Bidirectional processing |

feedforward & feedback networks for
recognition

-ocus today on feedforward architectures
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A brief history of computational

pattern/object recognition

1940s

McCulloch and Pitts
threshold logic units
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template models, e.g. SDT




1950s

Rosenblatt's perceptron
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random connections. \

perceptron learning algorithm enabled it to feedback too
to learn to classity

Rosenblatt, F. "'The Perceptron, a Perceiving and Recognizing Automaton’, Cornell Aeronautical Laboratory Report No.
85-460-1 (1957);

Rosenblatt, F. Principles of Neurodynamics (Washington, D.C.: Spartan, 1962).



Threshold-logic and
the perceptron
learning rule

j T \'\I XTW HE— J= Sgn (XHW)
Wy g - " i

Adjust weights, w, to find separating line.
Limited to linearly separable classes

Rosenblatt, F. "'The Perceptron, a Perceiving and Recognizing Automaton’, Cornell Aeronautical Laboratory Report No.
85-460-1 (1957);

Rosenblatt, F. Principles of Neurodynamics (Washington, D.C.: Spartan, 1962).



support vector machines

1963 — linear
1992 — non-linear kernels
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https://en.wikipedia.org/wiki/Kernel method#/media/File:Kernel Machine.png



https://en.wikipedia.org/wiki/Kernel_method#/media/File:Kernel_Machine.png

1980s through 1990s
getting multi-layer perceptrons to work

Outpul

‘»i;'ll..l

Input First Second Outpu
layer hidden hidden layer
laver layer
FIGURE 4.7 Architectural graph of a multilayer perceptron with two hidden layers

solving the supervised learning problem:

error-back propagation for learning weights

Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (8 October 1986). "Learning representations by back-propagating errors".
Nature 323 (6088): 533-536

LeCun,Y,Bottou,L,Bengio,Y,andHaffner,P.Gradient-basedlearningappliedtodocumentrecognition. Proceedings of the IEEE, 86(11):2278-
2324, November 1998.

*hKK*

Paul J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University,

1974
Bryson, A.E.; W.F. Denham; S.E. Dreyfus. Optimal programming problems with inequality constraints. |: Necessary conditions for extremal
solutions. AIAA J. 1, 11 (1963) 2544-2550



1980s

Hopfield network
Boltzmann machines

recurrent networks %;

e theoretical understanding of what networks were doing

e development of cost (energy) function methods for finding
solutions and learning

e very slow convergence, did not scale up

e but no architectural constraints (e.g. hierarchical)

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cognitive Science, 9(1), 147—169.



The need for an “architecture” for vision

to manage local uncertainty

and the complexities of real-world images



Pandemonium 1959

e parallel processing,
® |carning
e hill-climbing cost functions

O. G. Selfridge. "Pandemonium: A paradigm for learning." In D. V.
Blake and A. M. Uttley, editors, Proceedings of the Symposium on

Mechanisation of Thought Processes, pages 511-529, London, 1959.

Decision Demon

N

Cognitive
Demons

Computation
Demons

Data or Image
Demons



13x13x18
21x21x38

Tx7x23
13x13x3%

Fukushima, K. (1988). Neocognitron - a Hierarchical Neural Network Capable of Visual-Pattern Recognition. Neural Networks, 1(2), 119-130.

supervised and unsupervised learning




primate visual hierarchical neuroarchitecture

1978....1991

Zeki, S. M. (1978). Functional specialisation in the visual cortex of the rhesus
monkey. Nature, 274(5670), 423—428.

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing
in the primate cerebral cortex. Cerebral Cortex, 1(1), 1-47.
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Lnereasing receptive fleld sizes, pattern selectivity, invariance to position and scale
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Hierarchical models
of object recognition

primary visual
cortex (V1)

LGN

?

retina

T

IT = inferior temporal cortex

bread and butter of ventral
stream modeling

Area All

Hegde and Felleman, 2007



Hierarchical models
for feature extraction for recognition

Local features progressively grouped into more
structured representations

 edges => contours => fragments => parts =>
objects

Selectivity/invariance trade-off
* Increased selectivity for object/pattern type

 Decreased sensitivity to view-dependent variations
of translation, scale and illumination



what are the underlying computations
to achieve both selectivity and invariance”

example of recognizing the letter

]
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simple and complex cells as AND- and OR-

Ike operations

contributing towards an end-goal of invariant

recognition

Riesenhuber & Poggio model

comb
comp
organ

ine the properties of simple- and

ex-like cells with hierarchical

ization to progressively achieve

Invariance

Poggio, T. (2011). The Computational Magic of the Ventral Stream: Towards a Theory. Nature Precedings.



two main classes of V1 cells’

 Simple cells

e detect conjunctions of inputs @ ={ < I /}

* similar to a logical AND

e e.g. of similar pixels to form an edge template
* “phase sensitive”

* Complex Ce”S Energy filter
\ ] A
* detect disjunctions of inputs @ = N v }#}

* similar to a logical OR

e e.9g. any of several similar oriented edges within a
region of space will fire cell

* "phase insensitive”

"The distinction isn’t categorical--i.e. a range of phase sensitivities. And
there other types of cells, e.q. end-stopped. See Mechler, F., & Ringach,
D. L. (2002). On the classification of simple and complex cells. Vision
Research, 42(8), 1017-1033.



simple cell feedforward model

o . Response . Pointwise
Image Receptive field ‘ngrmalizatiop' non-linearity Response
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neurons

convolution — similar filtering operations repeated over space

Similar filtering operations repeated between subsequent Levels
Vi == Vit



Categorization | ® @ ® | igenttication task-related processing } PFC/STS/...

view-invariant units

IT
view-tuned units
C2 units
} V2-V4
S2 units
(/) «..  Ctlunits
} 5
= () (1)IN)  +++ S1units
weighted eum S - simple cell like

MAX

C - complex cell like
Riesenhuber & Poggio, 1999



object label

althaamnlina via “nanlina”

threshold non-linearitv

soatial filterina

relation to “"deep
convolutional networks”

subsampling via “pooling”

threshold non-linearity

spatial filtering

dforward

( subsampling via “pooling” )
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Deep convolutional network learning
What's new since the 1980s?

large labelled image datasets
faster computations—GPUs
some tricks to avoid over-fitting



What determines feature hierarchies?

Grouping to form more abstract features, given image regularities that support tasks
— “hand - wire” based on analysis of computation and neural models
* e.g. Riesenhuber and Poggio, ...
— unsupervised learning based on based on successive discovery of image regularities (Barlow)
* detecting “suspicious coincidences”:
- Is p(feature A, feature B) >> p(feature A) p(feature B)
- if so, recode to remove dependence. E.g. contingent adaptation example

- advantage of general features. but perhaps more useful at lower levels of the hierarchy

— supervised learning — task dependent
e — “20 questions” approach (Ephstein et al.)

- find diagnostic features that distinguish the categories for the most important tasks to
determine the top level

- repeat at a lower level of abstract to find sub-features that distinguish the diagnostic
features

- ...and so forth

e deep convolutional networks



unsupervised
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Zhu, L., Chen, Y., Torralba, A., Freeman, W., & Yuille, A. (2011).
Part and appearance sharing: Recursive compositional
models for multi-view multi-object detection. IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, 1919—-1926.

“Compositional” constraints:
suspicious coincidences
part-sharing

Explicit, “symbolic”

Filter/feature hierarchies
can be “learned” from
natural image input

Face Face Cougar Cougar Sunﬂower Schooner

Layer 2 Layer 3 Layer 4

Layer 1

Zeiler, M., Taylor, G., & Fergus, R. (2011). Adaptive
deconvolutional networks for mid and high level feature
learning. Computer Vision (ICCV), 2011 IEEE International

Conference on, 2018- 2025.

“Deep belief” networks
learning constrained by generative
prediction

Implicit



What determines feature hierarchies?

Grouping to form more abstract features, given image regularities that support tasks
— “hand - wire” based on analysis of computation and neural models
* e.g. Riesenhuber and Poggio, ...
— unsupervised learning based on based on successive discovery of image regularities (Barlow)
* detecting “suspicious coincidences”:
- Is p(feature A, feature B) >> p(feature A) p(feature B)
- if so, recode to remove dependence. E.g. contingent adaptation example

- advantage of general features. but perhaps more useful at lower levels of the hierarchy

— supervised learning — task dependent
e — “20 questions” approach (Ephstein et al.)

- find diagnostic features that distinguish the categories for the most important tasks to
determine the top level

- repeat at a lower level of abstract to find sub-features that distinguish the diagnostic
features

- ...and so forth

e deep convolutional networks



What determines feature hierarchies”
An example based on task requirements

Need features for rapid, accurate generalization, given
a visual task requirement.

Find features of “intermediate complexity”, I.e.
Image “fragments”, that are most informative for
category distinctions

Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate
complexity and their use in classification. Nature Neuroscience



Object recognition in the context of a task
requirement

What do
these
SCENES
have In
common®?




"Up” curbs-- requiring a step up

INIVERSITY OF MINNES®ITA




Distinguish
from non “up
curps”

...that do not
require a step
up and require
different actions




Learning based on informative
fragments for the task

Algorithm finds
fragments that maximize
mutual information

Detect “up curbs” from
an approach angle that
requires a step.

Hit Rate

View-specific

0 0.2 0.4 0.6 0.8 1

Works well

False Positive Rate

LAI?2G LO?ITING JArG

Experimentally tractable
Evgeniy Bart



Do people learn to use fragments of
predicted “Intermediate complexity’

Virtual morphogenesis

Brady, M. J., & Kersten, D. (2003).
Bootstrapped learning of novel objects.
Journal of Vision, 3(6), 413-422.



Generating naturalistic object classes

Virtual Phylogenesis

A
. Icosahedron

St{ep 0

-

Goﬂll I

Step 1

'; . .
;VL - 4 J -
4 P P

Step n|

Shape Class A Shape Class B Shape Class C

Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object
Categories. Curr Biol. 18, 597-601



Training

Member of category A or B!
A B




Results

Features of intermediate complexity (local image
patches) predicted human observers ability to classity
new objects from learned categories

Main Fragments

5 9

Control Fragments

5 6 7 8 9

Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object
Categories. Curr Biol. 18, 597-601




