class of functions they can compute--outputs have to be linear
functions of the inputs. However, as we have pointed out earlier, linear models provide an excellent foundation on which
to build. On this foundation, non-linear models have moved in several directions.

Consider a single unit with output y, and inputs fi.

--One way is to "augment" the richness of the input patterns with higher-order terms to form polynomial mappings, or non-
linear regression, as in a Taylor series (Poggio, 1979), going from linear, to quadratic, to higher order functions:

The linear Lateral inhibition equations can be generalized using products of input and output terms --"shunting" inhibition
(Grossberg).

--A straightforward generalization of the generic connectionist model is to divide the neural output by the squared
responses of neighboring units. This is a steady-state model of a version of shunting inhibition which has been very
successful in accounting for a range of neurophysiological receptive field properties in vision (Heeger et al., 1996).

--One of the simplest things we can do at this point is to use the generic connectionist neuron with its second stage point-
wise non-linearity. Recall that this is an inner product followed by a non-linear sigmoid. Once a non-linearity such as a
sigmoid introduced, it makes sense to add more than additional layers of neurons.

(Without a non-linearity, any linear network that feeds into another linear network is equivalent to a single linear network,
with just one layer of weights. You can prove this using the rules of matrix multiplication.)

Much of the modeling of human visual pattern discrimination has used just these "rules-of-the-game" (linear matrix
multiplication followed by point non-linearities, i.e. using generic connectionist neurons), with additional complexities
(such as a normalization term above) added only as needed. And together with a good learning rule (such as error back-
prop that we will study later) provide state of the art machine vision solutions to some restricted problems, such as OCR
(see LeNet demo link in syllabus).

A central challenge, in the above and all methods that seek general mappings, is to develop techniques to learn the
weights, while at the same time avoiding over-fitting (i.e. using too many weights). We'll talk more about this problem
later.

These modifications produce smooth functions. If we want to classify rather than regress, we need something abrupt.
Generally, we add a sigmoidal squashing function. As the slope of the sigmoid increases, we approach a simple step non-
linearity. The neuron then makes discrete (binary) decisions. Recall the McCulloch-Pitts model of the 1940's. Let us look
at the Perceptron, an early example of a network built on such threshold logic units.

4 Lect_10_Perceptron.nb

--One of the simplest things we can do at this point is to use the generic connectionist neuron with its second stage point-
wise non-linearity. Recall that this is an inner product followed by a non-linear sigmoid. Once a non-linearity such as a
sigmoid introduced, it makes sense to add more than additional layers of neurons.

(Without a non-linearity, any linear network that feeds into another linear network is equivalent to a single linear network,
with just one layer of weights. You can prove this using the rules of matrix multiplication.)

Much of the modeling of human visual pattern discrimination has used just these "rules-of-the-game" (linear matrix
multiplication followed by point non-linearities, i.e. using generic connectionist neurons), with additional complexities
(such as a normalization term above) added only as needed. And together with a good learning rule (such as error back-
prop that we will study later) provide state of the art machine vision solutions to some restricted problems, such as OCR
(see LeNet demo link in syllabus).

A central challenge, in the above and all methods that seek general mappings, is to develop techniques to learn the
weights, while at the same time avoiding over-fitting (i.e. using too many weights). We'll talk more about this problem
later.

These modifications produce smooth functions. If we want to classify rather than regress, we need something abrupt.
Generally, we add a sigmoidal squashing function. As the slope of the sigmoid increases, we approach a simple step non-
linearity. The neuron then makes discrete (binary) decisions. Recall the McCulloch-Pitts model of the 1940's. Let us look
at the Perceptron, an early example of a network built on such threshold logic units.

Classification and the Perceptron

Classification
Previously we introduced the distinction between regression and classification in supervised learning.

Supervised learning: Training set {fi,gi}

Regression: Find a function f: f->g, i.e. where g takes on continuous values.

Classification: Find a function f:f->{0,1,2,...,n}, i.e. where gi takes on discrete values or labels.

Linear networks can be configured to be supervised or unsupervised learning devices. But linear mappings are severely
limited in what they can compute. The specific problem that we focus on in this lecture is that continuous linear mappings
don't make discrete decisions.

Let's take a look at the binary classification problem

f: f -> {0,1}

We will study both recall (i.e. classification) and learning for the binary classification problem. Learning amounts to
adjusting the parameters (e.g. synaptic weights) of the mapping in order to achieve the best classification performance. We
will make these learning requirements more precise as we go along.

Pattern classification

Lect_10_Perceptron.nb 5

Pattern classification
One often runs into situations in which we have input patterns with enormous dimensionality, and whose elements are
perhaps continuous valued. What we would like to do is classify all members of a certain type. Suppose that f is a represen-
tation of one of the following 10 input patterns,

{a, A, a, a, A, b, B, b, b, B }
A pattern classifier should make a decision about f as to whether it means "a" or "b", regardless of the font type, face or
size. In other words, we require a mapping T such that:

T: f -> {"a","b"}

In general, a classifier should show invariance over variations of instances within each class, while at the same time
minimizing the proportion of misclassification errors.

Let's include a step threshold function in the tradition of McCulloch & Pitts, a special case of the generic connectionist
neuron model. With the step threshold, recall that the units are called Threshold Logic Units (TLU):

TLU: f -> {-1,1}

In[13]:= step1[x_, q_] := If[x<q,-1,1];

The TLU neuron's output can be modeled simply as: step[w.f,q];

In[14]:= Manipulate@Plot@step1@x, qD, 8x, -1, 3<, PlotStyle Ø 8Hue@0.1D<,
ImageSize Ø SmallD, 88q, 0<, 0, 3<D

Out[14]=

q

-1 1 2 3

-1.0

-0.5

0.5

1.0

Our goal will be to find the weight and threshold parameters for which the TLU does a correct classification.

So the TLU has two classes of parameters to learn, weight parameters and a threshold q. If we put the threshold degree of
freedom into the weights, then the math is simpler--we'll only have to worry about learning weights. To see this, assume
the threshold to be fixed at zero, and then augment the inputs with one more input that is always on. Here is a two input
TLU, in which we augment it with a third input that is always 1 and whose weight is -q:

6 Lect_10_Perceptron.nb

Our goal will be to find the weight and threshold parameters for which the TLU does a correct classification.

So the TLU has two classes of parameters to learn, weight parameters and a threshold q. If we put the threshold degree of
freedom into the weights, then the math is simpler--we'll only have to worry about learning weights. To see this, assume
the threshold to be fixed at zero, and then augment the inputs with one more input that is always on. Here is a two input
TLU, in which we augment it with a third input that is always 1 and whose weight is -q:

In[15]:= Remove[w,f,waug,faug,q,w1,w2,f1,f2];
w = {w1,w2};
f = {f1,f2};
waug = {w1,w2,-q};
faug = {f1,f2,1};

(*Now compare the 2-input threshold constraint with the 3-input one*)
q==w.f
Solve[0==waug.faug,q]

Out[21]= q‡ f1 w1 + f2 w2

Out[22]= 88q Ø f1 w1 + f2 w2<<

So the 3-input augmented unit computes the same inner product as 2-input unit with arbitrary threshold. This is a standard
trick that is used often to simplify calculations and theory (e.g. Hopfield network).

Lect_10_Perceptron.nb 7

Perceptron (Rosenblatt, 1958)
The original perceptron models were fairly complex. There were several layers of TLUs. In one early model (Anderson,
page 217), there was:

1. An input layer or retina of sensory units

2. Associator units with lateral connections and

3. Response units, also with lateral connections.

Lateral connections between response units functioned as a "winner-take-all" mechanism to produce outputs in which
only one response unit was on. (So was the output a distributed code of the desired response?)

The Perceptron in fact is a cartoon of the anatomy between the retina (if it consisted only of receptors, which it does not,
it also has horizontal, bipolar, amacrine and ganglion cells), the lateral geniculate nucleus of the thalamus (if it had lateral
connections, which if does have, are not a prominent feature) and the visual cortex with feedback from response to associa-
tor units, and the lateral connections (V1 cortex in fact does send neurons back to the lateral geniculate nucleus, and does
have lateral inhibitory connections).

 Perceptrons of this sort are difficult to analyze. It is hard to draw general theoretical conclusions about what they can
compute and what they can learn. In a curious parallel, the computational function of the feedback from cortex to thalamus
is still not clear. In order to make the Perceptron theoretically tractable, we will first take a look at a simplified perceptron
which has just two layers of units (input units and TLUs), and one layer of weights. There is no feedback and there are no
lateral connections between units in the same layer. In a nutshell, there is one set of neural TLU elements that receive
inputs and send their outputs.

What can this simplified perceptron do?

To simplify further, let's look at a single TLU with just two variable inputs, but three adjustable weights.

Recall performance and Linear separability

‡ A two-input simplified perceptron

Assume we have some generative process that is providing data { f k}, where each f kis a two-dimensional vector. So the
data set can be represented in a scatter plot. But any particular input can belong to one of two categories, say -1 or 1: f k-
>{-1,1}. (-1 and 1 could correspond, for example, to "a" and "b".)

For a specific set of weights, the threshold defines a decision line separating one category from another. For a 3 input
TLU, this decision line becomes a decision surface separating classes. If we solve waug.faug==0 for f2 symbolically, we
have an expression for this boundary separating points {f1,f2}

8 Lect_10_Perceptron.nb

In[23]:= waug = {w1,w2,w3}; (*w3 = -q*)
faug = {f1,f2,1};
Solve[waug.faug==0,{f2}]

Out[25]= ::f2 Ø
-f1 w1 - w3

w2
>>

We can see that f2 is a linear function of f1 for fixed weight values.

‡ Define equation for the decision line of a two-input simplified perceptron

Let's write a function for a particular decision line with arbitrary choices for the weights and threshold:

In[26]:= w1 = 0.5; w2 = 0.8; q = 0.55;
waug = {w1,w2,-q};
decisionline[f1_,q_]:= -((-q + f1*w1)/w2)

‡ Generative model: Simulate data and network response for a two-input simplified perceptron

Now we generate some random input data and run it through the TLU. Because we've put the threshold variable into the
weights, we re-define step[] to have a fixed threshold of zero:

In[29]:= Remove@stepD;
step@x_D := If@x > 0, 1, -1D;

In[31]:= inputs = Table@8x = RandomReal@D, y = RandomReal@D, 1<, 8i, 1, 20<D;
responses = step@waug.ÒD & êü inputs;

‡ View the input data and the responses

Let's plot up the classified data and decision line.

In[33]:= inputsXY = Drop@inputs, None, 83<D;

In[34]:= abovethreshold = Delete@inputsXY, Position@responses, -1DD;
belowthreshold = Delete@inputsXY, Position@responses, 1DD;

Lect_10_Perceptron.nb 9

In[36]:= g1 = Plot@decisionline@f1, qD, 8f1, -.75, 1.5<,
PlotStyle Ø 8RGBColor@0, 0, 1D<D;

g2 = ListPlot@8abovethreshold, belowthreshold<, PlotStyle Ø 8Red, Green<,
PlotMarkers Ø 88"Ê", Small<, 8"Ê", Small<<D;

Show@g1, g2, ImageSize Ø SmallD

Out[38]=

Ê

Ê

Ê

Ê

Ê

ÊÊ

Ê

ÊÊ

Ê

ÊÊ

Ê
Ê

Ê

Ê

ÊÊ
Ê

-0.5 0.5 1.0 1.5
-0.2

0.2
0.4
0.6
0.8
1.0

The blue line separates inputs whose inner product with the weights exceeds the threshold from those that do not exceed.

‡ Simplified perceptron (TLU network): N-dimensional inputs

 For a three dimensional input TLU, this decision surface is a plane:

In[39]:= w1 = 0.5; w2 = 0.8; w3 = 0.2; q = 0.4;
w = {w1,w2,w3,-q};
f = {f1,f2,f3,1};
Solve[w.f==0,{f3}]

Out[42]= 88f3 Ø 5. H-0.5 f1 - 0.8 f2 + 0.4L<<

In[43]:= Plot3D@-5. H-0.4 + 0.5 f1 + 0.8 f2L, 8f1, 0, 1<, 8f2, 0, 1<,
ImageSize Ø SmallD

Out[43]=

Exercise: Find the algebraic expression for the decision plane

10 Lect_10_Perceptron.nb

Exercise: Find the algebraic expression for the decision plane

For an n-dimensional input TLU, this decision surface is a hyperplane with all the members of one category falling on one
side, and all the members of the other category falling on the other side. The hyperplane provides an intuition for the
TLU's limited classification capability. For example, what if the features corresponding to the letter "a" fell inside of a
circle or radius 1, and the features for "b" fell outside this circle?

Perceptron learning rule
Given a set of classified data, how can we find the perceptron parameters (weights) that specify a good decision plane? I.e.
if we didn't know what the weights were that generated the above data, how could we find a suitable values from the data
itself?

A classic perceptron learning rule (that can be proved to converge) is as follows.

Suppose we have a training set {fi,gi} where gi is either -1 or +1. Imagine we are in the middle of the training,and we have

a set of weights w. A new {fi,gi} comes along, so we can check to see how our perceptron is doing. Suppose it predicts

that the output for fi should be g
Ô

i. Then g
Ô

i==gi is either true or false. If false the classification is wrong and we can use

this information to adjust the weights to make it more likely to get the correct answer the next time.

So we have two basic conditions to address:

If the classification is correct, don't change the weights:

In[44]:= Remove@w, f, c, w1, w2, qD;
w = 8w1, w2, -q<; f = 8f1, f2, 1<;

Let nextW be the new (adjusted) set of weights:

In[46]:= nextW = w;

Lect_10_Perceptron.nb 11

If the classification is incorrect...

‡ ..and the correct answer was +1

Suppose the classification is incorrect AND the response should have been +1. Instead the output was -1 because the inner
product was less than zero. We change the weights to improve the chances of getting a positive output next time that input
occurs by adding some positive fraction (c) of the input to the weights:

In[47]:= nextw = w + c f;

Note that the new weights increase the likelihood of making a correct decision because the inner product is bigger than it
was, and thus closer to exceeding the zero threshold. We can demonstrate that it is bigger by calculating the difference
between the output with the adjusted weights, and the output with the original weights:

In[48]:= Simplify[nextw.f - w.f]

Out[48]= c If12 + f22 + 1M

This is always positive. In general, nextw.f > w.f, because nextw.f - w.f = c f.f,

and c f.f > 0.

‡ ..and the correct answer was -1

If the classification is incorrect AND the response should have been -1, we should change the weights by subtracting a
fraction (c) of the incorrect input from the weights. The new weights decrease the likelihood of making a correct decision
because the inner product is less, and thus closer to falling below threshold. So next time this input would be more likely
to produce a -1 output.

In[49]:= nextw = w - c f;
Simplify[nextw.f - w.f]

Out[50]= -c If12 + f22 + 1M

Note that the inner product nextw.f must now be smaller than before (nextw.f < w.f), because

 nextw.f - w.f < 0

 (since nextw.f - w.f = -c f.f, and c f.f > 0, as before).

If you are interested in understanding the proof of convergence, take a look at page 222 of the book by Anderson.

Demonstration of perceptron classification

12 Lect_10_Perceptron.nb

Demonstration of perceptron classification
Let's look at a program that uses a Perceptron style threshold logic unit (TLU) that learns to classify two-dimensional
vectors into "a" or "b" types.

‡ 1. Generation of synthetic classification data.

Suppose we generate 50 random points in the unit square, {{0,1},{0,1}} such that for the "a" type points indicated by
"+1",

 x^2+y^2 > bigradius^2 and for the "b" points indicated by "-1",

 x^2+y^2 < littleradius.

Depending on the radius values, these patterns may or may not be linearly separable because they fall inside or outside
their respective circles. The data are stored in stuff.

To be concrete, for the "a" type points, let x+y>0.6 and for the "b" points, x+y<0.4. Each pair of points should have its
corresponding label, a or b.

In[507]:= inputs = 8<; size = 50;
outputs = 8<;
While@Length@inputsD < size,

Which@Hx = 0.5 RandomReal@DL + Hy = 0.5 RandomReal@DL < 0.4,
inputs = Append@inputs, 8x, y, 1<D; outputs = Append@outputs, -1D,
x + y > 0.6, inputs = Append@inputs, 8x, y, 1<D;
outputs = Append@outputs, 1D

DD;

For plotting purposes, drop the fixed input (corresponding to the -q threshold term), and pull out the x-y coordinates above
and below threshold.

Lect_10_Perceptron.nb 13

In[594]:= inputsXY = Drop@inputs, None, 83<D;
abovethreshold = Delete@inputsXY, Position@outputs, -1DD;
belowthreshold = Delete@inputsXY, Position@outputs, 1DD;
g3 = ListPlot@8abovethreshold, belowthreshold<, PlotStyle Ø 8Red, Green<,

PlotMarkers Ø 88"Ê", Small<, 8"Ê", Small<<, ImageSize Ø SmallD

Out[596]=

Ê
Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê
Ê

Ê

Ê
Ê

ÊÊ

Ê
Ê

Ê
ÊÊ

Ê

Ê

Ê

ÊÊ

Ê

Ê
Ê

Ê
Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê Ê

Ê
Ê

Ê

Ê
Ê

Ê

Ê ÊÊ Ê

Ê

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

‡ 2. Define threshold function

Define a function that is -1 for x <0 and +1 for x>= 0. Here we use the conditional If[].

In[249]:= threshold[x_] := If[x<0,-1,1];

‡ 3. Perceptron learning algorithm

Let's run through the training pairs. Start off with a weight vector of: {-.3, -.05, 0.5}. If a point is classified correctly (e.g.
as an "a" type), we do nothing to the weights. If the point is actually an "a" type, but is incorrectly classified, we increment
the weights in some proportion (e.g. c = 0.1) of the point vector. If a "b" point is incorrectly classified, decrement the
weight vector in proportion (e.g. c = - 0.1) to the values of coordinates of the training point.

Let's make a list to record the changes in the weight vector. Note that the three components of the weight vector determine
the intercept and the slope of the line separating the "a" and "b" points.

‡ 3. Program

In[545]:= w0 = 8-.3, -0.05, 0.5<;
w = w0;
wlist = 8<;

Note that you may have to iterate through the list of training pairs several times to obtain convergence--remember conver-
gence is guaranteed for linearly separable data sets. So execute the following cell. Then check the plots of the discriminant
line below. Repeat executing this cell until w is no longer changing.

14 Lect_10_Perceptron.nb

In[578]:= i = 0; c = 0.01;

While[++i<=Length[inputs],
Which[(outputs[[i]] == 1) && (threshold[w.inputs[[i]]] == 1), w=w,

(outputs[[i]] == 1) && (threshold[w.inputs[[i]]] == -1), w = w + c (inputs[[i]]),
(outputs[[i]] == -1) && (threshold[w.inputs[[i]]] == -1), w=w,
(outputs[[i]] == -1) && (threshold[w.inputs[[i]]] == 1), w = w - c (inputs[[i]])
];

wlist = Append[wlist,w];
];
w

Out[580]= 80.0285649, 0.0515174, -0.02<

‡ 4. Plots of discriminant line

Make a series of plots showing how the weights evolve through the learning phase.

w={a,b,c};

In[597]:= ManipulateBa = wlistPi, 1T; b = wlistPi, 2T; c2 = wlistPi, 3T;

ShowBg3, PlotB-
b x

a
-
c2

a
, 8x, 0, 1<, PlotRange Ø 880, 1<, 80, 1<<,

AspectRatio Ø 1, ImageSize Ø SmallFF, 8i, 1, Length@wlistD, 1<F

Out[597]=

i

Ê
Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê
Ê

Ê

Ê
Ê

ÊÊ

Ê
Ê

Ê
ÊÊ

Ê

Ê

Ê

ÊÊ

Ê

Ê
Ê

Ê
Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê Ê

Ê
Ê

Ê

Ê
Ê

Ê

Ê ÊÊ Ê

Ê

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

Lect_10_Perceptron.nb 15

‡ 5. Table of classifications

Make a list {{c1,out1},c2,out2},,,,} where ci is the correct classification, and outi is the output of your threshold logic unit
with weight w or w0.

In[499]:= responses=threshold[w.#] & /@ inputs;
Table[{outputs[[i]],responses[[i]]},

{i,1,Length[inputs]}]//Transpose

Out[500]=
-1 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1
-1 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1

‡ 6. Proportion of correction classifications - before and after

Let's calculate the proportion of correct classifications before and after the weight vector has been trained.

Before

In[489]:= Pc = 0;i=0;
responses0=threshold[w0.#] & /@ inputs;
While[++i <= Length[inputs],
 Which[(outputs[[i]] == 1) && (responses0[[i]] == 1), Pc++,
 (outputs[[i]] == 1) && (responses0[[i]] == -1),Null,
 (outputs[[i]] == -1) && (responses0[[i]] == -1), Pc++,
 (outputs[[i]] == -1) && (responses0[[i]] == 1),Null
];
];
Pc/Length[inputs]

Out[492]=
23

50

After:

16 Lect_10_Perceptron.nb

In[485]:= Pc = 0;i=0;
responses=threshold[w.#] & /@ inputs;

While[++i <= Length[inputs],
 Which[(outputs[[i]] == 1) &&
 (responses[[i]] == 1), Pc++,
 (outputs[[i]] == 1) &&
 (responses[[i]] == -1), Null,
 (outputs[[i]] == -1) &&
 (responses[[i]] == -1), Pc++,
 (outputs[[i]] == -1) &&
 (responses[[i]] == 1),Null
];
];
Pc/Length[inputs]

Out[488]= 1

Limitations of Perceptrons (Minksy & Papert, 1969)

‡ XOR

Inclusive vs. Exclusive OR (XOR)

Augmenting the input representation to solve XOR. A special case of polynomial mappings. The idea of augmenting
inputs has seen a recent revival with new developments in Support Vector machine learning.

‡ Natural constraints and computation of connectedness

Perceptron with natural limitations:

Order-limited: no unit sees more than some maximum number of inputs (e.g. analogous to an
upper limit on the number of synapses on a dendritic tree.)

Diameter-limited: no unit sees inputs outside some maximum diameter (e.g. analogous to a neural
receptive field, in which a neuron is unresponsive to stimulation outside some region on the retina).

Argument : Connectedness can't be solved with diameter-limited perceptrons.

Lect_10_Perceptron.nb 17

From: http://images.amazon.com/images/P/0262631113.01.LZZZZZZZ.jpg

Exercise: Expanding the input representation

The figure below shows how a 2-input TLU that computes OR maps its inputs to its outputs.

Make a similar truth table for XOR. Plot the logical outputs for the four possible input states. Can you draw a straight line
to separate the 1's from the 0's?

What if you added a third input which is a function of original two inputs as in the above figure? (Hint, a logical product).
Make a 3D plot of the four possible states,now including the third input as one of the axes.

Future directions for classification networks

18 Lect_10_Perceptron.nb

Future directions for classification networks

‡ Widrow-Hoff and error back-propagation

Later we ask whether there is a learning rule that will work for multi-layer perceptron-style networks. That will lead us
(temporarily) back to an alternative method for learning the weights in a linear network. From there we can understanding
a famous generalization to non-linear networks for smooth (but including steep sigmoidal non-linearities useful for
discrete decisions) function mappings, called "error back-propagation".

These non-linear feedforward networks, with "back-prop" learning increase the computational power for both smooth
regression and classification.

‡ Linear discriminant analysis

We will then take a look at classification from the point of view of statistical pattern recognition. In particular, the percep-
tron is a special case of a linear classifier. In linear discriminants analysis, the idea is to project the data onto a hyperplane
whose parameters are chosen so that the classes are maximally separated, in the sense that both the difference between the
means (of the two populations) is big and the variation within the classes ("within-class scatter") is small. Intuitively, the
idea is to find a decision plane that maximizes the "signal-to-noise" ratio of the classifier.

‡ Support Vector Machines

Within recent years, there has been considerable interest in Support Vector Machine learning. This is a technique which in
its simplest form provides a powerful tool for finding non-linear decision boundaries using the trick explored above of
increasing the input space. SVM theory has developed a rich body of results dealing with deep issues in the generalization
of learning. See the Tutorials at http://www.kernel-machines.org/tutorial.html

Appendix

‡ Sidenote: More on conditionals

You have seen how to generate threshold functions using rules and the Piecewise function. But you can also use condi-
tional statements. For example the following function returns x when Sin[2 Pi x] < 0.5, and returns -1 otherwise:

In[80]:= pet[x_] := If[Sin[2 Pi x] <0.5, x,-1];

One can define a function over three regions using Which[]. Which[test1, value1, test2,value2,...] evaluates each test in
turn, giving the value of the first one that is True:

Lect_10_Perceptron.nb 19

In[81]:= tep[x_] := Which[-1<=x<1,1,
 1<=x<2, x,
 2<=x<=3, x^2]

In[82]:= Plot@tep@xD, 8x, -1, 3<D

Out[82]=

-1 1 2 3

2

4

6

8

References
Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York.: John Wiley & Sons.

Grossberg, S. (1982). Why do cells compete? Some examples from visual perception., UMAP Module 484 Applications
of algebra and ordinary differential equations to living systems, : Birkhauser Boston Inc., 380 Green Street Cambridge,
MA 02139. (pdf1, pdf2)

Heeger, D. J., Simoncelli, E. P., & Movshon, J. A. (1996). Computational models of cortical visual processing. Proc Natl
Acad Sci U S A, 93(2), 623-7. (pdf) (See too: Carandini et al).

Minsky, M., & Papert, S. (1969). Perceptrons: An Introduction to Computational Geometry. Cambridge, MA: MIT Press.

Poggio, T. (1975). On optimal nonlinear associative recall. Biological Cybernetics, 19, 201-209.

Vapnik, V. N. (1995). The nature of statistical learning. New York: Springer-Verlag.
© 1998, 2001, 2003, 2005, 2007, 2009 Daniel Kersten, Computational Vision Lab, Department of Psychology, University of Minnesota.

20 Lect_10_Perceptron.nb

