
Introduction to N
eural N

etw
orks

U
. M

inn. P
sy 5038

Introduction to Learning and M
em

ory

In
tro

d
u

ctio
n

L
ast tim

e

M
atrix algebra review

"outer product", "eigenvectors" of a m
atrix.  U

seful for neural netw
orks and natural com

putation.

T
o

d
ayL

inear system
s

B
rief overview

 of learning and m
em

ory

M
odeling associative m

em
ory

L
in

ear system
s, m

atrices
 &

 n
eu

ral n
etw

o
rks

In
tro

d
u

ctio
n

C
onsider the generic 2-layer netw

ork. It consists of a w
eighted average of the inputs (stage 1), follow

ed by a point-nonlinear-
ity (the squash function of stage 2), and added noise (stage 3). A

lthough later w
e w

ill see how
 the non-linearity enables 

com
putations that are not possible w

ithout it, useful functions can be realized w
ith just the linear or stage 1 part of the 

netw
ork. W

e've seen one application already w
ith the m

odel of the lim
ulus eye. In the next section, w

e w
ill see how

 linear 
netw

orks can be used to m
odel associative m

em
ory recall. B

ut first, let us take w
hat w

e've learned so far about m
odeling 

linear netw
orks and look at in the general context of linear system

s theory. O
ur basic netw

ork is a m
atrix of w

eights that 
operates on a vector of input activities by com

puting a w
eighted sum

. O
ne property of such a system

 is that it satisfies the 
fundam

ental definition of a "linear system
".

T
he w

orld of input/output system
s can be divided up into linear and non-linear system

s. L
inear system

s are nice because the 
m

athem
atics that describes them

 is not only w
ell-know

n, but also has a m
ature elegance. O

n the other hand, it is a fair 
statem

ent to say that m
ost real-w

orld system
s are not linear, and thus hard to analyze...but fascinating if for that reason 

alone. Scientists w
ere lucky w

ith the lim
ulus eye. T

hat nature is usually non-linear doesn't m
ean one shouldn't fam

iliarize 
oneself w

ith the basics of linear system
 theory. M

any tim
es a non-linear system

 has a sufficiently sm
ooth m

apping that it 
can be approxim

ated by a linear one over restricted ranges of param
eter values. 

So precisely w
hat is a "linear system

"?

T
he notion of a "linear system

" is a generalization of the input/output properties of a straight line passing through zero. T
he 

m
atrix equation W

.x =
=

 y is a linear system
. T

his m
eans that if W

 is  a m
atrix, x1 and x2 are vectors, and a and b are scalars:

                     W
.(a x1 +

 b x2) =
 a W

.x1 +
 b W

.x2

T
his is a consequence of the law

s of m
atrix algebra.T

he idea of a linear system
 has been generalized beyond m

atrix algebra.  
Im

agine w
e have a box that takes inputs such as f, and outputs g =

 T
[f].

T
he abstract definition of a linear system

 is that it satsifies:

                     T
[a f +

 b g] =
 a T

[f] +
 b T

[g]

w
here T

 is the transform
ation that takes the sum

 of scaled inputs f, g (w
hich can be functions or vectors) to the sum

 of the 
scaled transform

ation of f and g. T
he property, that the output of a sum

 is the sum
 of the outputs, is som

etim
es know

n as the 
superposition principle for linear system

s. T
he fact that linear system

s show
 superposition is good for doing theory, but as 

w
e w

ill see later, it lim
its the kind of com

putations that can be done w
ith linear system

s, and thus w
ith linear neural netw

ork 
m

odels.
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C
h

aracterizin
g

 a lin
ear system

 b
y its resp

o
n

se
 to

 an
 o

rth
o

n
o

rm
al b

asis set

Suppose w
e have an unknow

n physical (or biological) system
, w

hich w
e m

odel as a linear system
 T

:

T
 
=
 
T
a
b
l
e
[
R
a
n
d
o
m
[
]
,
{
i
,
1
,
8
}
,
{
j
,
1
,
8
}
]
;

W
e w

ould like to m
ake a sim

ple set of m
easurem

ents that could characterize T
 in such a w

ay that w
e could predict the 

output of T
 to any input. T

his is the sort of task that engineers face w
hen w

anting to characterize, say a stereo am
plifier (as a 

m
odel linear system

), so that the output sound can be predicted for any input sound. It is also the kind of task that neuroscien -
tists face w

hen describing a neural subsystem
, such as hearing, touch or sight.

W
hat kind of m

easurem
ents w

ould tell us w
hat T

 is? W
ell, w

e could just "stim
ulate" the system

 w
ith cartesian vectors 

{1,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0}, and so forth and collect the responses w
hich w

ould be the colum
ns of T

. T
his has tw

o 
practical problem

s: 

1) for a real physical system
, such as your stereo, or a neuron in the lim

ulus eye, this w
ould require stim

ulating it w
ith a 

high-intensity audio or light intensity spike, w
hich could dam

age w
hat you are trying to study. For exam

ple, if you have 1 
m

illion receiving elem
ents, getting a response by stim

ulating only 1 part in a m
illion m

ay require concentrating lots of 
energy on just one elem

ent. In the theoretical lim
it, this corresponds to stim

ulating it w
ith a "delta" function, a spike w

hich 
is infinitely narrow

 and infinitely high.

2) C
haracterizing the linear system

 by a m
atrix T

, requires n
2num

bers, w
here n is the input signal vector length--and n can 

be pretty big for both audio and visual system
s. Problem

 2) has a nice solution w
hen T

 is sym
m

etric, and even nicer solu-
tion if the row

s are shifted versions of each other (this is addressed later). Problem
 1) can be addressed by show

ing that w
e 

can characterize T
 w

ith any basis set--so w
e can pick one that w

on't blow
 out the physical system

 being tested.

T
he set of W

alsh functions w
e looked at earlier is just one possible set that has the advantage that the elem

ents that contrib-
ute to the "energy", i.e. (the square of the length) are distributed across the vector.

In
[1]:=

V
e
c
t
o
r
l
e
n
g
t
h
[
x
_
]
 
:
=
 
N
[
S
q
r
t
[
x
.
x
]
]

In
[2]:=

v
1
 
=
 
{
1
,
 
1
,
 
1
,
 
1
,
 
1
,
 
1
,
 
1
,
 
1
}
;
 
w
1
 
=
 
v
1
/
V
e
c
t
o
r
l
e
n
g
t
h
[
v
1
]
;

v
2
 
=
 
{
1
,
-
1
,
-
1
,
 
1
,
 
1
,
-
1
,
-
1
,
 
1
}
;
 
w
2
 
=
 
v
2
/
V
e
c
t
o
r
l
e
n
g
t
h
[
v
2
]
;

v
3
 
=
 
{
1
,
 
1
,
-
1
,
-
1
,
-
1
,
-
1
,
 
1
,
 
1
}
;
 
w
3
 
=
 
v
3
/
V
e
c
t
o
r
l
e
n
g
t
h
[
v
3
]
;

v
4
 
=
 
{
1
,
-
1
,
 
1
,
-
1
,
-
1
,
 
1
,
-
1
,
 
1
}
;
 
w
4
 
=
 
v
4
/
V
e
c
t
o
r
l
e
n
g
t
h
[
v
4
]
;

v
5
 
=
 
{
1
,
 
1
,
 
1
,
 
1
,
-
1
,
-
1
,
-
1
,
-
1
}
;
 
w
5
 
=
 
v
5
/
V
e
c
t
o
r
l
e
n
g
t
h
[
v
5
]
;

v
6
 
=
 
{
1
,
-
1
,
-
1
,
 
1
,
-
1
,
 
1
,
 
1
,
-
1
}
;
 
w
6
 
=
 
v
6
/
V
e
c
t
o
r
l
e
n
g
t
h
[
v
6
]
;

v
7
 
=
 
{
1
,
 
1
,
-
1
,
-
1
,
 
1
,
 
1
,
-
1
,
-
1
}
;
 
w
7
 
=
 
v
7
/
V
e
c
t
o
r
l
e
n
g
t
h
[
v
7
]
;

v
8
 
=
 
{
1
,
-
1
,
 
1
,
-
1
,
 
1
,
-
1
,
 
1
,
-
1
}
;
 
w
8
 
=
 
v
8
/
V
e
c
t
o
r
l
e
n
g
t
h
[
v
8
]
;

W
e have already seen that the set  {w

i } spans   8-space in such a w
ay that w

e can easily express any vector as a linear sum
 

of these basis vectors.

(1)
g

=
‚

Hg.w
i L w

i

So as w
e saw

 before, an arbitrary vector, g
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g
 
=
 
{
2
,
6
,
1
,
7
,
1
1
,
4
,
1
3
,
2
9
}
;

is the sum
 of its ow

n projections onto the basis set:

(
g
.
w
1
)
 
w
1
 
 
+
 
(
g
.
w
2
)
 
w
2
 
 
+
(
g
.
w
3
)
 
w
3
 
 
+
(
g
.
w
4
)
 
w
4
 
 
+

(
g
.
w
5
)
 
w
5
 
 
+
(
g
.
w
6
)
 
w
6
 
 
+
(
g
.
w
7
)
 
w
7
 
 
+
(
g
.
w
8
)
 
w
8

82.,6.,
1.,7.,11.,4.,

13.,29.<

Suppose w
e now

 do an "experim
ent" to find out how

 T
 transform

s the vectors of our basis set:, and w
e put all of these 

transform
ed basis elem

ents into a new
 set of vectors new

W
[[i]]. new

W
 is a m

atrix for w
hich each row

 is the response of T
 

to a basis vector.

n
e
w
W
 
=
 
{
T
.
w
1
,
T
.
w
2
,
T
.
w
3
,
T
.
w
4
,
T
.
w
5
,
T
.
w
6
,
T
.
w
7
,
T
.
w
8
}
;

N
ote that new

W
 is an 8x8 m

atrix. So how
 can w

e calculate the output of T
, given g w

ithout actually running the input 
through T

? If w
e do run the input through T

 w
e get:

T
.
g

826.4304,36.2209,23.9967,32.6211,24.4136,44.8792,41.2066,46.1586<

B
ut by the principle of linearity, w

e can also calculate the output by finding the "spectrum
" of g as in Problem

 Set 1, and 
then scaling each of the transform

ed basis elem
ents by the spectrum

 and adding them
 up:

(2)
T

.g
=
T

.9‚
Hg.w

i L w
i =

=
‚

Hg.w
i L T

.w
i

(
g
.
w
1
)
 
T
.
w
1
 
+
 
(
g
.
w
2
)
 
T
.
w
2
 
+
 
(
g
.
w
3
)
 
T
.
w
3
 
+
 
(
g
.
w
4
)
 
T
.
w
4
 
+
 

(
g
.
w
5
)
 
T
.
w
5
 
+
 
(
g
.
w
6
)
 
T
.
w
6
 
+
 
(
g
.
w
7
)
 
T
.
w
7
 
+
 
(
g
.
w
8
)
 
T
.
w
8

826.4304,36.2209,23.9967,32.6211,24.4136,44.8792,41.2066,46.1586<

O
f course, w

e have already done our "experim
ent", so w

e know
 w

hat the transform
ed basis vectors are, w

e stored them
 as 

row
s of the m

atrix new
W

. W
e can calculate w

hat the specturm
 (g.w

i) is, so the output of T
 is:

(
g
.
w
1
)
 
n
e
w
W
[
[
1
]
]
 
+
 
(
g
.
w
2
)
 
n
e
w
W
[
[
2
]
]
 
+
 
(
g
.
w
3
)
 
n
e
w
W
[
[
3
]
]
 
+
 

(
g
.
w
4
)
 
n
e
w
W
[
[
4
]
]
 
+
 
(
g
.
w
5
)
 
n
e
w
W
[
[
5
]
]
 
+
 
(
g
.
w
6
)
 
n
e
w
W
[
[
6
]
]
 
+
 

(
g
.
w
7
)
 
n
e
w
W
[
[
7
]
]
 
+
 
(
g
.
w
8
)
 
n
e
w
W
[
[
8
]
]

826.4304,36.2209,23.9967,32.6211,24.4136,44.8792,41.2066,46.1586<
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S
am

e th
in

g
 in

 m
o

re co
n

cise
 n

o
tatio

n

L
et  the basis vectors be the row

s of a m
atrix W

:

In
[11]:=

W
=

8
w
1
,
w
2
,
w
3
,
w
4
,
w
5
,
w
6
,
w
7
,
w
8
<
;

So again, w
e can project g onto the row

s of W
, and then reconstitute it in term

s of W
 to get g back again:

H
W
.
g
L
.
W

82.,6.,
1.,7.,11.,4.,

13.,29.<

g
.
T
r
a
n
s
p
o
s
e
@
W
D
.
n
e
w
W

826.4304,36.2209,23.9967,32.6211,24.4136,44.8792,41.2066,46.1586<

T
h

e m
ain

 id
ea is:  ch

aracterize
 an

d
 u

n
kn

o
w

n
 system

 T
 b

y  its resp
o

n
se

 to
 o

rth
o

n
o

rm
al 

vecto
rs. 

Show
 that T

==T
ranspose[new

W
].W

,  and that the system
 output is thus: T

ranspose[new
W

].W
.g

T
hese new

 basis vectors do span 8-space, but they are not necessarily orthonorm
al. U

nder w
hat conditions w

ould they be 
orthogonal? W

hat if the m
atrix T

 w
as sym

m
etric, and w

e deliberately chose the basis set to describe our input to be the 
eigenvectors of T

?

W
h

at if th
e ch

o
ice

 o
f b

asis set is th
e set o

f eig
en

vecto
rs

 o
f T

?

W
e've seen how

 linearity provides us w
ith a m

ethod for characterizing a linear system
 in term

s of the responses of the 
system

 to the basis vectors. T
he problem

 is that if the input signals are long vectors, say w
ith dim

ension 40,000, then this set 
of basis vector responses is really big--1.6x10

9
.

C
onstruct a sym

m
etric m

atrix transform
ation, T

. Show
 that if the elem

ents of the basis set are the eigenvectors of T
, then 

the transform
ation of any arbitrary input vector x is given by:

Lect_7_IntroLearnM
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(3)
T@xD

=
‚

l
i Hx.e

i L e
i =

‚
l
i  a
i  e
i

W
here the a

i are the projections of x onto each eigenvector (a
i =x.e

i ). H
aving the eigenvectors of T

 enables us to express 
the input and output of T

 in term
s of the sam

e basis set--the eigenvectors. A
ll T

 does to the input is to scale its projection 
onto each eigenvector by the eigenvalue for that eigenvector. T

he set of these eigenvalues is som
etim

es called the m
odula-

tion transfer function because it describes how
 the am

plitude of the eigenvectors change as they pass through T
.

L
inear system

s analysis is the foundation of Fourier analysis, and is w
hy it m

akes sense to characterize your stereo am
plifier 

in term
s of frequency response. B

ut your stereo isn't just any linear system
--it has the special property that if you input a 

sound at tim
e t and m

easure the response, and then you input the sam
e sound again at a later tim

e, you get the sam
e 

response, except of course that is is shifted in tim
e. It is said to be a shift-invariant system

. T
he eigenvectors of a shift-

invariant system
 are sinusoids. (R

ecall the eigenvectors of the sym
m

etric m
atrix in the optional exercises of L

ecture 6? 
T

hey w
ere sinusoids, not just because the m

atrix w
as sym

m
etric, but also because each row

 of the m
atrix w

as a shifted 
version of the previous row

--the elem
ents along any given diagonal are identical. T

his is called a sym
m

etric T
oeplitz 

m
atrix.)

Sinew
ave inputs are the eigenvectors of your stereo system

. T
he dim

ensionality is m
uch higher--if you are interested in 

frequencies up to 20,000 H
z, your eigenvector for this highest frequency w

ould have least 40,000 elem
ents--not just 8!

T
his kind of analysis has been applied not only to physical system

s, but to a w
ide range of neural sensory system

s. For the 
visual system

 alone, linear system
s analysis has been used to study the cat retina (E

nroth-C
ugell and R

obson, 1964), the 
m

onkey visual cortex, and the hum
an contrast sensivity system

 as a w
hole (C

am
pbell and R

obson, 1968).

M
uch em

pirical analysis has been done using linear system
s theory to characterize neural sensory system

s, and other neural 
system

s such as those for eye m
ovem

ents. It w
orks w

onderfully as long as the linear system
 approxim

ation holds. A
nd it 

does do quite w
ell for the lateral eye of the lim

ulus, X
-cells and P-cells of the m

am
m

alian visual system
, over restricted 

ranges for so-called "sim
ple" cells in the visual cortex, am

ong others. T
he optics of the sim

ple eye is another exam
ple of an 

approxim
ately linear system

. M
any non-linear system

s can be approxim
ated as linear system

s over sm
ooth subdom

ains.

In sum
m

ary, if T
 has n distinct orthogonal eigenvectors, e

i , and know
n eigenvalues, l

i ,  then:

Step 1: Project x onto eigenvectors of T
: x.e

i

Step 2: Scale each x.e
i by the eigenvalue of e

i : l
i x.e

i

Step 3: Scale each e
i  by l

i x.e
i : Hl

i  x.e i Le
i

Step 4: Sum
 these up. T

hat's the response of T
 to x! : ⁄

i  Hl
i  x.e i Le

i
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L
earn

in
g

 an
d

 m
em

o
ry: B

rief o
verview

D
efin

itio
n

 o
f learn

in
g

 an
d

 m
em

o
ry

It is curious to note that historically, the sim
ple linear m

odel that w
e w

ill discuss cam
e after m

uch research had been 
devoted to non-linear learning m

odels, based in particular on a special case of M
cC

ulloch-Pitts neurons, called the percep-
tron.  L

inear m
odels have lim

itations,  in particular a consequence of superposition principle discussed above. N
evertheless,  

m
any of the interesting properties of non-linear system

s can be understood in term
s of sm

all signal linearity properties. A
nd 

linear system
s are easy to study. So w

ith that pream
ble, let's take a look at m

em
ory and see w

here linearity applies, and how
 

far w
e can get w

ith a linear m
odel. B

ut first som
e definitions, and a general overview

.

M
em

ory is the adaptive change in the behavior of an organism
 as a conseqence of past experience. M

ore precisely one can 
distinguish learning and m

em
ory: 

L
earning has to do w

ith aquisition, and m
em

ory w
ith storage and retrieval of inform

ation.M
em

ory recall is the 
retrieval of inform

ation.

P
sych

o
lo

g
y

 an
d

 b
io

lo
g

y o
f learn

in
g

 an
d

 m
em

o
ry

‡
A

ssociative and non-associative m
em

ory

W
e are going to be talking about associative m

em
ory, so it is useful to bear in m

ind that not all m
em

ory is considered 
associative.

A
ssociative m

em
ory: anim

al learns about the relationship of one stim
ulus to another or about the relationship betw

een a 
stim

ulus and the organism
's response. 

N
onassociative m

em
ory: exposure to a single stim

ulus either once, or repeated offers opportunity for learning about it

Lect_7_IntroLearnM
em
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‡
E

xam
ples of nonassociative learning

H
abituation

 (Ivan Pavlov)

decrease in behavioral reflex response to repeated non-noxious stim
ulus

Sensitization (pseudo-conditioning)

exposure to noxious stim
uli increases sensitivity

M
ore com

plex exam
ples of nonassociative learning

m
em

ory for sensory record...although w
hat one calls a stim

ulus vs. response is problem
atic

im
itation learning

‡
A

ssociative learning

C
lassical conditioning (Ivan Pavlov)

C
S

 -- U
S -- R

(tone) -- food -- salivation

tone -- air puff -  eye blink

T
em

poral contiguity of C
S-U

S, and frequency im
portant, but not the only factors

O
perant conditioning (T

horndike of C
olum

bia U
.)

also called instrum
ental or trial-and-error learning

 e.g. hungry rat in a cage w
ith a lever

occasionally the rat m
ay press the lever out of curiosity, accident or w

hatever, but if it does and prom
ptly receives 

som
e food (rew

ard), the lever pressing (called the "operant") w
ill increase above a spontaneous rate (the rate in the control 

state w
here there is no rew

ard).

‡
A

nim
al learning

C
onditioning is dependent on the degree to w

hich the U
S

 (e.g. food) is expected (e.g. K
am

in's 2 part experim
ent)

1. light - shock

m
easure strength of conditioning by how

 the light affects on-going behavior

2. (light-tone pair) - shock

3. test w
ith tone alone, no suppression of ongoing behavior

"blocking phenom
enon"

(R
escorla-W

agner m
odel can account for this, and W

idrow
-H

off). 

E
cological constraints on learning

8
Lect_7_IntroLearnM

em
.nb



‡
H

um
an

 m
em

ory

‡
Stages of m

em
ory

M
ain results for studies of cognitive psychology --  stages of m

em
ory

Iconic -- e.g.  visual afterim
ages (1 sec)

W
orking m

em
ory (short-term

 m
em

ory, m
inutes to hours)

sm
all capacity, disrupted by being knocked unconscious

short-term
 neural plastic events 

possible m
echanism

s?

rapid synaptic m
odification?

reverberating circuits?

L
ong-term

 m
em

ory

   
large capacity, relatively perm

anent  (years)
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‡
Im

plicit (reflexive) vs. explicit (declarative) m
em

ory

  
reflexive -- autom

atic readout not dependent on aw
areness, or cognitive processes of com

parison, evaluation

declarative -- "I saw
 a yellow

 canary yesterday"
relies on inference, com

parison, and evaluation

L
earning to driving a car -- m

em
ory m

oves from
 declarative tow

ards reflexive w
ith experience.

In our consideration of m
odels, w

e w
ill be prim

arily concerned w
ith sim

ple reflexive associative m
em

ory in w
hich an 

neural input event leads to the reconstruction of a predictive response based on experience. 

L
in

ear m
o

d
el o

f asso
ciative

 m
em

o
ry

H
eb

b
ian

 ru
le fo

r syn
ap

tic m
o

d
ificatio

n

‡
Introduction: M

odeling associative learning and m
em

ory

T
he brain has developed m

echanism
s that allow

 the anim
al to distinguish events that reliably and predictably occur together 

from
 those that do not.  W

hat kinds of neural m
odels could be used to capture and retrieve associations? H

ow
 can one 

pattern of neural activity com
e to be associated w

ith another?

A
ssum

ptions:

• physical basis of m
em

ory is in synaptic m
odification w

hich alters the m
apping of inputs to outputs

• the strength of the m
odification is determ

ined by how
 often input and output activity occurs together, and by the 

strengths of the input and output activities.

T
he idea of learning as association goes back to W

illiam
 Jam

es (1890) (See A
nderson text).

"W
hen tw

o elem
entary brain processes have been active together or in im

m
ediate succession, one of them

 on 
recurring, tends to propagate its excitem

ent into the other (Psychology: B
riefer C

ourse)."

Jam
es also has an "activitation equation" that sounds  a lot like our stage 1 of the 2-layer feedforw

ard netw
ork:

"T
he am

ount of activity at any given point in the brain-cortex is the sum
 of the tendencies of all other points to 

discharge into it"

R
eplace "point" by "neuron", and w

e have our lim
ulus equation.

T
here are sim

ilar statem
ents elsew

here (e.g. K
enneth C

raik of C
am

bridge in the 1940's). B
ut the clearest and m

ost explicit 
statem

ent of an associative learning rule is credited to C
anadian Psychologist D

onald H
ebb:

"W
hen an axon of cell A

 is near enough to excite a cell B
 and repeatedly or persistently takes part in firing it, som

e grow
th 

process or m
etabolic change takes place in one or both cells, such that A

's efficiency as one of the cells firing B
, is 

increased" (H
ebb in the "O

rganization of behavior", 1949).

10
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U
ntil recently, there w

as little evidence to support this notion of synaptic m
odification. B

ut direct tests of H
ebbian conjec-

ture have now
 been m

ade in rat hippocam
pus. See A

nderson, chapter 6 for a review
. 

‡
H

ebbian
 synaptic m

odification: M
odeling use the outer product

T
he fundam

ental H
ebbian assum

ption is that synaptic strength grow
s w

ith co-activity of pre- and post-synaptic activity. 
H

ow
 can w

e quantify this? W
e w

ill use a sim
ple m

odel of synaptic m
odification that assum

es that the connection strength 
betw

een neuron i and j is proportional to the product of the input and output activities. 

                                                 ∆
W

ij  =
 α

 fi gj

If you rem
em

ber the definition of the outer product of tw
o vectors, you can see that the above rule is just that--an outer 

product of the input and output activities.

T
h

e lin
ear m

o
d

el

‡
H

eteroassociation
 vs. autoassociation

W
e w

ill look at tw
o types of associative m

em
ory m

odels. In heteroassociation, an input f is associated w
ith g. So at som

e 
later tim

e, w
hen the system

 is stim
ulated w

ith f, it should produce g. In autoassociation, an input f is associated w
ith itself. 

In the next lecture, w
e w

ill see the use of autoassociation.

‡
Sum

m
ary of linear association

 m
odel

1. L
earning. L

et {fn ,gn } be a set of input/output activity pairs. M
em

ories are stored by superim
posing new

 w
eight changes 

on old ones. Inform
ation from

 m
any associations is present in each connection strength.

W
n
+

1
=

W
n
+

g
n f

n T

2. R
ecall. L

et f be an input possibly associated w
ith output pattern g.  For recall, the neuron acts as a linear sum

m
er:

g
=

W
f

g
i =

w
ij f

j
j
∑

If {fn } are orthonorm
al, the system

 show
s perfect recall:

W
n f

m
=

g
1 f

1 T
+

g
2 f

2 T+...+
g

n f
n T

(
) f

m

=
g

1 f
1 Tf

m
+

g
2 f

2 Tf
m
+

...+
g

m f
m Tf

m
+

...+
g

n f
n Tf

m
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=
g

m

f
n Tf

m
=

1, n
=

m

0, n
≠

m


So an nxn m
atrix has a m

em
ory capacity of n for orthogonal inputs. For random

 vectors, it is about 10-20%
 of n.

B
ut linear association is also useful as a m

apping, in w
hich one w

ants to generalize in a sm
ooth (actually linear) w

ay to 
novel inputs. For exam

ple, linear regression in 2D
 can be done w

ith a 2x2 m
atrix. It can be "trained" w

ith a few
 input/output 

pairs of points {x,y}. O
nce trained, if the data are w

ell-m
odeled by a straight line, the netw

ork w
ill do a nice job of 

"predicting" the output value (y) given a novel input value (x). 

V
erify

 th
at lin

ear m
em

o
ry

 m
o

d
el sh

o
w

s p
erfect recall fo

r o
rth

o
n

o
rm

al 

in
p

u
ts

D
efine an 8x8 m

atrix G
 w

hose row
s are 8 dim

ensional random
 output vectors

P
rint out row

 3: G
[[3]]

D
efine an 8x8 m

atrix W
m

em
ory w

hose elem
ents is the sum

 of the outer products of the row
s of G

 w
ith the 

row
s of W

 (the orthonorm
al W

alsh set defined
 earlier). T

his corresponds to Step 1 in the previous section

Show
 that G

[[3]]=W
m

em
ory.W

[[3]]

D
iscussion

 question: W
hat if the input vectors are not orthonorm

al?

E
xercise: P

encil and paper

L
et f1 and f2 be tw

o orthogonal, norm
alized input patterns:

12
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f
1
=

13

1−1

1  

 

f
2
=

12

110  

 

and g1, g2 tw
o output patterns:

g
1
=

312  

 

g
2
=

−1−1

2  

 

Form
 the outer product:

W
=

g
1 f

1 T

T
est for "recall" by feeding f1 as input to W

. Stim
ulate W

 w
ith f2. W

hat happens? A
dd the outer product:

g
2 f

2 T

to the previous W
 m

atrix. N
ow

 test for recall on stim
ulation w

ith f1, and f2. W
hat do you find?
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N
ext tim

e

E
xam

p
les

 o
f asso

ciative
 m

em
o

ry

‡
H

eteroassociative  m
em

ory

‡
A

utoassociative m
em

ory

A
p

p
en

d
ix

E
ig

en
vecto

rs, eig
en

valu
es: alg

eb
raic

 m
an

ip
u

latio
n

L
ast tim

e w
e used the M

athem
atica function E

igenvectors[] and E
igenvalues[] to produce the eigenvectors and eigenval-

ues for the m
atrix equation: A

x = λλ λλx. It is w
orth spending a little tim

e to understand w
hat is being done algebraically. 

C
onsider the follow

ing pair of equations specified by a 2x2 m
atrix W

 acting on xv to produce a scaled version of xv:

W
 
=
 
{
{
1
,
2
}
,
{
2
,
1
}
}
;

x
v
 
:
=
 
{
x
,
y
}
;

l
a
m
b
d
a
 
x
v
 
=
=
 
W
.
x
v

8lam
bda

x,lam
bda

y<=
=
8x

+
2

y,2
x

+
y<

Finding the eigenvalues is a problem
 in solving this set of equations. If w

e elim
inate x and y from

 the pair of equations, w
e 

end up w
ith a quadratic equation in lam

bda:

14
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‡
E

lim
inate[] &

 Solve[]

E
l
i
m
i
n
a
t
e
@
8
l
a
m
b
d
a
x
v

=
=
W
.
x
v
,
l
a
m
b
d
a

!
=
0
<
,

8
x
,
y
<
D

lam
bda

-
3

∫
0
fl

lam
bda

∫
0
fl

lam
bda

+
1

∫
0
Í

lam
bda

2
-

2
lam

bda
=

=
3

S
o
l
v
e
[
-
2
 
l
a
m
b
d
a
 
+
 
l
a
m
b
d
a
^
2
 
=
=
 
3
,
 
l
a
m
b
d
a
]

88lam
bda

Ø
-

1<,8lam
bda

Ø
3<<

So our eigenvalues are -1 and 3. W
e can plug these values of lam

bda into our equations to solve for the eigenvectors:

S
o
l
v
e
[
{
-
x
 
=
=
 
x
 
+
 
2
 
y
,
 
-
 
y
 
=
=
 
2
 
x
 
+
 
y
}
,
 
{
x
,
y
}
]

S
o
l
v
e
[
{
3
 
x
 
=
=
 
x
 
+
 
2
 
y
,
 
3
 
y
 
=
=
 
2
 
x
 
+
 
y
}
,
 
{
x
,
y
}
]

Solve::svars
:

E
quations

m
ay

notgive
solutions

for
all"solve"

variables.

88x
Ø

-
y<<

Solve::svars
:

E
quations

m
ay

notgive
solutions

for
all"solve"

variables.

88x
Ø

y<<

‡
R

educe

M
athem

atica is sm
art enough that w

e can use R
educe[] to do it all in one line:

R
e
d
u
c
e
[
{
l
a
m
b
d
a
 
x
v
 
=
=
 
W
.
x
v
}
,
 
{
x
,
y
,
l
a
m
b
d
a
}
]

x
=

=
-

yfl
lam

bda
=

=
-

1
fi

x
=

=
yfl

lam
bda

=
=

3
fi

lam
bda

-
3

∫
0
fl

lam
bda

+
1

∫
0
fl

x
=

=
0
fl

y
=

=
0

T
he eigenvectors are unique only up to a scale factor, so one can choose how

 to norm
alize them

. For exam
ple, w

e could 
arbitrarily set x to 1, and then the eigenvectors are: {1,1}, and {1,-1}. A

lternatively, w
e could norm

alize them
 to {1/Sqrt[2], 

1/Sqrt[2]} and {1/Sqrt[2], -1/Sqrt[2]}.
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E
i
g
e
n
v
e
c
t
o
r
s
[
W
]

J -
1

1
1

1
N

‡
Side note: Solve[] vs. R

educe[]

Solve[] m
akes assum

ptions about constraints left unspecified, so the follow
ing returns the solution true for any lam

bda:

S
o
l
v
e
[
{
l
a
m
b
d
a
 
x
 
=
=
 
x
 
+
 
2
 
y
,
 
l
a
m
b
d
a
 
y
 
=
=
 
2
 
x
 
+
 
y
}
,

{
x
,
y
,
l
a
m
b
d
a
}
]

Solve::svars
:

E
quations

m
ay

notgive
solutions

for
all"solve"

variables.

88x
Ø

0,
y

Ø
0<<

S
o
l
v
e
[
{
l
a
m
b
d
a
 
x
 
=
=
 
x
 
+
 
2
 
y
,
 
l
a
m
b
d
a
 
y
 
=
=
 
2
 
x
 
+
 
y
,

l
a
m
b
d
a
 
!
=
0
,
 
x
 
!
=
 
0
,
 
y
 
!
=
 
0
}
,
 
{
x
,
y
,
l
a
m
b
d
a
}
]

Solve::svars
:

E
quations

m
ay

notgive
solutions

for
all"solve"

variables.

88x
Ø

-
y,lam

bda
Ø

-
1<,8x

Ø
y,lam

bda
Ø

3<<

R
educe[] gives all the possibilities w

ithout m
aking specific assum

ptions about the param
eters:

E
ither of the follow

ing form
s w

ill w
ork too:

R
e
d
u
c
e
[
l
a
m
b
d
a
 
x
v
 
=
=
 
W
.
x
v
,
 
{
x
v
[
[
1
]
]
,
x
v
[
[
2
]
]
,
l
a
m
b
d
a
}
]

R
e
d
u
c
e
[
{
{
l
a
m
b
d
a
 
x
,
 
l
a
m
b
d
a
 
y
}
 
=
=
 
{
x
 
+
 
2
 
y
,
 
2
 
x
 
+
 
y
}
}
,

{
x
,
y
,
l
a
m
b
d
a
}
]

x
=

=
-

yfl
lam

bda
=

=
-

1
fi

x
=

=
yfl

lam
bda

=
=

3
fi

lam
bda

-
3

∫
0
fl

lam
bda

+
1

∫
0
fl

x
=

=
0
fl

y
=

=
0

x
=

=
-

yfl
lam

bda
=

=
-

1
fi

x
=

=
yfl

lam
bda

=
=

3
fi

lam
bda

-
3

∫
0
fl

lam
bda

+
1

∫
0
fl

x
=

=
0
fl

y
=

=
0

‡
D

eterm
inant solution

A
x = λλ λλx can be w

ritten: (A
 - Iλλ λλ)) )).. ..x, w

here I is the identity m
atrix. T

he interesting values of x that satisfy this equation are 
the ones that aren't zero. For this to be true, (A

 - Iλλ λλ)) )) m
ust be singular (i.e. no inverse). A

nd this is true if the determ
inant of 

(A
 - Iλλ λλ)) )) is zero
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A
n

sw
ers

In
[15]:=

G
=
T
a
b
l
e
@
R
a
n
d
o
m
@
D
,
8
8
<
,
8
8
<
D
;

In
[16]:=

G
@
@
1
D
D

In
[20]:=

W
m
e
m
o
r
y
=
T
a
b
l
e
@
0
,
8
8
<
,
8
8
<
D
;

F
o
r
@
i
=
1
,
i
§
8
,
i
+
+
,

W
m
e
m
o
r
y

=
W
m
e
m
o
r
y

+
O
u
t
e
r
@
T
i
m
e
s
,
G
@
@
i
D
D
,
W
@
@
i
D
D
D
D
;

In
[23]:=

W
m
e
m
o
r
y
.
W
@
@
3
D
D

G
@
@
3
D
D
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