
Introduction to Neural Networks
U. Minn. Psy 5038

Kalman filter

Initialize

‡ Read in Statistical Add-in packages:

In[1]:= Off@General::spell1D;
Needs@"ErrorBarPlots`"D;
Needs@"MultivariateStatistics`"D;

Review Discriminant functions (Lecture 11)
Let's build our geometric intuitions of what a simple perceptron unit does by viewing it from a more formal point of view.
Perceptron learning is an example of nonparametric statistical learning, because it doesn't require knowledge of the
underlying probability distributions generating the data (such distributions are characterized by a relatively small number
of "parameters", such as the mean and variance of a Gaussian distribution). Of course, how well it does will depend on the
generative structure of the data. Much of the material below is covered in Duda and Hart (1978).

Linear discriminant functions: Two category case
A discriminant function, g(x) divides input space into two category regions depending on whether g(x)>0 or g(x)<0.
(We've switched notation, x=f). The linear case corresponds to the simple perceptron unit we studied earlier:

(1)g HxL = w.x + w0

where w is the weight vector and w0 is the (scalar) threshold (sometimes called bias, although this "bias" has nothing to do
with statistical "bias").

Discriminant functions can be generalized, for example to quadratic decision surfaces:

(2)
g HxL = w0 + ‚

i=1

wi xi + ‚
i=1

‚
j=1

wij xi xj

where x = {x1,x2,x3...}. We've seen how g(x)=0 defines a decision surface which in the linear case is a hyperplane.

Suppose x 1and x2 are vectors, with endpoints sitting on the hyperplane, then their difference is a vector lying in the
hyperplane

(3)
w.x1 + w0 = w.x2 + w0
w.Hx1 - x2L = 0

so the weight vector w is normal to any vector lying in the hyperplane. Thus w determines how the plane is oriented. The
normal vector w points into the region for which g(x)>0, and -w points into the region for which g(x)<0.

Let x be a point on the hyperplane. If we project x onto the normalized weight vector x.w/|w|, we have the normal distance
of the hyperplane from the origin equal to:

(4)w.x ê » w » = -w0 ê » w »
Thus, the threshold determines the position of the hyperplane.

One can also show that the normal distance of x to the hyperplane is given by:

(5)g HxL ê » w »
So we've seen that: 1) disriminant function divides the input space by a hyperplane decision surface; 2) The orientation of
the surface is determined by the weight vector w; 3) the location is determined by the threshold w0; 4) the discriminant
function gives a measure of how far an input vector is from the hyperplane.

The figure summarizes the basic properties of the linear discriminant.

In[675]:= Manipulate@
H* x0=82,1<;*L
w = 8w1, w2<;
wn = w ê Norm@wD;
g@x_D := 8w1, w2<.x + w0;

gg = Plot@Tooltip@x2 ê. Solve@8w1, w2<.8x1, x2< + w0 ã 0, x2D,
"discriminant"D, 8x1, -1, 3<D;

ggg = Graphics@g@Dynamic@MousePosition@"Graphics"DDDD;
Show@8gg, Graphics@Inset@"g@xD=", 81.6, 2<DD,
Graphics@Inset@ToString@g@x0DD, 82, 2<DD,
Graphics@8Tooltip@Arrow@880, 0<, w<D, "w"D,
Tooltip@Arrow@880, 0<, H-w0 ê Norm@wDL * wn<D, "-w0ê»w»"D,
Tooltip@8Arrow@880, 0<, x0<D<, "x"D,
Tooltip@8Arrow@8x0, x0 - wn * g@x0D ê Norm@wD<D<, "gHxLê»w»"D<D<,

PlotRange Ø 88-1, 3<, 8-1, 3<<, AxesOrigin Ø 80, 0<, Axes Ø True,
AspectRatio Ø 1D, 88w0, -2.5<, -6, 3<, 88w1, 1<, 0, 3<, 88w2, 2<, 0, 3<,

88x0, 82, 1<<, Locator<D

2 Lect27.nb

Out[675]=

w0

w1

w2

g@xD= 1.5

-1 1 2 3

-1

1

2

3

Lect27.nb 3

Task-dependent Dimensionality reduction

Fisher's linear "discriminant"
The idea is that the original input space may be impractically huge, but if we can find a subspace (hyperplane) that pre-
serves the distinctions between categories as well as possible, we can make our decisions in smaller space. We will derive
the Fisher linear "discriminant".

This is closely related to the psychology idea of finding "distinctive" features. E.g. consider bird identification. If I want to
discriminate cardinals from other birds in my backyard, I can make use of the fact that (male) cardinals may be the only
birds that are red. So even tho' the image of a bird can have lots of dimensions, if I project the image on to the "red" axis, I
can do fairly well with just one number. How about male vs. female human faces?

‡ Generative model: two nearby gaussian classes

Define two bivariate base distributions

4 Lect27.nb

In[4]:= (ar = {{1, 0.99}, {0.99, 1}};
ndista = MultinormalDistribution[{0, -1}, ar];)
(br = {{1, .9}, {.9, 2}};
ndistb = MultinormalDistribution[{0, 1}, br];)

Find the expression for the probability distribution function of ndista

pdf = PDF[ndista, {x1, x2}]

1.12822 ‰
1
2
H-x1 H50.2513 x1-49.7487 Hx2+1LL-Hx2+1L H50.2513 Hx2+1L-49.7487 x1LL

Use Mean[] and CovarianceMatrix[ndista] to verify the population mean and the covariance matrix of
ndistb

In[6]:= Mean@ndistbD

Out[6]= 80, 1<

In[7]:= Covariance@ndistaD

Out[7]=
1 0.99
0.99 1

Try different covariant matrices. Should they be symmetric? Constraints on the determinant of ar, br?

Make a contour plot of the PDF ndista

In[664]:= pdfa = PDF@ndista, 8x1, x2<D;
ContourPlot@pdfa, 8x1, -3, 3<, 8x2, -3, 3<, PlotPoints Ø 64,
PlotRange Ø All, ImageSize Ø SmallD

Lect27.nb 5

Out[665]=

6 Lect27.nb

In[10]:= nsamples = 500;
a = Table@Random@ndistaD, 8nsamples<D;
ga = ListPlot@a, PlotRange Ø 88-8, 8<, 8-8, 8<<, AspectRatio Ø 1,

PlotStyle Ø Hue@0.2`DD;
b = Table@Random@ndistbD, 8nsamples<D;
gb = ListPlot@b, PlotRange Ø 88-8, 8<, 8-8, 8<<, AspectRatio Ø 1,

PlotStyle Ø Hue@0.6`DD;
Show@ga, gbD

Out[15]=
-5 5

-5

5

Use Mean[] to find the sample mean of b. Whats is the sample covariance of b?

In[16]:= Mean@bD

Out[16]= 8-0.0164449, 1.00993<

Lect27.nb 7

In[17]:= Covariance@bD

Out[17]=
1.06974 0.998697
0.998697 2.09141

‡ Try out different projections of the data by varying the slope (m) of a projection line

Clear@x, y, n1, n2D;
88x, y<<.8n1, n2<
Map@Ò1 * 8n1, n2< &, 88x, y<<.8n1, n2<D

We'll use the Map[] function to calculate the projection of a data point (x,y) onto unit normal (n1, n2) to produce a vector
in the direction of the unit vector.

Out[672]= 8n1 x + n2 y<

Out[673]= H n1 Hn1 x + n2 yL n2 Hn1 x + n2 yL L

8 Lect27.nb

In[28]:= Manipulate@
wnvec = 81, m< ê Sqrt@1 + m^2D;
aproj = HÒ1 wnvec &L êü Ha.wnvecL;
bproj = HÒ1 wnvec &L êü Hb.wnvecL;
gbproj = ListPlot@8aproj, bproj<, AspectRatio Ø 1,

PlotStyle Ø 88PointSize@.03D, Hue@0.8D, Opacity@.05D<,
8PointSize@.03D, Hue@0.2D, Opacity@.05D<<,

PlotRange Ø 88-3, 3<, 8-3, 3<<D;
GraphicsRow@8ga, gb, gbproj<D, 88m, 2 ê 3<, -10, 10<D

Out[28]=

m

-1.15

By trial and error, find a value of m that separates the classes well along the projection line

In[30]:= wnvec = 81, -1.15< ê Sqrt@1 + 1.15^2D

Out[30]= 80.656179, -0.754606<

Calculate the "signal-to-noise" ratio along the projection line: difference between the means divided by
the square root of the product of the standard deviations along the line

Mean@aprojD

80.46178, -0.307853<

‡ Theory for simple 2-class case

Lect27.nb 9

‡

Theory for simple 2-class case

(see Duda and Hart for general case)

A measure of the separation between the projections is the difference between the means along a projection line in the
direction w:

(6)

» w.Hma - mbL »
and

ma =
1

N
 „
i=1

N

 x, summed over the N x' s from class a

mb =
1

M
 ‚x, summed over the M x' s from class b

Suppose w (wnvec) is the unknown unit vector perpendicular to the discriminant line .

In our case above, the vector difference between the means is:

Mean@aD - Mean@bD

8-0.0146813, -2.03368<

and the difference between the means projected onto a discriminant line is:

wnvec.HMean@aD - Mean@bDL

1.11587

To improve separation, we can't just scale w, because the noise scales too.

We'd like the difference between the means to be large relative to the variation for each class. We can define a measure of
the scatter for the projected samples in say class a (a==1), by:

(7)‚
yœclass a

Iy - mèaM2

where mèais the sample mean of the points from class a projected onto line y=w.x

Or in terms of the Mathematic example:

Apply@Plus, aproj - wnvec.Mean@aDD;

The total scatter S is defined by the sum of the scatters for both classes (a and b).

S = ‚
yœclass a

Iy - mèaM2 + ‚
yœclass b

Iy - mèbM2

If we divide the above number by the total number of points, we have an estimate of the variance of the combined data
along the projected axis.

10 Lect27.nb

If we divide the above number by the total number of points, we have an estimate of the variance of the combined data
along the projected axis.

We now have the basic ingredients behind intuition for the Fisher linear discriminant. We'd like to find that w for which J:

J HwL =
… mèa - mèb »2

S
=

» w.Hma - mbL »2
S

is biggest. We want to maximize the difference between the projected class means, while minimizing the dispersion of the
data on the projected line.

One can show that S = wT.SW.w, where

SWis measure of within-class variation called the within-class scatter matrix:

(8)SW = ‚
i=1

2

‚
xœClass i

Hx - miL Hx - miLT

For the numerator, a measure of between class variation is the between-class scatter matrix:

(9)SB = Hm1 - m2L.Hm1 - m2LT

and the difference between the projected means can be show to be:

… mèa - mèb »2 = wT.SB.w

Find w (corresponding to slope) to maximize the cost function

(10)J HwL =
wT.SB.w

wT.SW.w

Answer:

(11)w = SW-1.Hma - mbL

‡ Demo: Finding Fisher's linear discriminant

normalize@x_D := x ê Sqrt@x.xD;

ma = Mean@aD;
mb = Mean@bD;

Sa = Sum@Outer@Times, a@@iDD - ma, a@@iDD - maD, 8i, 1, nsamples<D;
Sb = Sum@Outer@Times, b@@iDD - mb, b@@iDD - mbD, 8i, 1, nsamples<D;
Sw = Sa + Sb;
wldf = normalize@Inverse@SwD.Hma - mbLD

80.674727, -0.738067<

Lect27.nb 11

aproj = HÒ1 wldf &L êü Ha.wldfL;
gaproj = ListPlot@aproj, AspectRatio Ø 1, PlotStyle Ø Hue@0.3`DD;
bproj = HÒ1 wldf &L êü Hb.wldfL;
gbproj = ListPlot@bproj, AspectRatio Ø 1, PlotStyle Ø Hue@0.7`DD;
Show@ga, gb, gaproj, gbprojD

-5 5

-5

5

We started off with a 2-dimensional input problem and turned it into a 1-D problem. For the n-dimensional case, see Duda
and Hart.

12 Lect27.nb

‡ Compare with the principal component axes

c = Join@a, bD;
ListPlot@c, PlotRange Ø 88-8, 8<, 8-8, 8<<D

-5 5

-5

5

g1 = ListPlot@c, PlotRange Ø 88-8, 8<, 8-8, 8<<, AspectRatio Ø 1,
DisplayFunction Ø IdentityD;

auto = Covariance@cD
eigvalues = Eigenvalues@autoD
eigauto = Eigenvectors@autoD

1.01937 0.943791
0.943791 2.51208

82.96897, 0.562481<

-0.435724 -0.90008
-0.90008 0.435724

Lect27.nb 13

gPCA = Plot[{eigauto[[1,2]]/eigauto[[1,1]] x,
eigauto[[2,2]]/eigauto[[2,1]] x},

{x,-4,4}, AspectRatio->1,
DisplayFunction->Identity,
PlotStyle->{RGBColor[.2,0,1]}];

Show@g1, gPCA, DisplayFunction Ø $DisplayFunctionD

-5 5

-5

5

14 Lect27.nb

How does the principal component (biggest variance) compare with the Fisher discriminant line?

Kalman filter

‡ Blackboard notes

1D example

In[693]:= Clear@y, k, c, wD

In[694]:= sw = 1.0;
ndistw = NormalDistribution@0, swD;
w := RandomReal@ndistwD;

sv0 = 2.0;
ndistv = NormalDistribution@0, sv0D;
v := RandomReal@ndistvD;

‡ Generate synthetic data

In[700]:= iter = 20;
c = 1;
y0 = 0.0;

Lect27.nb 15

In[703]:= y@k_D := k + c + w

ys = NestList@y, y0, iter - 1D;
x = ys + RandomReal@ndistv, iterD;
gxys = ListPlot@8x, ys<, Joined Ø 8False, True<,
PlotRange Ø 8-5, 1.2 * iter<D

Out[706]=

5 10 15 20

-5

5

10

15

20

‡ Initialize arrays

In[821]:= st = Table@0, 8iter<D;
yh = Table@0, 8iter<D;
K = Table@0, 8iter<D;
stp = Table@0, 8iter<D;
yhp = Table@0, 8iter<D;

‡ Initial estimates

yhp@@1DD = 5;
stp@@1DD = 1;

t = 1;

sv = 2.0 * sv0;

16 Lect27.nb

‡ Time update--predict the state and variance ahead

In[1006]:= yh@@t + 1DD = yhp@@tDD + c;
st@@t + 1DD = stp@@tDD + sw^2;

‡ Measurement update--correction

In[1008]:= K@@t + 1DD = st@@t + 1DD ê Hst@@t + 1DD + sv^2L;

yhp@@t + 1DD = yh@@t + 1DD + K@@t + 1DD * Hx@@t + 1DD - yh@@t + 1DDL;

stp@@t + 1DD = H1 - K@@t + 1DDL * st@@t + 1DD;

t++;
t = Min@t, iter - 1D;
ListPlot@8yhp, x<, Joined Ø 8True, False, True<D

Out[1013]=

5 10 15 20

5

10

15

20

Lect27.nb 17

Try sv = .001*sv0;

‡ Show the Kalman filter estimate together with the true path

In[1014]:=
Show@ListPlot@ys, Joined Ø TrueD,
ErrorListPlot@Table@8yhp@@iDD, Sqrt@stp@@iDDD<, 8i, 1, iter<DDD

Out[1014]=

5 10 15 20

5

10

15

20

2D tracking example

sw0 = 10.0;
Q = DiagonalMatrix@8sw0, sw0, .2 * sw0, .2 * sw0<D;
ndistw = MultinormalDistribution@80, 0, 0, 0<, QD;
w := RandomReal@ndistwD;

sv0 = 50.0;
R0 = 88sv0, 0.0<, 80.0, sv0<<;
ndistv = MultinormalDistribution@80, 0<, R0D;
v := RandomReal@ndistvD;

18 Lect27.nb

‡ Generate synthetic data

iter = 100;
y0 = 8.0, 0.0, .1, .1<;

A = 881, 0, 1, 0<, 80, 1, 0, 1<, 80, 0, 1, 0<, 80, 0, 0, 1<<;
H = 881, 0, 0, 0<, 80, 1, 0, 0<<;

y@k_D := A.k + w

ys = NestList@y, y0, iter - 1D;
x = H.Ò & êü ys + RandomReal@ndistv, iterD;

ListPlot@xD

100 200 300 400

-100

-50

50

100

150

Lect27.nb 19

ListPlot@H.Ò & êü ysD

100 200 300 400

-100

-50

50

100

150

‡ Initialize arrays

yh = Table@80, 0, 0, 0<, 8iter<D;
K = Table@880, 0<, 80, 0<, 80, 0<, 80, 0<<, 8iter<D;
P = Table@DiagonalMatrix@80, 0, 0, 0<D, 8iter<D;
Pm = P;
yhp = yh;

‡ Initial estimates

R = 100 R0; H* Change measurement noise assumption. If R is small,
then the data is trusted--the dots get joined. If the data is
believed to be noisy,
the state estimate is smoothed *L

20 Lect27.nb

Dynamic@
gxys = ListPlot@8x, H.Ò & êü ys, H.Ò & êü yhp<, Joined Ø 8False, True, True<DD

5 10 15 20

5

10

15

20

ForAt = 1, t < iter, t++,

H*Time update--predict the state and error covariance *L
yh@@t + 1DD = A.yhp@@tDD;
Pm@@t + 1DD = A.P@@tDD.Transpose@AD + Q;

H*Measurement update--correction*L
K@@t + 1DD = Pm@@t + 1DD.H¨.InverseAH.Pm@@t + 1DD.H¨ + RE;

P@@t + 1DD = HIdentityMatrix@4D - K@@t + 1DD.HL.Pm@@t + 1DD;

yhp@@t + 1DD = yh@@t + 1DD + K@@t + 1DD.Hx@@t + 1DD - H.yh@@t + 1DDL;
H*gxys=ListPlot@8x,H.Ò&êüys,H.Ò&êüyhp<,JoinedØ8False,True,True<D;*L
Pause@.05D;

E;

Lect27.nb 21

References

© 1998, 2001, 2003, 2007 Daniel Kersten, Computational Vision Lab, Department of Psychology, University of Minnesota.

22 Lect27.nb

