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Unifying neural network computations using Bayesian decision theory

Initialize

‡ Read in Statistical Add-in packages:

Off@General::spell1D;
<< Statistics`DescriptiveStatistics`
<< Statistics`DataManipulation`
<< Statistics`NormalDistribution`
<< Statistics`MultiDescriptiveStatistics`
<< Statistics`MultinormalDistribution`
<< Statistics`LinearRegression`
<< Graphics`MultipleListPlot`

Previously

Fisher's Linear Discriminant

Statistical learning, model selection & the bias/variance dilemma

Above we summarized optimal rules for minimizing risk, assuming that we know the distributions of the generative model. 

But what if we don't? This is the topic of statistical learning theory.

Use the following link for the notes:

http://gandalf.psych.umn.edu/~kersten/kersten-lab/courses/Psy5038WF2003/MathematicaNotebooks/Lect_27_BiasVariance
/biasvarianceNotes.pdf

Consider the regression problem, fitting data that may be a complex function of the input.

The problem in general is how to choose the function that both remembers the relationship between x and y, and generalizes 
with new values of x.  At first one might think that it should be as general as possible to allow all kinds of maps. 

For example, if one is fitting a curve, you might wish to use a very high-order polynomial, or a back-prop network with lots 
of hidden units. There is a draw back to the flexibility afforded by extra degrees of freedom in fitting the data. We can get 
drastically different fits for different sets of data that are randomly drawn from the same underlying process. The fact that 
we get different fit parameters (e.g. slope of a regression line) each time means that although we may exactly fit the data 
each time, we introduce variation between the average fit (over all data sets) and the fit for a single data set. We could get 
around this problem with a huge amount of data, but the problem is that the amount of required data can grow exponentially 
with the order of the fit--an example of the so-called "curse of dimensionality".

On the other hand,  if the function is restrictive, (e.g. straight lines through the origin), then we will get similar fits for 
different data sets, because all we have to adjust is one parameter--the slope. The problem here, is that the fit is only good if 
the underlying process is in fact a straight line through the origin. If it isn't a straight line for instance, there will be a fixed 
error or bias that will never go away, no matter how much data we collect. Statisticians refer to this problem as the 
bias/variance dilemma. 

To sum up, lots of parameter flexibility (or lots of hidden units) has the benefit of fitting anything, but at the cost of sensitiv-
ity to variability in the data set--there is variance  introduced by the fits found over multiple training sets (e.g. of a small 
fixed size). 

A fit with very few parameters is not as sensitive to the inevitable variability in the training set, but can give large constant 
errors or bias  if the data do not match the underyling model. 

There is no general way of getting around this problem, and neural networks are no exception. We  generalized linear 
regression to non-linear fits using error back-propagation. Because back-propagation models can have lots of hidden layers 
with many units and weights, they form a class of very flexible approximators and can fit almost any function. But these 
models can show high variability in their fits from one data set to the next, even when the data comes from the same 
underlying process. Lots of hidden units can mean low bias, but at a high cost in variance.
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Summary: Three types of Graphical models and their relationship to 
neural network problems

Three types of nodes in a graphical model: known, unknown to be estimated, unknown 
to be integrated out (marginalized)

We have three basic states for nodes in a graphical model: known , unknown to be estimated, unknown to be integrated out 
(marginalization). We have causal states of the world S, that get mapped to some image data I, through some intermediate 
parameters M: S->M->I. 

Consider faces described in terms of geometrical shape S. M could be a set of parameters  that link face identity S to the 
resulting images I. 

Generative model (forward, data synthesis): We want to model I through p(I|S). In our example, we want to specify the 
shape S of "Bill's face", and then p(I|S="Bill") can be implemented as an algorithm to spit out images of Bill. M gets 
integrated out.

Hypothesis inference: we want to model samples for S : p(S|I). Given an image, we want a routine to output likely object 
identities, so that we can minimize risk (see below), or do MAP classification for accurate object identification. M gets 
integrated out again.

Classification: discrete labels. E.g. face identity ("Bill", "George",..) given an image

Regression: estimating continuous quantities, like the shape of Bill's face. 

Learning: we want to model M: p(M|I,S), to learn how the intermediate variables are distributed. Given lots of samples of 
objects and their images, we want to learn the mapping parameters between them. These parameters could have a simple 
interpretation (e.g. A face label S determines a shape M which determines an image I).

Alternatively, do a mental switch and consider a neural network in which an input S gets mapped to an output I through 
intermediate variables M. We can think of M as representing synaptic weights to be learned as in back-prop, but now we 
want to know the probability distribution of the weights, not just a particular set of values.

Density estimation: Can also be thought of as regression on a probability density functions, with the added condition 
that the area under the fitted curve must sum to one.
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Bayesian Decision Theory

Bayes Decision theory, loss, and risk

Minimizing error isn't always the best thing to do.

The costs of certain kinds of errors (e.g. a high cost to false alarms) could affect the decision criterion. Consider light 
discrimination. Even though the sensitivity of the observer is essentially unchanged (e.g. the separation between the signal 
and noise means, and their standard deviations' for the two Gaussian distributions (bright vs. dim light) remains unchanged), 
increasing the criterion for deciding bright or dim can increase the overall error rate. This isn't necessarily bad. (d' is the 
signal-to-noise ratio, given by the difference between the two Gaussian means divided by the standard deviation is assumed 
to be the same.)

A doctor might say that since stress EKG's have about a 30% false alarm rate, it isn't worth doing. The cost of a false alarm 
is high--at least for the HMO, with the resulting follow-ups, angiograms, etc.. And some increased risk to the patient of 
extra unnecessary tests.  But, of course, false alarm rate isn't the whole story, and one should ask what the hit rate (or 
alternatively the miss rate) is? Miss rate is about 10%. (Thus, d' is actually pretty high--what is it?). From the patient's point 
of view, the cost of a miss is very high, one's life. So a patient's goal would not be to minimize errors (i.e. probability of a 
mis-diagnosis), but rather to minimize a measure of subjective cost that puts a very high cost on a miss, and low cost on a 
false alarm.

Although decision theory has traditionally been applied to analogous trade-offs that are more cognitive than perceptual, 
recent work has shown that perception has implicit, unconscious trade-offs in the kinds of errors that are made. 
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One example is in shape from shading. An image provides the "test measurements" that can be used to estimate an object's 
shape and/or estimate the direction of illumination. Accurate object identification often depends crucially on an object's 
shape, and the illumination is a confounding (secondary) variable. This suggests that visual recognition should put a high 
cost to errors in shape perception, and lower costs on errors in illumination direction estimation. So the process of percep-
tual inference depends an task. The effect of marginalization in the  fruit example illustrated task-dependence. Now we 
show how marginalization can be generalized through decision theory to model other kinds of goals than error minimization 
(MAP) in task-dependence.

Bayes Decision theory provides the means to model perceptual/cognitive performance as a function of utility.

‡ Decision theory

Some terminology. We clearly distinguish the decision space from the state or hypothesis space, and introduce the idea of a 
loss L(d,s), which is the cost for making the decision d, when the actual state is s. 

Often we can't directly measure s, and we can only infer it from observations. Thus, given an observation (image measure-
ment) x, we define a risk function that represents the average loss over signal states s:

(1)R Hd; xL = ‚
s

L Hd, sL p Hs » xL

This suggests a decision rule: a(x)=argmin
d

 R(d;x). But not all x are equally likely. This decision rule minimizes the 

expected risk average over all observations:

(2)R HaL = ‚
s

R Hd; xL p HxL

We won't show them all here, but with suitable choices of likelihood, prior, and loss functions, we can derive standard 
estimation procedures (maximum likelihood, MAP, estimation of the mean) as special cases of risk minimization.

For the MAP estimator (e.g. energy minization in the Hopfield net), 

(3)R Hd; xL = ‚
s

L Hd, sL p Hs » xL = ‚
s

H1 - dd,sL p Hs » xL = 1 - p Hd » xL

where dd,s is the discrete analog to the Dirac delta function--it is zero if d≠s, and one if d=s. Basically you score big if you 
get it right, but are penalized uniformly for anything less than perfect.

Thus minimizing risk with the loss function L = H1 - dd,sLis equivalent to maximizing the posterior, p(d|x). And we saw 
that for a large class of distibutions (exponential), maximizing the posterior is equivalent to minimizing an energy function, 
as with the Hopfield and Boltzmann networks.
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What about marginalization? You can see from the definition of the risk function, that this corresponds to a uniform loss: 

L = -1.

(4)R Hs1; xL = ‚
s2

L Hd2, s2L p Hs1, s2 » xL

So for our face recognition example, a really huge error in illumination direction has the same cost as getting it right. 

For the fruit example, optimal classification of the fruit identity required marginalizing over fruit color--i.e. effectively 
treating fruit color identification errors as equally costly

...even tho', doing MAP after marginalization effectively means we are not explicitly identifying color.

Other kinds of loss functions do different kinds of estimation. So for example, if L(d,s)=-Hs - dL2 , then minimizing risk is 
equivalent to finding the mean (rather than the mode as in MAP estimation).

For a recent discussion of Bayesian decision theory in the context of object perception, see: 

Kersten, D., Mamassian P & Yuille A (2004) Object perception as Bayesian inference. Annual Review of Psychology.

http://arjournals.annualreviews.org/doi/pdf/10.1146/annurev.psych.55.090902.142005

Appendix

Hypothesis inference: Three types

‡ Detection

Let the decision variable d, be represented by s̀.
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‡ Classification

 MAP rule: argmax
i

8pHSi » x<<.
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‡ Continous estimation

 argmax
S

8pHS » x<<
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As described above, one can show that L(d,s) = -(d-s)^2 produces an estimator that finds the mean, L(d,s) = -d(d-s), does 
MAP (i.e. finds the mode), and L(d,s) = 1 is equivalent to marginalization (integrating out s).

MAP minimizes probability of error: Proof for detection

Here is why MAP minimizes average error. Suppose that x is fixed at a value for which P (S =sb |x )>P (S =sd |x ). This is 
exactly like the problem of guessing “heads ”or “tails ” for a biased coin, say with a probability of heads P (S =sb|x ). 
Imagine the light discrimination experiment repeated many times and you have to decide whether the switch was set to 
bright or not –but only on those trials for which you measured exactly x .The optimal strategy is to always say “bright ”. 
Let's see why. First note that:

p(error|x) = p(say "bright", actually dim |x) + p(say "dim", actually bright |x) =

p(s1
`

, s2 | x)+p(s1, s2
`

 | x)

Given x, the response is independent of the actual signal state (see graphical model for detection above--"response is 
conditionally independent of signal state, given observation x"), so the joint probabilities factor:

p(error|x) = p(say "bright" |x)p(actually dim |x) + p(say "dim" |x)p(actually bright |x)

Let t= p(say "bright" |x), then

p(error|t,x) = t*p(actually dim |x) + (1-t)*p(actually bright |x).

p(error|t), as a function of t, defines a straight line with slope p(actually dim |x)-p(actually bright |x). (Just take the 
partial derivative with respect to t.) We've assumed P (S =sb |x )>P (S =s d |x )), so p(error|t) has a negative slope, with the 
smallest non-negative value of t being one. So, error is minimized when t=p(say "bright" |x)=1. I.e. Always say "bright". 
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Always saying "bright" results in a probability of error P (error |x )=P (S =sd |x ).That’s the best that can be done on aver-
age. On the other hand, if the observation is in a region for which P (S =sd|x )>P (S =sb |x ),the minimum error strategy is to 
always pick “dim” with a resulting P (error |x )=P (S =sb |x ).Of course, x isn’t fixed from trial to trial, so we calculate the 
total probability of error which is determined by the specific values where signal states and decisions don ’t agree:

p(error)=⁄i≠ j pHsi
` , sjL 

=⁄i≠ jŸ pHsi
` , sj » xL pHxL „ x=⁄i≠ jŸ pHsi

` » xL pHsj » xL pHxL „ x
Because the MAP rule ensures that pHsi

` , s j » xL is the minimum for each x, the integral over all x minimizes the total probabil-
ity of error.

Nearest neighbor classifier

http://cgm.cs.mcgill.ca/~soss/cs644/projects/simard/
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