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Introduction
Consider the generic 2-layer network. Each neuron takes a weighted sum of the inputs (stage 1), followed by a point-
nonlinearity (the squash function of stage 2), and added noise (stage 3). Although later we will see how the non-linearity 
enables computations that are not possible without it, useful functions can be realized with just the linear or stage 1 part of 
the network. We've seen one application already with the model of the limulus eye. In the next section, we will see how 
linear networks can be used to model associative memory recall. But first, let us take what we've learned so far about 
modeling linear networks and look at in the general context of linear systems theory. We've seen that the basic linear 
network is represented by a matrix of weights that operates on a vector of input activities. One property of such a system is 
that it satisfies the fundamental definition of a "linear system".

The world of input/output systems can be divided up into linear and non-linear systems. Linear systems are nice because 
the mathematics that describes them is not only well-known, but also has a mature elegance. On the other hand, it is a fair 
statement to say that most real-world systems are not linear, and thus hard to analyze...but fascinating if for that reason 
alone. Scientists were lucky with the limulus eye. That nature is usually non-linear doesn't mean one shouldn't familiarize 
oneself with the basics of linear system theory. Many times a non-linear system has a sufficiently smooth mapping that it 
can be approximated by a linear one over restricted ranges of parameter values. 

So precisely what is a "linear system"?

The notion of a "linear system" can be thought of as a generalization of the input/output properties of a straight line 
passing through zero. The matrix equation W.x == y is a linear system.There are two basic requirements of a linear system 
that can be induced from matrix/vector multiplication.  Suppose that W is  a matrix, x1 and x2 are vectors, and a and b are 
scalars. Then we know that:

W.(a x1)= aW.( x1)

This the scaling or homogeneity requirement for a linear system. 

We noted earlier that neural (and behavioral) responses are often described in terms of small signal 
suppression, and large signal saturation, leading to the squashing function. Does the squashing function 
satisfy the homogeneity requirement?

Another basic property of a linear system is additivity: 

W.(x1 + x2) = W.x1 + W.x2

Together these specify the superposition principle:

W.(a x1 + b x2) = a W.x1 + b W.x2

This so far is just a consequence of the laws of matrix algebra.

Generalization
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Generalization
The idea of a linear system has been generalized beyond matrix algebra.  This is useful mathematically, but also provides 
insight into basic experimental tests that psychologists and neuroscientists use to test linearity in a system. Linear systems 
analysis provides a set of tools for the experimental study of a system. Linearity tests have been applied to behavioral 
responses, neuron responses (recall the experimental graphs showing linearity and departures from linearity in the slow 
potentials of a neuron), and neuroimaging responses (e.g. functional magnetic resonance imaging of BOLD signals).

Imagine we have a box that takes inputs such as f, and outputs g = T[f], where f and g could be vectors, or more generally, 
continuous functions.

The abstract definition of a linear system is that it satsifies:

                     T[a f1 + b f2] = a T[ f1] + b T[ f2]

where T is the transformation that takes the sum of scaled inputs f1, f2 (which can be functions or vectors) to the sum of 
the scaled transformation of f 1and f2. The property, that the output of a sum is the sum of the outputs, is the superposition 

principle for linear systems described above. The fact that linear systems show superposition is good for doing theory, is 
often a good approximation, but as we will see later, it limits the kind of computations that can be done with linear sys-
tems, and thus with linear neural network models.

Let's get a graphical view.

‡ Homogeneity

Suppose we have an input f1 representing an impulse at time i=33 (i.e. 0s everywhere but at i=33, where i=1). And 
suppose the measured response is g1 as shown in the first figure below. This is sometimes called an impulse response (e.g. 
given an amplifier, a click on a microphone yields an response on the speaker).

If the system is linear, and in particular respects homogeneity, then if we double the input 2 x f1, the response should be 2 
x g1. 
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In[136]:= f1 = Table@If@i ã 33, 1, 0D, 8i, 1, 100<D;
g1 = TableBIfBi § 33, 0, -‰

-
1
20

Abs@i-33DF SinB i

10
F, 8i, 1, 100<F;

ListPlot@8f1, g1<, PlotRange Ø 8-0.5`, 2<D
ListPlot@82 f1, 2 g1<, PlotRange Ø 8-0.5`, 2<D

Out[138]=
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Out[139]=
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‡ Additivity

Now imagine an input impulse f1 at time i=33, followed by another f2 at time i=45.These lead to responses g1 and g2. 
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In[140]:= f1 = Table@If@i ã 33, 1, 0D, 8i, 1, 100<D;
f2 = Table@If@i ã 45, 1.5`, 0D, 8i, 1, 100<D;
g1 = TableBIfBi § 33, 0, -‰

-
1
20

Abs@i-33DF SinB i

10
F, 8i, 1, 100<F;

g2 = TableBIfBi § 45, 0, -‰
-
1
30

Abs@i-45DF SinBi - 14

10
F, 8i, 1, 100<F;

ListPlot@8f1, g1<, Filling Ø Axis, PlotRange Ø 8-0.5`, 2<D
ListPlot@8f2, g2<, Filling Ø Axis, Filling Ø Axis, PlotRange Ø 8-0.5`, 2<D
ListPlot@8f1, f2, g1 + g2<, Filling Ø Axis, PlotRange Ø 8-0.5`, 2<D

Out[144]=
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Out[145]=

Out[146]=

In[147]:= 8a, b< 8x, y<

Out[147]= 8a x, b y<

Here's an example of a response that has a non-linear component
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Here's an example of a response that has a non-linear component

In[148]:= ListPlot@8f1, f2, g1 + g2 + 2 Hg1 g1L + 2 Hg2 g2L + 2 Hg1 g2L<,
Filling Ø Axis, PlotRange Ø 8-0.5`, 2<D

Out[148]=

Characterizing a linear system by its response to an orthonormal basis set
Suppose we have an unknown physical (or biological) system, which we model as a linear system, represented by a 
(square) matrix T:

In[149]:= T = Table@RandomReal@D, 8i, 1, 8<, 8j, 1, 8<D;

We would like to make a simple set of measurements that could characterize T in such a way that we could predict the 
output of T to any input. This is the sort of task that engineers face when wanting to characterize, say a stereo amplifier (as 
a model linear system), so that the output sound can be predicted for any input sound. It is also the kind of task that 
neuroscientists face when describing a neural subsystem, such as hearing, touch or sight.

What kind of measurements would tell us what T is? Well, we could make a huge look-up table that enumerates the 
response to each possible input. That's impractical, and also unnecessary if the system is linear (or is approximately so).

Another thing we could do is just "stimulate" the system with cartesian vectors {1,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0}, and so 
forth and collect the responses which would be the columns of T. Once we have those, we can predict the response to any 
input.

This is theoretically fine, but can lead to two practical problems: 

1) for a real physical system, such as your stereo, or a neuron in the limulus eye, this would require stimulating it with a 
high-intensity audio or light intensity spike, which could damage what you are trying to study. For example, if you have 1 
million receiving elements, getting a response by stimulating only 1 part in a million may require concentrating lots of 
energy on just one element. In the theoretical limit, this corresponds to stimulating it with a "delta" function, a spike which 
is infinitely narrow and infinitely high.

2) Characterizing the linear system by a matrix T, requires n2numbers, where n is the input signal vector length--and n can 
be pretty big for both audio and visual systems.

Problem 2) has a nice solution when T is symmetric, and even nicer solution if the rows are shifted versions of each other, 
as with the model for lateral inhibition (this is addressed later). Problem 1) can be addressed by showing that we can 
characterize T with any basis set--so we can pick one that won't blow out the physical system being tested.

The set of Walsh functions we looked at earlier is just one possible set that has the advantage that the elements that 
contribute to the "energy", i.e. (the square of the length) are distributed across the vector.
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In[150]:= v1 = {1., 1, 1, 1, 1, 1, 1, 1}; w1 = v1/Norm[v1];
v2 = {1.,-1,-1, 1, 1,-1,-1, 1}; w2 = v2/Norm[v2];
v3 = {1., 1,-1,-1,-1,-1, 1, 1}; w3 = v3/Norm[v3];
v4 = {1.,-1, 1,-1,-1, 1,-1, 1}; w4 = v4/Norm[v4];
v5 = {1., 1, 1, 1,-1,-1,-1,-1}; w5 = v5/Norm[v5];
v6 = {1.,-1,-1, 1,-1, 1, 1,-1}; w6 = v6/Norm[v6];
v7 = {1., 1,-1,-1, 1, 1,-1,-1}; w7 = v7/Norm[v7];
v8 = {1.,-1, 1,-1, 1,-1, 1,-1}; w8 = v8/Norm[v8];

We have already seen that the set  {wi} spans   8-space in such a way that we can express any vector as a linear sum of 
these basis vectors.

(1)g = ‚Hg.wiL wi
So as we saw before, an arbitrary vector, g

In[158]:= g = {2,6,1,7,11,4,13,29};

is the sum of its own projections onto the basis set:

In[159]:= (g.w1) w1  + (g.w2) w2  +(g.w3) w3  +(g.w4) w4  +
(g.w5) w5  +(g.w6) w6  +(g.w7) w7  +(g.w8) w8

Out[159]= 82., 6., 1., 7., 11., 4., 13., 29.<

Suppose we now do an "experiment" to find out how T transforms the vectors of our basis set:, and we put all of these 
transformed basis elements into a new set of vectors newW[[i]]. 

newW is a matrix for which each row is the response of T to a basis vector.

In[160]:= newW = {T.w1,T.w2,T.w3,T.w4,T.w5,T.w6,T.w7,T.w8};

Note that newW is an 8x8 matrix. 

Are the rows of newW orthogonal?
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Are the rows of newW orthogonal?

So how can we calculate the output of T, given g without actually running the input through T? (Note that If we do run the 
input through T we get {51.733, 37.0263, 27.7909, 44.239, 32.9171, 45.0461, 46.7252, 49.2042})::

In[161]:= T.g

Out[161]= 851.733, 37.0263, 27.7909, 44.239, 32.9171, 45.0461, 46.7252, 49.2042<

But by the principle of linearity, we can also calculate the output by finding the "spectrum" of g as in Problem Set 1, and 
then scaling each of the transformed basis elements by the spectrum and adding them up:

(2)T.g = T.9‚Hg.wiL wi= = ‚Hg.wiL T.wi
In[162]:= (g.w1) T.w1 + (g.w2) T.w2 + (g.w3) T.w3 + (g.w4) T.w4 + 

(g.w5) T.w5 + (g.w6) T.w6 + (g.w7) T.w7 + (g.w8) T.w8

Out[162]= 851.733, 37.0263, 27.7909, 44.239, 32.9171, 45.0461, 46.7252, 49.2042<

Of course, we have already done our "experiment", so we know what the transformed basis vectors are, we stored them as 
rows of the matrix newW. We can calculate what the specturm (g.wi) is, so the output of T is:

In[163]:= (g.w1) newW[[1]] + (g.w2) newW[[2]] + (g.w3) newW[[3]] + 
(g.w4) newW[[4]] + (g.w5) newW[[5]] + (g.w6) newW[[6]] + 
(g.w7) newW[[7]] + (g.w8) newW[[8]]

Out[163]= 851.733, 37.0263, 27.7909, 44.239, 32.9171, 45.0461, 46.7252, 49.2042<

Same thing in more concise notation
Let  the basis vectors be the rows of a matrix W:

In[164]:= W = 8w1, w2, w3, w4, w5, w6, w7, w8<;

So again, we can project g onto the rows of W, and then reconstitute it in terms of W to get g back again:

In[165]:= HW.gL.W

Out[165]= 82., 6., 1., 7., 11., 4., 13., 29.<
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In[166]:= g.Transpose@WD.newW

Out[166]= 851.733, 37.0263, 27.7909, 44.239, 32.9171, 45.0461, 46.7252, 49.2042<

The main idea is:  An elegant way to characterize an unknown system T is by  its 
response to orthonormal input vectors.
Even more elegant: If T is symmetric, then measure the response with respect to the 
eigenvectors of a symmetric matrix (e.g. T itself).

Show that T==Transpose[newW].W,  and that the system output is thus: Transpose[newW].W.g

These new basis vectors (rows of newW) do span 8-space, but they are not necessarily orthonormal. Under what condi-
tions would they be orthogonal? What if the matrix T was symmetric, and we deliberately chose the basis set to describe 
our input to be the eigenvectors of T?

What if the choice of basis set is the set of eigenvectors of T?
We've seen how linearity provides us with a method for characterizing a linear system in terms of the responses of the 
system to a set of basis vectors. The problem is that if the input signals are long vectors, say with dimension 40,000, then 
this set of basis vector responses is really big--1.6x109 numbers.

Suppose though that we have a symmetric matrix transformation, T. One can show that if vectors of the basis set are the 
eigenvectors of T, {ei}, then the transformation of any arbitrary input vector x is given by:

(3)T@xD = ‚Hx.eiL li ei = ‚ai li ei
Where the aiare the projections of x onto each eigenvector (ai=x.ei). Having the eigenvectors of T enables us to express 
the input and outputs of T in terms of the same basis set--the eigenvectors. All T does to the input is to scale its projection 
onto each eigenvector by the eigenvalue for that eigenvector. 

The set of these eigenvalues is sometimes called the modulation transfer function because it describes how the amplitude 
of the eigenvectors change as they pass through T.

Linear systems analysis is the foundation for Fourier analysis, and is why it makes sense to characterize your stereo 
amplifier in terms of frequency response. But your stereo isn't just any linear system--it has the special property that if you 
input a sound at time t and measure the response, and then you input the same sound again at a later time, you get the same 
response, except of course that is is shifted in time. It is said to be a shift-invariant system. The eigenvectors of a shift-
invariant linear system are sinusoids. 

(Recall the eigenvectors of the symmetric matrix in the optional exercises of Lecture 6? They were sinusoids, not just 
because the matrix was symmetric, but also because each row of the matrix was a shifted version of the previous row--the 
elements along any given diagonal are identical. This is called a symmetric Toeplitz matrix.)

Sinewave inputs are the eigenvectors of your stereo system. The dimensionality, of course, is much higher--if you are 
interested in frequencies up to 20,000 Hz, your eigenvector for this highest frequency would have least 40,000 elements--
not just 8!

As mentioned in the introduction, this kind of analysis has been applied not only to physical systems, but to a wide range 
of neural sensory systems. For the visual system, linear systems analysis has been used to study the cat retina (Enroth-
Cugell and Robson, 1964), the monkey visual cortex, human contrast sensivity system as a whole (Campbell and Robson, 
1968).

Much empirical analysis has been done using linear systems theory to characterize neural sensory systems, and other 
neural systems such as those for eye movements. It works wonderfully as long as the linear system approximation holds. 
And it does do quite well for the lateral eye of the limulus, X-cells and P-cells of the mammalian visual system, over 
restricted ranges for so-called "simple" cells in the visual cortex, among others. The optics of the simple eye is another 
example of an approximately linear system. Many non-linear systems can be approximated as linear systems over smooth 
subdomains.
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In summary, if T has n distinct orthogonal eigenvectors, e i, and known eigenvalues, li,  then to calculate the response to 
an arbitrary input x, do the following:

Step 1: Project x onto eigenvectors of T to get: x.e i

Step 2: Scale each x.e iby the eigenvalue of e i: li(x.e i)

Step 3: Scale each e i by lix.e i: Hli x.e iLe i

Step 4: Sum these vectors up. That's the response of T to x! : ⁄i Hli x.e iLe i

So the eigenvectors are presumed fixed (i.e. sinusoidal input vectors are just part of our standard toolbox we can apply as 
inputs to any system). We test our unknown, say n x n, system T to measure the eigenvalues, which may be different from 
one system to the next. To predict the response to x,  we get another tool out of our toolbox (e.g. "spectrum analyzer") that 
gives us the spectrum of x, another set of n numbers. The product of the eigenvalues and the spectral values tell us the 
length of each eigenvector for the output. 
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Learning and memory: Brief overview

Definition of learning and memory
It is curious to note that historically, the simple linear model that we will discuss came after much research had been 
devoted to non-linear learning models, based in particular on a special case of McCulloch-Pitts neurons, used in a system 
called the Perceptron.  Linear models have limitations,  in particular a consequence of the superposition principle dis-
cussed above. Nevertheless,  many of the interesting properties of non-linear systems can be understood in terms of small 
signal linearity properties.  So with that preamble, let's take a look at memory and see where linearity applies, and how far 
we can get with a linear model. But first some definitions, and a general overview.

Memory is the adaptive change in the behavior of an organism as a conseqence of past experience. More precisely one can 
distinguish learning and memory: 

Learning has to do with aquisition, and memory with storage and retrieval of information. Memory recall is the 
retrieval of information.

Psychology and biology of learning and memory

‡ Associative and non-associative memory

We are going to be talking about associative memory, so it is useful to bear in mind that not all memory is considered 
associative.

Associative memory: animal learns about the relationship of one stimulus to another or about the relationship between a 
stimulus and the organism's response, or the  association of an input stimulus with a reward.

Nonassociative memory: exposure to a single stimulus either once, or repeated offers opportunity for learning about it

‡ Examples of nonassociative learning

Habituation (Ivan Pavlov)

decrease in behavioral reflex response to repeated non-noxious stimulus

Sensitization (pseudo-conditioning)

exposure to noxious stimuli increases sensitivity

More complex examples of nonassociative learning

memory for sensory record...although what one calls a stimulus vs. response is problematic

imitation learning

‡ Associative learning
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‡

Associative learning

Classical conditioning (Ivan Pavlov)

(tone) -- food -- salivation

(conditioned stimulus--unconditioned stimulus--response)

CS -- US -- R

tone -- air puff -  eye blink

Temporal contiguity of CS-US, and frequency important, but not the only factors

Operant conditioning (Thorndike of Columbia U.)

also called instrumental or trial-and-error learning

 e.g. hungry rat in a cage with a lever

occasionally the rat may press the lever out of curiosity, accident or whatever, but if it does and promptly receives 
some food (a "consequence", which in this case is a reward or a positive reinforcement), the lever pressing (called the 
"operant") will increase above a spontaneous rate (the rate in the control state where there is no reward).

In general, consequences can involve positive or negative reinforcement (take away an ongoing unpleasant stimu-
lus), or positive or negative punishment (take away a pleasant stimulus).

‡ Animal learning

Conditioning is dependent on the degree to which the US (e.g. food) is expected (e.g. Kamin's 2 part experiment)

1. light - shock

measure strength of conditioning by how the light affects on-going behavior

2. (light-tone pair) - shock

3. test with tone alone, not effective (i.e. no suppression of ongoing behavior)

"blocking phenomenon"

(Rescorla-Wagner is an elegant model that can account for blocking and other learning behavior. Later 
we'll look at its neural network equivalents in the so-called ``delta-rule'' or Widrow-Hoff rule for learning. But below, we 
first describe the simple Hebbian learning rule). 

Ecological constraints on learning

‡ Human memory

‡ Stages of memory

Classical view

Main results for studies of cognitive psychology --  stages of memory

Iconic -- e.g.  visual afterimages (1 sec)

Working memory (short-term memory, minutes to hours)

small capacity, disrupted by being knocked unconscious

short-term neural plastic events 

possible mechanisms?

rapid synaptic modification?

reverberating circuits?

Long-term memory

   large capacity, relatively permanent  (years)
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Main results for studies of cognitive psychology --  stages of memory

Iconic -- e.g.  visual afterimages (1 sec)

Working memory (short-term memory, minutes to hours)

small capacity, disrupted by being knocked unconscious

short-term neural plastic events 

possible mechanisms?

rapid synaptic modification?

reverberating circuits?

Long-term memory

   large capacity, relatively permanent  (years)

‡ Implicit (reflexive) vs. explicit (declarative) memory

  reflexive -- automatic readout not dependent on awareness, or cognitive processes of comparison, evaluation

declarative -- "I saw a yellow canary yesterday" relies on inference, comparison, and evaluation

Learning to driving a car -- memory moves from declarative towards reflexive with experience.

In our consideration of models, we will be primarily concerned with simple reflexive associative memory in which an 
neural input event leads to the reconstruction of a predictive response based on experience. 

Linear model of associative memory
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Linear model of associative memory

Hebbian rule for synaptic modification

‡ Introduction: Modeling associative learning and memory

The brain has developed mechanisms that allow the animal to distinguish events that reliably and predictably occur 
together from those that do not.  What kinds of neural models could be used to capture and retrieve associations? How can 
one pattern of neural activity come to be associated with another?

Assumptions:

• physical basis of memory is in synaptic modification which alters the mapping of inputs to outputs

• the strength of the modification is determined by how often input and output activity occurs together, and by the 
strengths of the input and output activities.

The idea of learning as association goes back to William James (1890) (See Anderson).

"When two elementary brain processes have been active together or in immediate succession, one of them on 
recurring, tends to propagate its excitement into the other (Psychology: Briefer Course)."

James also has an "activitation equation" that sounds  a lot like our stage 1 of the 2-layer feedforward network:

"The amount of activity at any given point in the brain-cortex is the sum of the tendencies of all other points to 
discharge into it"

Replace "point" by "neuron", and we have our limulus equation.

There are similar statements elsewhere (e.g. Kenneth Craik of Cambridge in the 1940's). 

But the clearest and most explicit statement of an associative learning rule is credited to Canadian Psychologist Donald 
Hebb:

"When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth 
process or metabolic change takes place in one or both cells, such that A's efficiency as one of the cells firing B, is 
increased" (Hebb in the "Organization of behavior", 1949).

Until recently, there was little evidence to support this notion of synaptic modification. But direct tests of Hebbian conjec-
ture have now been made in rat hippocampus. (See Anderson, chapter 6 for a review.)
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‡ Hebbian synaptic modification: Modeling use the outer product

The fundamental Hebbian assumption is that synaptic strength grows with co-activity of pre- and post-synaptic activity. 
How can we quantify this? We will use a simple model of synaptic modification that assumes that a change in connection 
strength between neuron i and j is proportional to the product of the input and output activities. 

                                                 ΔWij = α figj

If you remember the definition of the outer product of two vectors, you can see that the above rule is just that--an outer 
product of the input and output activities.

The linear model

‡ Heteroassociation vs. autoassociation
We will look at two types of associative memory models. In heteroassociation, an input f is associated with g. So at some 
later time, when the system is stimulated with f, it should produce g. In autoassociation, an input f is associated with itself. 

On the face of it, autoassociation sounds a bit silly, but in the next lecture, we will see the use of autoassociation.

‡ Summary of linear association model

1. Learning. Let {fn,gn} be a set of input/output activity pairs. Memories are stored by superimposing new weight 

changes on old ones. Information from many associations is present in each connection strength.

(4)Wn+1 = Wn + gn fn
T

(For simplicity, we've dropped the learning rate coefficient α.)

2. Recall. Let f be an input possibly associated with output pattern g.  For recall, the neuron acts as a linear summer:

(5)g = Wf

(6)
gi = ‚

j

wij fj

3. Condition for perfect recall

If {fn} are orthonormal, the system shows perfect recall:

(7)

Wn fm = Ig1 f1
T + g2 f2

T + ... + gn fn
TM fm

= g1 f1
T fm + g2 f2

T fm + ... + gm fm
T fm + ... + gn fn

T fm
= gm

since,

(8)fn
T fm = : 1, n = m

0, n ≠ m

So an nxn matrix has a memory capacity of n for orthogonal inputs. For random vectors, it is about 10-20% of n.

But linear association is also useful as a mapping, in which one wants to generalize in a smooth (actually linear) way to 
novel inputs. For example, linear regression in 2D can be done with a 2x2 matrix. It can be "trained" with a few 
input/output pairs of points {x,y}. Once trained, if the data are well-modeled by a straight line, the network will do a nice 
job of "predicting" the output value (y) given a novel input value (x). 
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So an nxn matrix has a memory capacity of n for orthogonal inputs. For random vectors, it is about 10-20% of n.

But linear association is also useful as a mapping, in which one wants to generalize in a smooth (actually linear) way to 
novel inputs. For example, linear regression in 2D can be done with a 2x2 matrix. It can be "trained" with a few 
input/output pairs of points {x,y}. Once trained, if the data are well-modeled by a straight line, the network will do a nice 
job of "predicting" the output value (y) given a novel input value (x). 

Verify that linear memory model shows perfect recall for orthonormal 
inputs

Define an 8x8 matrix G whose rows are 8 dimensional random output vectors

Print out row 3: G[[3]]

Define an 8x8 matrix Wmemory whose elements is the sum of the outer products of the rows of G with 
the rows of W (the orthonormal Walsh set defined earlier). This corresponds to Step 1 in the previous 
section

Show that G[[3]]=Wmemory.W[[3]]

Discussion question: What if the input vectors are not orthonormal?

Exercise: Pencil and paper

Let f1 and f2 be two orthogonal, normalized input patterns:

f1 =
1
3

1
−1
1

 

 

 
 

 

 

 
 

f 2 =
1
2

1
1
0

 

 

 
 

 

 

  

and g1, g2 two output patterns:
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g1 =

3
1
2

 

 

 
 

 

 

 
 

g2 =

−1
−1
2

 

 

 
 

 

 

  

Form the outer product:

W = g1 f1
T

Test for "recall" by feeding f1 as input to W. Stimulate W with f2. What happens? Add the outer product:

g2 f 2
T

to the previous W matrix. Now test for recall on stimulation with f1, and f2. What do you find?

Next time

Examples of associative memory
‡ Heteroassociative  memory

‡ Autoassociative memory

Appendix

Eigenvectors, eigenvalues: algebraic manipulation
Last time we used the Mathematica function Eigenvectors[] and Eigenvalues[] to produce the eigenvectors and eigenval-
ues for the matrix equation: Ax = λx. It is worth spending a little time to understand what is being done algebraically. 
Consider the following pair of equations specified by a 2x2 matrix W acting on xv to produce a scaled version of xv:
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In[92]:= W1 = {{1,2},{2,1}};
xv := {x,y};
lambda xv == W1.xv

Out[94]= 8lambda x, lambda y<  8x + 2 y, 2 x + y<

Finding the eigenvalues is a problem in solving this set of equations. If we eliminate x and y from the pair of equations, we 
end up with a quadratic equation in lambda:

‡ Eliminate[] & Solve[]

In[95]:= Eliminate@8lambda xv == W1.xv, lambda != 0<, 8x, y<D

Out[95]= Hlambda - 3 ≠ 0 Ï lambda ≠ 0 Ï lambda + 1 ≠ 0L Í lambda2 - 2 lambda  3

In[96]:= Solve[-2 lambda + lambda^2 == 3, lambda]

Out[96]= 88lambda Ø -1<, 8lambda Ø 3<<

So our eigenvalues are -1 and 3. We can plug these values of lambda into our equations to solve for the eigenvectors:

In[97]:= Solve[{-x == x + 2 y, - y == 2 x + y}, {x,y}]
Solve[{3 x == x + 2 y, 3 y == 2 x + y}, {x,y}]

Solve::svars :  Equations may not give solutions for all "solve" variables. à

Out[97]= 88x Ø -y<<

Solve::svars :  Equations may not give solutions for all "solve" variables. à

Out[98]= 88x Ø y<<

‡ Reduce

Mathematica is smart enough that we can use Reduce[] to do it all in one line:

In[99]:= Reduce[{lambda xv == W1.xv}, {x,y,lambda}]

Out[99]= Hx  0 Ï y  0LÎ Hy  -x Í y  xLÌ x ≠ 0 Ì lambda 
x + 2 y

x

The eigenvectors are unique only up to a scale factor, so one can choose how to normalize them. For example, we could 
arbitrarily set x to 1, and then the eigenvectors are: {1,1}, and {1,-1}. Alternatively, we could normalize them to {1/-
Sqrt[2], 1/Sqrt[2]} and {1/Sqrt[2], -1/Sqrt[2]}.
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The eigenvectors are unique only up to a scale factor, so one can choose how to normalize them. For example, we could 
arbitrarily set x to 1, and then the eigenvectors are: {1,1}, and {1,-1}. Alternatively, we could normalize them to {1/-
Sqrt[2], 1/Sqrt[2]} and {1/Sqrt[2], -1/Sqrt[2]}.

In[100]:= Eigenvectors[W1]

Out[100]=
1 1
-1 1

‡ Side note: Solve[] vs. Reduce[]

Solve[] makes assumptions about constraints left unspecified, so the following returns the solution true for any lambda:

In[101]:= Solve[{lambda x == x + 2 y, lambda y == 2 x + y},
{x,y,lambda}]

Solve::svars :  Equations may not give solutions for all "solve" variables. à

Out[101]= 88x Ø -y, lambda Ø -1<, 8x Ø y, lambda Ø 3<, 8x Ø 0, y Ø 0<<

In[102]:= Solve[{lambda x == x + 2 y, lambda y == 2 x + y,
lambda !=0, x != 0, y != 0}, {x,y,lambda}]

Solve::svars :  Equations may not give solutions for all "solve" variables. à

Out[102]= 88x Ø -y, lambda Ø -1<, 8x Ø y, lambda Ø 3<<

Reduce[] gives all the possibilities without making specific assumptions about the parameters:

Either of the following forms will work too:

In[103]:= Reduce[lambda xv == W1.xv, {xv[[1]],xv[[2]],lambda}]
Reduce[{{lambda x, lambda y} == {x + 2 y, 2 x + y}},

{x,y,lambda}]

Out[103]= Hx  0 Ï y  0LÎ Hy  -x Í y  xLÌ x ≠ 0 Ì lambda 
x + 2 y

x

Out[104]= Hx  0 Ï y  0LÎ Hy  -x Í y  xLÌ x ≠ 0 Ì lambda 
x + 2 y

x
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‡ Determinant solution

Ax = λx can be written: (A - Iλ).x, where I is the identity matrix. The interesting values of x that satisfy this equation are 
the ones that aren't zero. For this to be true, (A - Iλ) must be singular (i.e. no inverse). And this is true if the determinant of 
(A - Iλ) is zero

Answers

In[105]:= G = RandomReal@80, 1<, 88, 8<D;

In[106]:= W@@1DD

Out[106]= 80.353553, 0.353553, 0.353553, 0.353553, 0.353553, 0.353553, 0.353553, 0.353553<

In[107]:= G@@1DD

Out[107]= 80.143688, 0.691897, 0.689805, 0.513374, 0.561239, 0.208388, 0.448264, 0.545475<

In[108]:= Wmemory = Table@0, 88<, 88<D;
For@i = 1, i § 8, i++,

Wmemory = Wmemory + Outer@Times, G@@iDD, W@@iDDDD;

In[110]:= Wmemory.W@@3DD
G@@3DD

Out[110]= 80.356247, 0.904148, 0.94769, 0.90648, 0.297227, 0.580462, 0.19772, 0.614965<

Out[111]= 80.356247, 0.904148, 0.94769, 0.90648, 0.297227, 0.580462, 0.19772, 0.614965<
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