Introduction to Neural Networks
U. Minn. Psy 5038
Introduction to Learning and Memory
Introduction
Last time
Matrix algebra review
"outer product", "eigenvectors" of a matrix. Useful for neural networks and natural computation.
Today
Linear systems
Brief overview of learning and memory
Modeling associative memory

 $\left.[8]_{\mathrm{L}} \mathrm{q}+[\mathrm{f}]\right]_{\mathrm{L}} \mathrm{B}=[8 \mathrm{q}+\mathrm{f} \mathrm{b}]_{\mathrm{L}}$
sә!!

This is a consequence of the laws of matrix algebra. The idea of a linear system has been generalized beyond matrix algebra.
Imagine we have a box that takes inputs such as f, and outputs $g=T[f]$.

matrix equation $\mathbf{W} \cdot \mathbf{x}==\mathbf{y}$ is a linear system. This means that if \mathbf{W} is a matrix, $\mathbf{x} \mathbf{1}$ and $\mathbf{x} \mathbf{2}$ are vectors, and a and b are scalars The notion of a "linear system" is a generalization of the input/output properties of a straight line passing through zero. The
 oneself with the basics of linear system theory. Many times a non-linear system has a sufficiently smooth mapping that it
can be approximated by a linear one over restricted ranges of parameter values.

 The world of input/output systems can be divided up into linear and non-linear systems. Linear systems are nice because the
mathematics that describes them is not only well-known, but also has a mature elegance. On the other hand, it is a fair fundamental definition of a "linear system linear networks and look at in the general context of linear systems theory. Our basic network is a matrix of weights that
operates on a vector of input activities by computing a weighted sum. One property of such a system is that it satisfies the

 Consider the generic 2-layer network. It consists of a weighted average of the inputs (stage 1), followed by a point-nonlinear-
ity (the squash function of stage 2), and added noise (stage 3). Although later we will see how the non-linearity enables Introduction

沗

高

ute to the "energy", i.e. (the square of the length) are distributed across the vector The set of Walsh functions we looked at earlier is just one possible set that has the advantage that the elements that contrib-

 2) Characterizing the linear system by a matrix \mathbf{T}, requires \boldsymbol{n}^{2} numbers, where \mathbf{n} is the input signal vector length-and \mathbf{n} can is infinitely narrow and infinitely high. energy on just one element. In the theoretical limit, this corresponds to stimulating it with a "delta" function, a spike which

 What kind of measurements would tell us what \mathbf{T} is? Well, we could just "stimulate" the system with cartesian vectors tists face when describing a neural subsystem, such as hearing, touch or sight.
 We would like to make a simple set of measurements that could characterize \mathbf{T} in such a way that we could predict the

Suppose we have an unknown physical (or biological) system, which we model as a linear system \mathbf{T}
Characterizing a linear system by its response to an orthonormal basis set

rows of the matrix newW. We can calculate what the specturm (g.wi) is, so the output of \mathbf{T} is: Of course, we have already done our "experiment", so we know what the transformed basis vectors are, we stored them as

${ }^{?} \cdot \boldsymbol{M} \cdot \boldsymbol{L}\left({ }^{?} \cdot \boldsymbol{M} \cdot \boldsymbol{8}\right) \zeta=\left\{{ }^{?} \boldsymbol{M}\left({ }^{?} \cdot{ }_{M} \cdot \boldsymbol{8}\right) \zeta\right\} \cdot L=\boldsymbol{8} \cdot \boldsymbol{L}$

But by the principle of linearity, we can also calculate the output by finding the "spectrum" of \mathbf{g} as in Problem Set 1 , and
then scaling each of the transformed basis elements by the spectrum and adding them up: \{26.4304, 36.2209, 23.9967, 32.6211, 24.4136, 44.8792, 41.2066, 46.1586\} т.g

Note that new \mathbf{W} is an 8×8 matrix. So how can we calculate the output of \mathbf{T}, given \mathbf{g} without actually running the input
through \mathbf{T} ? If we do run the input through \mathbf{T} we get: newW = \{T.W1,T.W2,T.W3,T.W4,T.w5,T.w6,T.W7,T.W8\}; to a basis vector. Suppose we now do an "experiment" to find out how \mathbf{T} transforms the vectors of our basis set:, and we put all of these Suppose we now do an "experiment" to find out how \mathbf{T} transforms the vectors of our basis set:, and we put all of these

$$
\{6 z " \varepsilon \mid " \downarrow " I \prime " L " I " 9 " z\} \mid
$$

$$
1
$$

is the sum of its own projections onto the basis set

 Construct a symmetric matrix transformation, T. Show that if the elements of the basis set are the eigenvectors of T, then We've seen how linearity provides us with a method for characterizing a linear system in terms of the responses of the
system to the basis vectors. The problem is that if the input signals are long vectors, say with dimension 40,000 , then this set
of basis vector responses is really big- -1.6×10^{9}. What if the choice of basis set is the set of eigenvectors of \mathbf{T} ?
We've seen how linearity provides us with a method for characterizing a linear system in

-sıоұәәл

The main idea is: characterize and unknown system \mathbf{T} by its response to orthonormal

So again, we can project \mathbf{g} onto the rows of \mathbf{W}, and then reconstitute it in terms of \mathbf{W} to get \mathbf{g} back again:
$\ln [11]:=\mid w=\{w 1, w 2, w 3, w 4, w 5, w 6, w 7, w 8\} ;$

Same thing in more concise notation

Lect_7_IntroLearnMem.nb	
Learning and	
Definition of learn	
It is curious to note that devoted to non-linear lea tron. Linear models have many of the interesting p linear systems are easy to far we can get with a lin	rch had been , called the perc above. Neverth arity properties rity applies, and
Memory is the adaptive distinguish learning and	precisely one
Learning has to retrieval of information.	nory recall is the
Psychology and	
■ Associative and no	
We are going to be talki associative.	is considered
Associative memory: a stimulus and the organis	
Nonassociative memory	

 measure strength of conditioning by how the light affects on-going behavior

 mitation learning
 exposure to noxious stimuli increases sensitivity
More complex examples of nonassociative learning tization (pseudo-conditioning)
exposure to noxious stimuli
decrease in behavioral reflex response to repeated non-noxious stimulus

■ Examples of nonassociative learning
8 Lect_7_IntroLearnMem.nb

 The idea of learning as association goes back to William James (1890) (See Anderson text). - the strength of the modification is determined by how often input and output activity occurs together, and by the
strengths of the input and output activities.
 pattern of neural activity come to be associated with another?
Assumptions: The brain has developed mechanisms that allow the animal to distinguish events that reliably and predictably occur together
from those that do not. What kinds of neural models could be used to capture and retrieve associations? How can one Hebbian rule for synaptic modification
■ Introduction: Modeling associative learning Linear model of associative memory
 relies on inference, comparison, and evaluation
Learning to driving a car -- memory moves from declara

reflexive -- automatic readout not dependent on awareness, or cognitive processes of comparison, evaluation
■ Implicit (reflexive) vs. explicit (declarative) memory
Let fl and f 2 be two orthogonal, normalized input patterns:

Form the outer product:

$$
W=g_{1} f_{1}^{T}
$$

Test for "recall" by feeding f 1 as input to W . Stimulate W with f 2 . What happens? Add the outer product:

$$
g_{2} f_{2}^{T}
$$

to the previous W matrix. Now test for recall on stimulation with f 1 , and f 2 . What do you find?

$\left(\begin{array}{l} 0 \\ I \\ I \end{array}\right) \frac{Z \tau}{I}={ }^{2} f$	
$\left(\begin{array}{c} \mathrm{I} \\ \mathrm{I}- \\ \mathrm{I} \end{array}\right) \frac{\underline{\varepsilon} \Omega}{\mathrm{I}}=\mathrm{I}^{\mathrm{f}} \mathrm{f}$	

Eigenvectors, eigenvalues: algebraic manipulation
Appendix
\square Heteroassociative memory
\square Autoassociative memory

әш! ! ¥xə

14 Lect_7_IntroLearnMem.nb
arbitrarily set x to 1 , and then the eigenvectors are: $\{1,1\}$, and $\{1,-1\}$. Alternatively, we could normalize them to $\{1 / \mathrm{Sqrt}[2]$,
$1 /$ Sqrt[2] $\{1 / \mathrm{Sqrt}[2],-1 /$ Sqrt $[2]\}$. The eigenvectors are unique only up to a scale factor, so one can choose how to normalize them. For example, we could
 Mathematica is smart enough that we can use Reduce[] to do it all in one line:

- Reduce

Solve::svars : Equations may not give solutions for all "solve" variables
$\{\{x \rightarrow y\}\}$
$\{\{\kappa-\leftarrow x\}\}$ $\{\{\kappa-\leftarrow x\}\}$

Solve::svars : Equations may not give solutions for all "solve" variables
Solve $[\{-x=x+2 y,-y==2 x+y\},\{x, y\}]$
Solve $[\{3 x==x+2 y, 3 y==2 x+y\},\{x, y\}]$
So our eigenvalues are -1 and 3 . We can plug these values of lambda into our equations to solve for the eigenvectors:
\{\{lambda $\rightarrow-1\}$, \{lambda $\rightarrow 3\}\}$

Eliminate $[\{\mathbf{l} \mathbf{a m b d a} \mathbf{x v}==\mathbf{W} . \mathbf{x v}$, lambda $!=\mathbf{0}\},\{\mathbf{x}, \mathbf{y}\}]$
lambda $-3 \neq 0 \wedge$ lambda $\neq 0 \wedge$ lambda $+1 \neq 0 \bigvee$ lambda $^{2}-2$ lambda $==3$

- Eliminate[] \& Solve[] (A-I $\boldsymbol{\lambda}$) is zero $\mathbf{A x}=\boldsymbol{\lambda} \mathbf{x}$ can be written: $(\mathbf{A}-\mathbf{I} \lambda) \cdot \mathbf{x}$, where \mathbf{I} is the identity matrix. The interesting values of \mathbf{x} that satisfy this equation are
the ones that aren't zero. For this to be true, $(\mathbf{A}-\mathbf{I} \boldsymbol{\lambda})$ must be singular (i.e. no inverse). And this is true if the determinant of

Either of the following forms will work too
Reduce[] gives all the possibilities without making specific assumptions about the parameters: Reduce[] gives all the possibilities without making specific assumptions about the parameters: $\left\{\{\varepsilon \leftarrow\right.$ ерqшег $\times \kappa \leftarrow x\} ‘\left\{I-\leftarrow\right.$ врqшег $\left.\left._{[} \times \kappa-\leftarrow x\right\}\right\}$
Solve::svars : Equations may not give solutions for all "solve" variables

 \{ $\{x \rightarrow 0, y \rightarrow 0\}\}$ Solve::svars : Equations may not give solutions for all "solve" variables $\underset{\{x, y, l \text { ambda }\}]}{\operatorname{Solve}\{\text { lambda } x}=x+2 y$, lambda $y=2 x+y\}$,
Solve[] makes assumptions about constraints left unspecified, so the following returns the solution true for any lambda:
- Side note: Solve[] vs. Reduce[]
-

Silverman, M.S., Grosof, D.H., DeValois, R.L., \& Elfar, S.D. (1989). Spatial-frequency organization in primate striate
cortex. Proceedings of the National Academy of Science USA, 86, 711-715. Gaskill, J. D. (1978). Linear Systems, Fourier Transforms, and Optics . New York: John Wiley \& Sons. Enroth-Cugell, C., \& Robson, J. G. (1966). The contrast sensitivity of retinal ganglion cells of the cat, Journal of Physiol-
ogy, London, 187, $517-552$. Carandini, M., Heeger, D. J., \& Movshon, J. A. (1997). Linearity and normalization in simple cells of the macaque primary
visual cortex. J Neurosci, $\underline{17(21), ~ 8621-44 . ~}$ Campbell, F. W., \&
ogy , 197, 551-566
References
Campbell, F. W, \& Robson, J. R. (1968). Application of Fourier Analysis to the Visibility of Gratings, Journal of Physiol-

s.」əMSU \forall

