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Scientific writing

The importance of logical flow/transitions. Throughout, set the context to create an expectation, which 
is subsequently fulfilled. This applies across all units, sentence to sentence, paragraph to paragraph, 
and section to section. Minimize jargon and  unnecessary words. It can help to keep sentences short 
and direct.

Introduction: Motivate by describing what is known, what is unknown, and why it is important to know. 
Explain the question(s) you will answer to advance what is known.
Methods: Describe how data were collected, or simulations made, and the methods of analysis. Provide 
sufficient detail to enable replication.
Results: Your results should parallel the closing questions of the Introduction. It usually helps to work 
on the figures first before writing.
Discussion: Summarize the main results, but not at the expense of being overly redundant. Describe 
the implications for the field, and if possible propose further questions to be addressed.

Today

Integrating perceptual information

Modular vs. cooperative computation

To make problems tractable, most theories of visual estimation have been “modular”, e.g.  sur-
face-color-from-radiance (Land, 1959), shape-from-shading (Horn, 1975), optic flow (Hildreth, 1983) or 
structure-from-motion (Ullman, 1979). While there is evidence for multiple pathways and areas in the 
brain, with possible analogous functions, we have only sketchy ideas of their computations, and the 
extent to which the computational modules of theorists may relate to cortical architecture. 



To make problems tractable, most theories of visual estimation have been “modular”, e.g.  sur-
face-color-from-radiance (Land, 1959), shape-from-shading (Horn, 1975), optic flow (Hildreth, 1983) or 
structure-from-motion (Ullman, 1979). While there is evidence for multiple pathways and areas in the 
brain, with possible analogous functions, we have only sketchy ideas of their computations, and the 
extent to which the computational modules of theorists may relate to cortical architecture. 

In this lecture, we focus on the problem of how information is integrated. It is phenomenally 
apparent that visual information is integrated to provide a strikingly singular description of the  visual 
environment.  By looking at how human perception integrates cues, and scene attributes, we will get 
some idea of how different kinds of visual processing in the brain might interact, and what kind of 
information is represented.

Some basic graph types in vision (Review)
See: Kersten, D., & Yuille, A. (2003) and Kersten, Mamassian & Yuille (2004)

Basic Bayes

p[S I] =
p[I S] p[S]

p[I]

Usually, we will be thinking of the Y term as a random variable over the hypothesis space, and X as 
data. So for visual inference, Y = S (the scene), and X = I (the image data), and I = f(S).
We'd like to have:
p(S|I) is the posterior probability of the scene given the image
-- i.e. what you get when you condition the joint by the image data. The posterior is often what we'd 
like to base our decisions on, because as we discuss below,  picking the hypothesis S which maximizes 
the posterior (i.e. maximum a posteriori or MAP estimation) minimizes the average probability of error.
p(S) is the prior probability of the scene.
p(I|S) is the likelihood of the scene. Note this is a probability of I, but not of S.
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We've seen that the idea of prior assumptions that constrain otherwise underconstrained vision prob-
lems is a theme that pervades much of visual perception. Where do the priors come from? Some may 
be built in early on or hardwired from birth, and others learned in adulthood. See: Adams, W. J., Graf, E. 
W., & Ernst, M. O. (2004). Experience can change the 'light-from-above' prior. Nat Neurosci, 7(10), 
1057-1058 for an example of learning the “light from above” prior for shape perception.

Low-level vision

We've seen a number of applications of Basic Bayes, including the algorithms for shape from shading 
and optic flow.

In 1985, Poggio, Torre and Koch showed that solutions to many of computational problems of low 
vision could be formulated in terms of maximum a posteriori estimates of scene attributes if the genera-
tive model could be described as a matrix multiplication, where the image I is matrix mapping of a 
scene vector S:

Then a solution corresponded to minimizing a cost function E, that simultaneously tries to minimize 
the cost due to reconstructing the image from the current hypothesis S, and a prior "smoothness" 
constraint on S. λ is a (often free) parameter that determines the balance between the two terms. If 
there is reason to trust the data, then λ is small; but if the data is unreliable, then more emphasis 
should be placed on the prior, thus λ  should be bigger.
For example, S could correspond to representations of shape, stereo, edges, or motion field, and 
smoothness be modeled in terms of nth order derivatives, approximated by finite differences in matrix 
B.
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Then a solution corresponded to minimizing a cost function E, that simultaneously tries to minimize 
the cost due to reconstructing the image from the current hypothesis S, and a prior "smoothness" 
constraint on S. λ is a (often free) parameter that determines the balance between the two terms. If 
there is reason to trust the data, then λ is small; but if the data is unreliable, then more emphasis 
should be placed on the prior, thus λ  should be bigger.
For example, S could correspond to representations of shape, stereo, edges, or motion field, and 
smoothness be modeled in terms of nth order derivatives, approximated by finite differences in matrix 
B.

The Bayesian interpretation comes from multivariate gaussian assumptions on the generative model:

However, most vision problems are not characterized by a linear generative model.

Discounting

This Bayes influence graph describes the case where the joint distribution can be factored as:
p(s1, s2, I) = p(I|s1,s2)p(s1)p(s2)

Optimal inference for this task requires that we calculate the marginal posterior:
p(s1|I) ∝ ∫S2

p(s1, s2 I) ⅆs2

Liu, Knill & Kersten (1995) describe an example with:  
I -> 2D x-y image measurements, s1-> 3D object shape, and s2-> view

Bloj et al. (1999) have an example estimating  s1-> surface chroma (saturation) with  s2-> illuminant 
direction.
In the next lecture, we’ll see a computationally tractable ideal observer analysis of object recognition 
given view variation.

Cue integration
Cue integration is a form of perceptual integration where low-level visual measurements are combined 
to produce a more accurate and reliable output.
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Cue integration is a form of perceptual integration where low-level visual measurements are combined 
to produce a more accurate and reliable output.

Weak fusion

Clark & Yuille, Landy & Maloney, Schrater & Kersten.

This Bayes generative graph describes the factorization:

p(S,I1,I2) = p(I1|S)p(I2|S)p(S)

One consequence of this graph, is that one can show that the

optimal combined estimate is the weighted sum of the separate estimates,

where the weights wi are determined by the relative reliabilities :

μcombined
( = μcue1

( w1 + μcue2
( w2 = μcue1

( r1

r1 + r2
+ μcue2

( r2

r1 + r2
.

This is a simple but important idea which raises the empirical question of whether human perception 
integrates cues optimally. We’ve seen this principle applied before when we studied Weiss et al.’s 
solution to the aperture problem in motion. Let’s see how to derive it.

Maximum a posteriori observer for cue integration: conditionally independent 
cues

We'll change notation, and let x1 and x2 be image measurements, i.e. the cues. The simple Bayes graph 
shown above describes the case where the two cues are conditionally independent. We can think of s 
as an underlying cause of the two measurements. Assuming s is known, then p(x1,x2|s) = p(x1|s)p(x2|s).

Let's consider the simple Gaussian case where xi = μcue i + ni. We can show that optimal combined cue 
estimate is a weighted average of the cues. 

p(s|x1,x2) = p(x1,x2|s)p(s)/p(x1,x2) ∝ p(x1|s)p(x2|s)  = e-(x1-s)22 σ1
2
e-(x2-s)22 σ2

2

In[97]:= PowerExpandLogE-(x1-μ)22 σ12 E-(x2-μ)22 σ2
2

Out[97]= -
(-μ + x1)2

2 σ1
2

-
(-μ + x2)2

2 σ2
2
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In[98]:= D-
(x1 - μ)2

2σ12
-

(x2 - μ)2

2σ22
, μ

Out[98]=
-μ + x1

σ1
2

+
-μ + x2

σ2
2

In[99]:= Solve
x1 - μ

σ12
+
x2 - μ

σ22
⩵ 0, μ

Out[99]= μ →
x2 σ12 + x1 σ22

σ1
2 + σ2

2


In[100]:= μ →
x2 σ12 + x1 σ22

σ12 + σ22
 /. σ12→ 1/r1, σ22→ 1/r2

Out[100]= μ →

x1
r2

+ x2
r1

1
r1

+ 1
r2



where ri =
1

σi
2

, is called the reliability.

In[101]:= μ→
r1 x1

r1 + r2
+
r2 x2

r1 + r2

Out[101]= μ →
r1 x1

r1 + r2
+

r2 x2

r1 + r2

It follows that the combined estimate of the averages is the weighted sum of the separate estimates,

where the weights wi are determined by the relative reliabilities :

μcombined
( = μcue1

( w1 + μcue2
( w2 = μcue1

( r1

r1 + r2
+ μcue2

( r2

r1 + r2
.

An application to integrating cues from vision and haptics (touch)

When a person looks and feels an object the two cues typically combine to form one perceived size.  
Vision often dominates the integrated percept--e.g. the perceived size of an object is driven more 
strongly by vision than by touch.  Why is this? Ernst and Banks showed that the reliability of the visual 
and haptic information determines which cue dominates. They first measured the variances associated 
with visual and haptic estimation of object size. They used these measurements to construct a maxi-
mum-likelihood estimator that integrates both cues. They concluded that the nervous system com-
bines visual and haptic information in a fashion that is similar to a maximum-likelihood ideal observer. 
Specifically, visual dominance occurs when the variance associated with visual estimation is lower 
than that associated with haptic estimate.
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See Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically opti-
mal fashion. Nature 415:429-433.

Perceptual explaining away, cooperative computation 
We will now describe more complex examples of integration in which vision

Perception as puzzle solving

Rock, I. (1983). The Logic of Perception. Cambridge, Massachusetts: M.I.T. Press.
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Perceptual explaining away

Both causes S1 and S2 can be primary variables.

The above graph describes the factorization:

p(S1,S2,I) = p(I|S2,S2) p(S1)p(S2)

If we average over I, S1 and S2 are independent. However, knowledge of the value of I makes S1 and S2 
conditionally dependent. The two causes S1 and S2 can behave like competing hypotheses to explain 
the data I.

In general, “explaining away” is a phenomenon that occurs in probabilistic belief networks in which 
two (or more) variables influence a third variable whose value can be measured  (Pearl, 1988). Once 
measured, it provides evidence to infer the values of the influencing variables. 

Imagine two fair coins that can be flipped independently, and the results (heads or tails) have an 
influence on a third variable.  For concreteness, assume the third variable’s value is 1 if both coins 
agree, and 0 if not (a logical NOT-XOR function). If we are ignorant of the value of the third variable, 
knowledge of one influencing variable doesn't help to guess the value of the other—the two coin 
variables are independent. (This is called marginal independence, “marginal” with respect to the third 
variable, I) 

But if the value of the third variable  is measured (e.g. suppose we look and see it is 1), the two coin 
variables become coupled-- they are conditionally dependent.  Now knowing that one coin is heads 
guarantees that the other one is too. Although we still can’t perfectly predict the values of the coins, we 
now know something about them we didn’t know before. 

Now imagine a slight twist on the problem. Suppose you are most interested in the value of one of the 
coin flips (C1), not the other (C2). If you have any additional (auxiliary) evidence that the other coin’s 
value (C2) is say, probably “heads”,  then an optimal guess would be to say C1 is heads too. 

The phrase “explaining away” arises because coupling of variables through shared evidence often 
arises in human reasoning, when the influences can be viewed as competing causes.  A change in belief 
of one of the competing hypotheses changes the belief in the other. Human reasoning is particularly 
good at these kinds of inferences. 

“Explaining away” is also a characteristic of perceptual inferences, for example when there are alterna-
tive perceptual groupings consistent with a set of identical or similar sets of local image features. 
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tive perceptual groupings consistent with a set of identical or similar sets of local image features. 

Demonstrations of explaining away in perception
Several perceptual phenomena that we've seen before can be interpreted as "explaining away".

Translating diamond with "occluding occluders"

A strong argument for a process that does “explaining away” is human vision’s adeptness at solving 
occlusion problems. 

Occlusion & motion.  Recall the translating diamond used to illustrate the aperture problem. Percep-
tion doesn’t even need strong occlusion cues to arrive at the conclusion “diamond with missing ver-
tices”.  When the diamond is seen as coherently translating, one often also interprets the vertices as 
being covered by rectangular occluders (Lorenceau & Shiffrar).

▶  1. Can you make a stereo analog of the translating diamond with occluders?
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Lightness & surface geometry

19th century demo: Mach card

Lightness and shape

Recall the lightness demonstration that is similar to the Craik-O'Brien-Cornsweet effect, but difficult to 
explain with a simple filter mechanism (Knill, D. C., & Kersten, D. J., 1991). The idea is that the lightness 
of a pair of luminance gradients on the left of the figure below look different, whereas they look similar 
for the pair luminance gradients on the right. The reason seems to be due to the fact that the lumi-
nance gradients on the right are attributed to smooth changes in shape, rather than smooth changes in 
illumination. http://vision.psych.umn.edu/www/kersten-lab/demos/lightness.html

These demonstrations suggest the existence of scene representations in our brains for shape, 
reflectance and light source direction. 

▶  2. Draw a diagram to illustrate the above illusion in terms of "explaining away"

Dependence of lightness on spatial layout
Gilchrist:

In the 1970's, Alan Gilchrist was able to show that the lightness of a surface patch may be judged 
either dark-gray, or near-white with only changes in perceived spatial layout (Gilchrist, A. L. (1977). How 
did he do this? What is going on? Interpret lightness as reflectance estimation.

The figures below illustrate Gilchrist’s Room-in-a-Shoe-Box experiment and the Coplanar card 
experiment.
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Gilchrist:
In the 1970's, Alan Gilchrist was able to show that the lightness of a surface patch may be judged 

either dark-gray, or near-white with only changes in perceived spatial layout (Gilchrist, A. L. (1977). How 
did he do this? What is going on? Interpret lightness as reflectance estimation.

The figures below illustrate Gilchrist’s Room-in-a-Shoe-Box experiment and the Coplanar card 
experiment.

Color & shape

Recall the color card experiment (Bloj, Kersten & Hurlbert)

Demo

http://gandalf.psych.umn.edu/users/kersten/kersten-lab/Mutual_illumination/BlojKerstenHurlbertDe-
mo99.pdf
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Interpretation

Interreflection as explaining away. Stereo can be used as an auxiliary cue to change the perceived 
shape from concave to convex.

Dependence of shape on perceived light source direction

Dependence of shape on perceived light source direction
Brewster (1926), Gibson, Ramachandran, V. S. (1990), crater illusion and the single light source 
assumption

Adams, W. J., Graf, E. W., & Ernst, M. O. (2004). Experience can change the 'light-from-above' prior. Nat 
Neurosci, 7(10), 1057-1058.

Sufficient evidence can overcome the prior. See: Morgenstern, Y., Murray, R. F., & Harris, L. R. (2011). 
The human visual system’s assumption that light comes from above is weak. PNAS, 108(30), 
12551–12553. 
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Adams, W. J., Graf, E. W., & Ernst, M. O. (2004). Experience can change the 'light-from-above' prior. Nat 
Neurosci, 7(10), 1057-1058.

Sufficient evidence can overcome the prior. See: Morgenstern, Y., Murray, R. F., & Harris, L. R. (2011). 
The human visual system’s assumption that light comes from above is weak. PNAS, 108(30), 
12551–12553. 

Vertical light direction

Horizontal light direction

Transparency

Structure from motion and transparency

Dependence of transparency on perceived depth
Recall the transparency and depth from motion demonstrations. 

 (See Kersten et al., 1992) http://gandalf.psych.umn.edu/users/kersten/kersten-lab/demos/transparen-
cy.html
 
Transparency and depth from stereo demos, neon color spreading

Nakayama, Shimojo (1992);  Nakayama, K., Shimojo, S., Anderson, B. L., & Kramer, P. (2009). 
Nakayama, Shimojo, and Ramachandran’s 1990 paper. Perception-London. http://-
doi.org/10.1068/ldmk-nak
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Perception of material gloss depends on curvature

(Bruce Hartung & Dan Kersten)

Feeling the size of an object can improve subsequent visual trajectory 
estimation

In order to intercept a ball at the right location, the visual system has to decide if it is looking at a small 
object that is near, or a large object that is far. 
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In order to intercept a ball at the right location, the visual system has to decide if it is looking at a small 
object that is near, or a large object that is far. 

Battaglia, P. W., Schrater, P. R., & Kersten, D. J. (2005) showed that humans could incorporate haptic 
sensing of an objects 3D size to improve interception. 
This suggested that visual motor estimations could discount variations in 3D object size contributions 
to image size. And that haptic information (H) about physical size S, could explain away these varia-
tions in image size θ that are caused by both S and depth D.

The above figure is from: Battaglia, P. W., Kersten, D., & Schrater, P. R. (2011). How haptic size sensa-
tions improve distance perception. PLoS Computational Biology, 7(6), e1002080. doi:10.1371/jour-
nal.pcbi.1002080

The following figure fleshes out more details showing the variable, ψ,  that most directly influences 
participants interception accuracy  (Battaglia, Schrater, & Kersten, 2005).

In this figure S*, θ*,ψ* represent measurements of physical size, angular size, and angle required for 
interception along the x-axis (dotted line in first figure). R represents distance.

Example from computer vision: image parsing
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Example from computer vision: image parsing

Incorporating higher-level knowledge--Image parsing and recognition using 
cooperative computation

In limited domains, feedforward computations can solve object recognition in natural images, albeit 
with errors. One way to reduce the errors is to have a feedback pass that tries to “predict” the input 
using a model of synthesis. In the example below, the algorithm “knows” about text and faces. Every-
thing else is “clutter”. But it “knows” clutter too--it assumes clutter is a generica texture with pre-
determined statistical structure. The first pass detects and recognizes letter characters and faces. It 
decides there is a face n the tree (rightmost part of first figure below). Based on decisions in the first 
pass, and its built-in knowledge of the nature of faces, characters and clutter texture, the feedback 
pass synthesizes what the image “should be”. This second pass “explains away” the face false positive 
in the tree, as texture.

For explaining away applied to computer vision solutions to segmentation and recognition, see: Tu Z, 
Zhu S-C (2002), Zhu and Tu (2000). For a review, see: Yuille and Kersten (2006).

Mixture models
Recall the problem of integrating motion information given multiple apertures. We identified two parts 
to the problem: selection and integration, but postponed the question of selection--which information 
should be integrated and which should not. Selection processes can be automatic, or task and atten-
tion driven. 

Example from: Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., & Shams, L. (2007). 
Causal Inference in Multisensory Perception. PLoS ONE, 2(9), e943. http://doi.org/10.1371/jour-
nal.pone.0000943.t001

16     23.PerceptualIntegration.nb



Recall the problem of integrating motion information given multiple apertures. We identified two parts 
to the problem: selection and integration, but postponed the question of selection--which information 
should be integrated and which should not. Selection processes can be automatic, or task and atten-
tion driven. 

Example from: Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., & Shams, L. (2007). 
Causal Inference in Multisensory Perception. PLoS ONE, 2(9), e943. http://doi.org/10.1371/jour-
nal.pone.0000943.t001

Graphical model interpretations

What to integrate out? And in what order?

There are several ways to do inference on a graph several model choices, each with various parame-
ters. For example, given two possible models or “causal explanations”, one could combine the two 
inferences to do “model averaging”. Or the process could first select the model that is most probable, 
and then given that model infer the parameters from the data. 

See: Stocker, A. A., & Simoncelli, E. (2008). A Bayesian model of conditioned perception. Advances in 
Neural Information Processing Systems, 20, 1409–1416.

The first application of mixture models to perceptual behavior was by: Knill, D. C. (2003). Mixture 
models and the probabilistic structure of depth cues. Vision Research, 43(7), 831–854. http://-
doi.org/10.1016/S0042-6989(03)00003-8.  In Knill’s example the data, i.e. image texture, could be 
generated by an isotropic homogeneous texture process, or by an homogeneous texture process only. 
Knill’s finding was that human vision is biased to interpret image texture as isotropic but if enough data 
is available the system turns off the isotropy assumption and interprets texture using the homogeneity 
assumption only.
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Figure/ground and divisive normalization

The problem of model selection arises very early in the visual system. For example, divisive normaliza-
tion may be modulated by factors that determine whether spatial filter outputs are coming from 
common causes in the world or not. For example, given two filter outputs, do they both come from the 
figure (or surround), or does one come from the figure and the other from the surround? Divisive 
normalization has been explained as an efficient inference solution to the generative model in the 
graph on the left. If one integrates out ν, all the variables become dependent, as shown in the figure on 
the right.

Qiu, C., Kersten, D., & Olman, C. A. (2013) showed how segmentation cues such as contrast-contrast 
(between center and surround) and stereo disparity could affect the well-known tilt-illusion. Their 
results could be explained in terms of decoupling the causes between center and surround(see 
Schwartz, O., Sejnowski, T. J., & Dayan, P. , 2009). If decoupled, the variable ν in the above has no 
common influence on the image measurements l. 
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See too: Schwartz, O., & Coen-Cagli, R. (2013) and Coen-Cagli, R., Kohn, A., & Schwartz, O. (2015). 
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