
Short Probability Overview

Goals
Review the basics of probability distributions and statistics

Probability overview

Random variables, discrete probabilities, probability densities, cumulative 
distributions

Discrete: random variable X can take on a finite set of discrete values
X = {x(1),...,x(N)]


i=1

N

pi =
i=1

N

p(X = x(i)) = 1

Densities: X takes on continuous values, x, in some range.
Density : p(x)

Analogous to material mass,
we can think of the probability over some small domain of the random variable as " probability mass " :

prob(x < X < dx + x) = 
X

dX+X
p(x) ⅆx

prob(x < X < dx + x) ≃ p(x) dx

With the mass analogy, however, an object (event space) always " weighs " 1 :


-∞

∞
p(x) ⅆx = 1

Cumulative  distribution:

prob (X < x) = 
-∞

x
p(X ) ⅆX

Densities of discrete random variables
The Dirac Delta function, δ[•], allows us to use the mathematics of continuous distributions for discrete 
ones, by defining the density as:

p[x]=∑i=1
N piδ[x - x[i]], where δ[x - x[i]] =

∞
0

for x = x[i]
for x ≠ x[i]



p[x]=∑i=1
N piδ[x - x[i]], where δ[x - x[i]] =

∞
0

for x = x[i]
for x ≠ x[i]

Think of the delta function, δ[•], as ϵ wide and 1/ϵ tall, and then let ϵ -> 0, so that:


-∞

∞
δ(y) ⅆy = 1

The density, p[x], is a series of spikes. It is infinitely high only at those points for which x = x[i], and zero 
elsewhere. But "infinity" is scaled so that the local mass or area around each spike x[i], is pi.

Joint probabilities
Prob (X AND Y ) = p(X , Y )
Joint density : p(x, y)

Three basic rules of probability

Suppose we know everything there is to know about a set of variables (A,B,C,D,E). What does this 
mean in terms of probability? It means that we know the joint distribution, p(A,B,C,D,E). In other words, 
for any particular combination of values (A=a,B=b, C=c, D=d,E=e), we can calculate, look up in a table, 
or determine some way or another the number p(A=a,B=b, C=c, D=d,E=e).
Deterministic relationships are special cases. 

Rule 1: Conditional probabilities from joints: The product rule
Probability about an event changes when new information is gained.
Prob(X given Y) = p(X|Y)

p(X Y ) =
p(X , Y )

p(Y )

p(X , Y ) = p(X Y ) p(Y )

The form of the product rule is the same for densities as for probabilities.

Rule 2: Lower dimensional probabilities from joints: The sum rule (marginalization)

p(X ) =
i=1

N

p(X , Y (i))

p(x) = 
-∞

∞
p(x, y) ⅆx

Rule 3: Bayes' rule
From the product rule, and since p[X,Y] = p[Y,X], we have:

p(Y X ) =
p(X Y ) p(Y )

p(X )
, and using the sum rule, p(Y X ) =

p(X Y ) p(Y )

∑Y p(X , Y )

Bayes Terminology in inference
Suppose we have some partial data (see half of someone's face), and we want to recall or complete the 
whole. Or suppose that we hear a voice, and from that visualize the face. These are both problems of 
statistical inference. We've already studied how to complete a partial pattern using energy minimization, 
and how energy minimization can be viewed as probability maximization.
We typically think of the Y term as a random variable over the hypothesis space (a face), and X as data 
or a stimulus (partial face, or sound). So for recalling a pattern Y from an input stimulus X, We'd like to 
have a function that tells us:
p(Y | X) which is called the posterior probability of the hypothesis (face) given the stimulus (partial face 
or sound).
-- i.e. what you get when you condition the joint by the stimulus data. The posterior is often what we'd 
like to base our decisions on, because it can be proved that picking the hypothesis Y which maximizes 
the posterior (i.e. maximum a posteriori or MAP estimation) minimizes the average probability of error.
p(Y) is the prior probability of the hypothesis. Some hypotheses are more likely than others.  Given a 
context, such as your room, some faces are a priori more likely than others. For me an image patch 
stimulating my retina in my kitchen is much more likely to be my wife's than my brother's (who lives in 
another state). This shows that priors are contingent, i.e. conditional on context, p(Y| context).
p(X|Y) is the likelihood of the hypothesis. Note this is a probability of X, but not of Y.(The sum over X is 
one, but the sum over Y isn't necessarily one.)
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Bayes Terminology in visual perception

p[S I] =
p[I S] p[S]

p[I]

Usually, we will be thinking of the Y term as a random variable over the hypothesis space, and X as 
data. So for visual inference, Y = S (the scene), and X = I (the image data), and I = f(S).
We'd like to have:
p(S|I) is the posterior probability of the scene given the image
-- i.e. what you get when you condition the joint by the image data. The posterior is often what we'd like 
to base our decisions on, because as we discuss below,  picking the hypothesis S which maximizes the 
posterior (i.e. maximum a posteriori or MAP estimation) minimizes the average probability of error.
p(S) is the prior probability of the scene.
p(I|S) is the likelihood of the scene. Note this is a probability of I, but not of S.

Independence
Knowledge of one event doesn't change the probability of another event. 
p(X)=p(X|Y)
p(X,Y)=p(X)p(Y)
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Density mapping theorem

Suppose we have a change of variables that maps a discrete set of x's uniquely to y's:  X->Y.

Discrete random variables
No change to probability function. The mapping just corresponds to a change of labels, so the probabili-
ties p(X)=p(Y).

Continuous random variables
Form of probability density function does change because we require the probability "mass" to be 
unchanged: p(x)dx = p(y)dy

Suppose, y=f(x)

pY (y) δy = pX (x) δx
In higher dimensions, the transformation is done by multiplying the density by the Jacobian, the determi-
nant of the matrix of partial derivatives of the change of coordinates.

pY (y)=∫δ(y - f (x)) f -1(x) pX (x) ⅆx

over each monotonic part of f.

Convolution  theorem for adding rvs

Let x be distributed as g(x), and y as h(x). Then the probability density for z=x+y is, f(z):

f (z) =  g (s) h (z - s) ⅆs (1)

Statistics

Expectation & variance
Analogous to center of mass:

Definition of expectation or average:

Average[X] = X = E[X] = Σ x[i] p[x[i]] ~ 
i=1

N

xi / N

μ = E[X ] = x p(x) dx

Some rules:

E[X+Y]=E[X]+E[Y]
E[aX]=aE[X]
E[X+a]=a+E[X]

Definition of variance:
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σ2 =Var[X] = E[[X-μ]^2] = ∑j=1
N px( j) (x( j) - μ)2 = ∑j=1

N pjxj - μ2

Var[X ] = (x - μ)2 p(x) dx ~
i=1

N

(xi - μ )2 N

Standard deviation:

σ = Var[X]

Some rules:

Var[X] = EX2 - E[X]2

Var[aX] = a2 Var[X]

Covariance & Correlation
Covariance:

Cov[X,Y] =E[[X - μX ] [Y - μY ] ]

Correlation coefficient:

ρ[X, Y] =
Cov[X, Y]

σX σY

Cross and Autocovariance matrix
Suppose X and Y are vectors: {X1, X2,...} and {Y1, Y2, ...}

Cov[Xi,Yj] =E[[Xi - μXi ] [Yj - μYj ] ] ~ ∑n=1
N (xi

n - μXi ) yj
n - μYj 

T N

Autocov[Xi,Xj] =E[[Xi - μXi ] [Xj - μYj ] ] ~ ∑n=1
N (xi

n - μXi ) xj
n - μXi 

T N

In other words, the autocovariance matrix can be approximated by the average outer product. It is a 
Hebbian matrix memory of pair-wise relationships.

Independent random variables
If p(X,Y)=p(X)p(Y), then

E[X Y] = E[X] E[Y] (uncorrelated)
Cov[X, Y] = ρ[X, Y] = 0
Var[X + Y] = Var[X] + Var[Y]

If two random variables are uncorrelated, they are not necessarily independent. 
Two random variables are said to be orthogonal if their correlation is zero.

Degree of  belief vs., relative frequency

What is the probability that the Vikings will win the Superbowl in 2004? Assigning a number between 0 
and 1 is assigning a degree of belief. These probabilities are also called subjective probabilities. "Odds" 
determine subjective probabilities, where the "odds of x to y" means probability = x/(x+y).
What is the probability that a coin will come up heads? In this case, we can do an experiment. Flip the 
coin n times, and count the number of heads, say h[n], and then set the probability, p = h[n]/n -- the 
relative frequency . Of course, if we did it again, we may not get the same estimate of p. One solution 
often given is:
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p = lim
n→∞

h(n)

n
A problem with this, is that there is no guarantee that a well - defined limit exists.

In some domains we can measure statistics, and model probabilities of both inputs and outputs. So the 
relative frequency interpretation seems reasonable. In practice, the dimensions of many problems in 
perception, cognition, and memory are so high, that it is impractical to do this. Once we use the statisti-
cal framework to model perception, say of a particular cue (say ), then probabilities are more like  
"subjective unconscious beliefs".

Principle of insufficient reason

Principle of symmetry
Suppose we have N events, x[1],x[2],x[3],...,x[N] that are all physically identical except for the label. 
Then assume that 

prob(x(1)) = prob(x(2)) = prob(x(3)) = prob(x(N)) =
1

N
In other words,if we have no additional information about the events,we should assume that they are 
uniformly distributed. I.e., assume a uniform prior. 
What about the continous case where there is no reason to assume any particular value at all between 
-∞ and +∞?
Improper priors.

Information theory and Maximum entropy
Information theory provides a powerful extension to the principle of symmetry. Information of event X is:

Information[X ] = -log2(p(X ))

Using the definition of expectation above, we can specify the expectation of information, which is called 
entropy. Entropy of a random variable X with probability distribution p[X] is:

H(X ) = Average(Information[X ]) = -
X

p(X ) log2(p(X ))

It can be shown that out of all possible probability distributions, H(X) is biggest for the uniform distribu-
tion, p(X)=1/N. Maximum entropy is looking like symmetry.
It turns out that a more powerful formulation of the principle of symmetry is maximum entropy. For 
example, out of all possible probability distributions of a random variable with infinity range, but with a 
specific mean and standard deviation, the Gaussian is unique in having the largest entropy. If the range 
goes from zero to infinity, and we know the mean, the maximum entropy distribution is an exponential 
(Cover and Thomas).

An interesting application of the maximum entropy principle is to learning image textures joint probabili-
ties: p(I[1],...,I[N]), where N is very big, but where one has only a relatively small number of measured 
statistics relative to the number of possible images (which is really huge). The measurements underde-
termine the dimensionality of the probability space--i.e. there are many different probability distributions 
which give the same statistics. So the principle of symmetry, or insufficient reason, says to choose the 
one with the maximum entropy.
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