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Initialize

SetOptions[ArrayPlot, ColorFunction → "GrayTones",
DataReversed → False, Frame → False, AspectRatio → Automatic,
Mesh → False, PixelConstrained → True, ImageSize → Small];

SetOptions[ListPlot, ImageSize → Small];
SetOptions[Plot, ImageSize → Small];
SetOptions[DensityPlot, ImageSize → Small, ColorFunction → GrayLevel];
nbinfo = NotebookInformation[EvaluationNotebook[]];
dir = ("FileName" /. nbinfo /. FrontEnd`FileName[d_List, nam_, ___] ⧴ ToFileName[d]);

downsample[imaged_, f_] := Take[imaged, {1, -1, f}, {1, -1, f}]

cup = ImageData ;

width = Dimensions[ cup][[1]];

Outline

Last time

Efficient coding

Task neutral 
1rst order statistics

- point-wise non-linearities, histogram equalization, receptors and information capacity
2nd order statistics

- lateral inhibition, ganglion cells and predictive coding
--opponent color processing (principal components analysis)
--cortical representation

Decorrelation, PCA
3rd or higher orders?

contrast normalization

Today: Continue with discussion of the two views of the function of early local 
visual spatial coding



Today: Continue with discussion of the two views of the function of early local 
visual spatial coding

Spatial (difference) filtering as efficient coding or as part of a system of edge 
detectors (or both?)

Local image measurements that are correlated with useful surface properties

task specific--e.g. find "significant" intensity changes, likely to belong to an object boundary
edge detection

1rst and 2nd spatial derivatives (i.e. the edge and bar detectors)
relation to center-surround and oriented receptive fields

Problems with edge detection

Edge detection as differentiation
Manipulate[
new = cup;
new[[offset, All]] = 0;
GraphicsRow[{ArrayPlot[new, Mesh → False],

ListPlot[ cup[[offset]], Joined → True, PlotRange → {0, 1}, ImageSize → Small]}],
{{offset, width / 2}, width / 2 - 63, width / 2 + 63, 1}]

2     13.EdgeDetection.nb



offset

ArrayPlot[cup, Mesh→False]
ListPlot[cup〚128〛, Joined→True,

PlotRange→{0, 1}, ImageSize→Small]

Set: Part specification newFE`offset$$1068, All is longer than depth of object.

ArrayPlot: Argument cup at position 1 is not a list of lists.

Part: Part specification cup〚128〛 is longer than depth of object.

ListPlot: cup〚128〛 is not a list of numbers or pairs of numbers.

ListPlot: cup〚128〛 is not a list of numbers or pairs of numbers.

ListPlot: cup〚128〛 is not a list of numbers or pairs of numbers.

General: Further output of ListPlot::lpn will be suppressed during this calculation.

The Noise/Scale trade-off

The definition of edge detection is tricky--exactly what do we want to detect? We would like to 
label "significant" intensity changes in the image. One definition of significant edges is that they are the 
ones with the rapid changes in intensity. (Another is a change in texture, which we will discuss in a later 
lecture.) The biggest intensity changes would correspond to step changes. In Mathematica, these can 
be modeled as g(x) = UnitStep[]. One of the first problems we encounter is that edges in an image are 
typically fuzzy, either due to optical blur in the imaging device, or because the  scene causes of edges 
are not changing abruptly. Consider a generative model for image data f as the convolution of the step 
with a blur function:

f(x) = ∫g(x - x ')blur(x ') ⅆ x ' = g*blur

where g() is the signal to be detected or estimated. g(x) is a step function:
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Clear[g];
g[x_] := UnitStep[x];
g1 = Plot[g[x], {x, -2, 2},

PlotStyle → {Thick, Hue[0.9]}, Axes → None, ImageSize → Small]

Depending on the type of blur,  the image intensity profile f(x) will look more or less like:

edge[x_,s_] := 1/(1 + Exp[-x/s])
Show[Plot[edge[x,.3],{x,-2,2},Ticks->None, Axes->None,ImageSize→Small],g1]

(see Appendix for a closed expression solution for gaussian blur of a step function)

One way of locating the position of the edge in this image would be to take the first derivative of the 
intensity function, and then mark the edge location at the peak of the first derivative:

Clear[dedge, x, t]

dedge[u_, s_] := D[edge[x, t], x] /. x → u /. t → s
Manipulate[Plot[dedge[u, t], {u, -2, 2},

Ticks → None, PlotRange → {{-3, 3}, {0, 10}}], {{t, .3}, .01, .33}]

t

Alternatively, we could take the second derivative, and look for zero-crossings to mark the edge 
location.
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d2edge[u_,s_] := D[dedge[x,t],x]/.x->u /.t->s
Plot[d2edge[u,.3],{u,-2,2},Ticks->None]

So far so good. But real images rarely have a nice smooth intensity gradation at points that we subjec-
tively would identify as a clean edge. A more realistic generative model for intensity data would be:

f(x) = ∫g(x - x ')blur(x ') ⅆ x ' + noise

Let’s add a fixed sample of high-frequency "noise":

noisyedge[x_,s_] := edge[x,s] + 
0.01 Cos[10 x] + -0.02 Sin[10 x] + 0.03 Cos[12 x] + 0.04 Sin[12 x] +
-0.01 Cos[13 x] + -0.03 Sin[13 x] + 0.01 Cos[14 x] + 0.01 Sin[14 x] +
-0.04 Cos[25 x] + -0.02 Sin[25 x] + 0.02 Cos[26 x] + 0.03 Sin[26 x];

Plot[noisyedge[x,.3],{x,-2,2},Ticks->None]

Now, if we take the first derivative, there are all sorts of peaks, and the biggest isn't even where the 
edge is:

dnoisyedge[u_,s_] := D[noisyedge[x,t],x]/.x->u /.t->s
Plot[dnoisyedge[u1,.3],{u1,-2,2},Ticks->None]

Looking for zero-crossings looks even worse:
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d2noisyedge[u_,s_] := D[dnoisyedge[x,t],x]/.x->u /.t->s
Plot[d2noisyedge[u1,.3],{u1,-2,2},Ticks->None]

There are many spurious zero-crossings.
In general, the higher the frequency of the noise, the bigger the problem gets. We can see what is going 
on by taking the nth derivative of the sinusoidal component with frequency parameter f. Here is the 3rd 
derivative of a component with frequency f:

D[Sin[x f], {x, 3}]

-f3 Cos[f x]

The magnitude of the output is proportional to the frequency raised to the power of the derivative. Not 
good.

A solution: pre-blur using convolution

As in your home work, a possible solution to the noise problem is to pre-filter the image with a convolu-
tion operation that blurs out the fine detail which is presumably due to the noise. And then proceed 
with differentiation. The problem is how to choose the degree of blur. Blur the image too much, and 
one can miss edges; don't blur it enough, and one gets false edges. 

The edge detection dilemma: Too much blur and we miss edges, too little and we have false alarms.

Some biologically motivated edge detection schemes

Edge detection using 2nd derivatives: Marr-Hildreth

Your home work looked at one scheme for edge detection that has received some attention for its 
biological plausibility. This is the basis of the Marr-Hildreth edge detector. The idea is to: 1) pre-blur 
with a Gaussian; 2) take second derivatives of the image intensity using the Laplacian; 3) locate zero-
crossings. In short,

find zero-crossings of: r(x,y) = ∫∇2 Gσ(x ', y ') g(x - x ', y - y ') ⅆ x 'ⅆ y ' = ∇2 Gσ*g 

∇2= ∂2

∂x2 + ∂2

∂y2  is the Laplacian operator, which takes the second derivatives in x and y directions, and sums 

up the result. 

As you saw, the  Laplacian and  convolution operators are combined into the "del-squared G" operator, 
∇2 Gσ, where

 Gσ[x,y] = ⅇ
1

2
-
x2

σ
-
y2

σ

2 π σ
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Your home work looked at one scheme for edge detection that has received some attention for its 
biological plausibility. This is the basis of the Marr-Hildreth edge detector. The idea is to: 1) pre-blur 
with a Gaussian; 2) take second derivatives of the image intensity using the Laplacian; 3) locate zero-
crossings. In short,

find zero-crossings of: r(x,y) = ∫∇2 Gσ(x ', y ') g(x - x ', y - y ') ⅆ x 'ⅆ y ' = ∇2 Gσ*g 

∇2= ∂2
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∂y2  is the Laplacian operator, which takes the second derivatives in x and y directions, and sums 

up the result. 

As you saw, the  Laplacian and  convolution operators are combined into the "del-squared G" operator, 
∇2 Gσ, where

 Gσ[x,y] = ⅇ
1

2
-
x2

σ
-
y2

σ

2 π σ

Clear[σ];
Σ = {{σ, 0}, {0, σ}}; μ = {0, 0};
ndist = MultinormalDistribution[μ , Σ ];
PDF[ndist, {x, y}]

ⅇ
1
2
-

x2

σ
-
y2

σ


2 π σ2

One can take the Laplacian of the Gaussian first, and then convolve this, i.e. the ∇2G kernel, with the 
image, or one can blur the image first, and then take the second derivatives. The operators, ∇2 and *, 
are said to be associative:

r(x,y) = ∇2 Gσ*g = ∇2 (Gσ *g)

As σ approaches zero, Gσbecomes a delta function, and the ∇2 Gσ  becomes a Laplacian ∇2,  i.e. a second 
derivative operator. For small σ, the detector is sensitive to noise. For large σ, it is less sensitive to 
noise, but misses edges. The biological appeal of the Marr-Hildreth detector is that lateral inhibitory 
filters provide the  ∇2 Gσ kernel. 

One could   build zero-crossing detectors by ANDing the outputs of appropriately aligned center-
surround filters effectively building oriented filters out of symmetric ganglion-cell (or LGN) like spatial 
filters (Marr and Hildreth). 

But what about the oriented filters in the cortex? An interpretation consistent with the Hubel-Wiesel 
edge detector interpretation of sine-phase receptive fields in V1, is in terms of 1rst derivatives. Let’s see 
how this works.

Edge detection using 1rst derivatives

Because of the orientation selectivity of cortical cells, they have sometimes been   interpreted as 
edge detectors. We noted earlier how a sine-phase Gabor function filter (1 cycle wide) would respond 
well to an edge oriented with its receptive field. 
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swidth=32;
sgabor[x_,y_, fx_, fy_,sig_] := 

N[Exp[(-x^2 - y^2)/(2 sig*sig)] Sin[
2 Pi (fx x + fy y)]];

edgefilter = Table[sgabor[i/32,j/32,0,2/3,1/2],
{i,-swidth,swidth-1},{j,-swidth,swidth-1}];

ArrayPlot[edgefilter,Mesh→False,Frame->False,PlotRange->{-1,1}]

As the width of the gaussian envelope decreases, these sine-phase or odd-symmetric filters can also be 
viewed as 1rst order spatial derivatives. 

How can we combine oriented filters to signal an edge? The first-derivative operation takes the 
gradient of the image. From calculus, you learned that the gradient of a 2D function evaluated at (x,y) is 
a vector that points in the direction of maximum change. So taking the gradient of an image should 
produce a vector field where the vectors are perpendicular to the edges. The length of the gradient is a 
measure of the steepness of the intensity gradient. 

The gradient of a function

∇g =
∂g(x, y)

∂x
,

∂g(x, y)
∂y

contcup = ListInterpolation[Transpose[Reverse[cup]],
{{1, width}, {1, width}}, InterpolationOrder → 4];

Plot the derivative in the x-direction

gd1 = DensityPlot[contcup[x, y],
{x, 1, width}, {y, 1, width}, Mesh → False, PlotPoints → 128];

gd2 = DensityPlot[Evaluate[D[contcup[x, y], x]], {x, 1, width}, {y, 1, width},
PlotPoints → width / 2, Mesh → False, Frame → False, PlotRange → {-100, 100}];
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GraphicsRow[{gd1, gd2}]

Let's take the derivatives in both the x and y directions:

fxcontcup[x_, y_] := D[contcup[x1, y1], x1] /. { x1 → x, y1 → y};
fycontcup[x_, y_] := D[contcup[x1, y1], y1] /. { x1 → x, y1 → y};

Now let's put the x and y directions together and compute the squared gradient magnitude:

fcontcup[x_, y_] :=
D[contcup[x1, y1], x1]^2 + D[contcup[x1, y1], y1]^2 /. { x1 → x, y1 → y};

gradientedge = Table[N[fcontcup[x, y]], {x, 1, width}, {y, 1, width}];

ArrayPlot[Transpose[Sqrt[gradientedge]]^.5, DataReversed → True] // ImageAdjust

Doesn't look too bad, but it isn't clean and some of our satisfaction is premature and the result of our 
visual system effectively fitting the edge representation above into the interpretation of a cup. Further, 
we haven't specified a blur level, or a criterion for the threshold. We haven't put a measure of confi-
dence on the edges. 

Manipulate[ArrayPlot[Sign[t - Transpose[gradientedge]], DataReversed → True],
{{t, .01}, 0, Max[gradientedge]}]

t

ArrayPlot[Sign[0.01 - Transpose[gradientedge]], DataReversed → True]

ArrayPlot: Argument Sign[0.01 - Transpose[gradientedge]] at position 1 is not a list of lists.
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There is also useful information in the direction of the gradient vectors:

gd3 = VectorPlot[{fxcontcup[x, y], fycontcup[x, y]},
{x, 1, width}, {y, 1, width}, ImageSize → Small];

gd4 = VectorPlot[{fxcontcup[x, y], fycontcup[x, y]} / Sqrt[.0001 + fxcontcup[x, y]^2 +

fycontcup[x, y]^2], {x, 1, width}, {y, 1, width}, ImageSize → Small];
GraphicsRow[
{gd3,
gd4}]
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Imagine trying to link up points along an edge with the information in the left panel---You get a better 
idea of how much uncertainty remains in terms of both direction and magnitude. 

If we took many pictures of the same cup under different illumination conditions, one could measure 
how much variability (at a point) is  in the magnitude vs. direction of the gradient. Chen et al. (2000) did 
this and showed that there is much more variability in the magnitude than the direction of the gradi-
ent. This suggests that for illumination-invariant recognition, one should rely more on orientation than 
contrast magnitude. 

▶  1. Replace the cup  with an annulus, and run the above edge detection cells again

annulus =

ImageData[ColorConvert[Graphics[Annulus[], ImageSize → 256], "Grayscale"]];
annulus = .25 * annulus + .375;

Summing up: Combining a smoothing pre-blur with 1rst derivatives

As with the 2nd derivative zero-crossing detector, the idea is to blur the image, and but then take the 
first derivatives in the x and y directions, square each and add them up. The x and y components of the 
gradient of the blur kernel :
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G[x_, y_, σx_, σy_] :=
ⅇ

1
2
-

x2

σx
-
y2

σy


2 π Sqrt[(σx^2 + σy^2)]
;

dGx[x_, y_] := D[G[x1, y1, 1, 2], x1] /. {x1 → x, y1 → y};
xg = DensityPlot[-dGx[x, y], {x, -2, 2}, {y, -2, 2},

Mesh → False, Frame → False, PlotPoints → 64, ImageSize → Tiny];
dGx[x_, y_] := D[G[x1, y1, 2, 1], y1] /. {x1 → x, y1 → y};
yg = DensityPlot[-dGx[x, y], {x, -2, 2}, {y, -2, 2},

Mesh → False, Frame → False, PlotPoints → 64, ImageSize → Tiny];
GraphicsRow[
{xg,
yg}]

--2D smoothing operator followed by a first order directional derivatives in the x and y directions.

If one takes the outputs of two such cells, one vertical and one horizontal, the sum of the squares of 
their outputs correspond to the squared magnitude of the gradient of the smoothed image:

(rx(x,y), ry(x,y)) = ( ∂Gσ(x,y)
∂x

 , ∂Gσ(x,y)
∂y

)*g(x,y) = ∇Gσ*g(x,y) = ( ∂Gσ(x,y)
∂x

*g(x, y) , ∂Gσ(x,y)
∂y

*g(x, y))

 Then to get a measure of strength, compute the squared length: 
∇Gσ *g(x, y) 2 = ∇(Gσ * g (x, y)) 2 = rx(x,y) 2+ ry(x,y) 2

We'll encounter this idea later when we extend detecting edges in space to detecting edges in space-
time in order to make motion measurements.

Morrone & Burr edge detector--combining even and odd filters

The Marr-Hildreth 2nd derivative operation is similar to the even-symmetric cosine-phase gabor or "bar 
detector". The 1rst derivative gradient operator is similar to the odd-symmetric sine-phase gabor. Any 
reason to combine them?

Sometimes the important "edge" is actually a line--i.e. a pair of edges close together. A line-drawing is 
an example.

The Appendix and homework show how one can combine both sine and cosine phase filters to detect 
both edges and lines. A sine and cosine phase pair are sometimes called "quadrature (phase) pairs". 
The summed squared outputs can be interpreted as "local contrast energy". Quadrature pairs will also 
crop up later in the context of motion detection.

The intuition conveyed by a measure of “contrast energy” is that the response shouldn’t care about the 
sign of a contrast change, i.e. white to black or black to white. See exercise in the Appendix.
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an example.
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sign of a contrast change, i.e. white to black or black to white. See exercise in the Appendix.

Some challenges for edge detection

Problems with interpreting a V1 simple/complex cell as an edge detector

Although one can build edge  detectors from oriented filters, simple cells cannot uniquely signal 
the  presence of an edge for several reasons. One is that their response is a  function of  several differ-
ent parameters. A low contrast bar at an optimal  orientation will produce the same response as a bar 
of higher contrast at a  non-optimal orientation.  There is a similar trade-off with other parameters  
such as spatial frequency and temporal frequency. In order to make explicit the location of an edge 
from the responses of a population of cells, one would have to compute something like the "center-of-
mass" over the population, where response rate takes the place of mass. Another problem is that edge 
detection has to take into account a range of spatial scales.  We discussed evidence earlier that the 
cortical basis set does encompass a range of spatial scales, and in fact may be "self-similar" across 
these scales. See Koenderink (1990) for a  theoretical discussion of "ideal" receptive field properties 
from the point of view of basis elements. One way of combining information efficiently across scales is 
to use a Laplacian image pyramid (See supplementary links on class web page). Oriented information 
can be computed across scales using a steerable pyramid. Konishi et al. (2003) used signal detection 
theory and real images to show that there is an advantage in combining information across scales 
when doing edge detection.

Later when we study hierarchical neural networks for object classification, it may not be important to 
precisely and accurately localize edges. 

Segmentation & why edge detection is hard

A key problem is to get from intensity edges to object boundaries. 

The problem of texture and background

The above analysis assumed that an edge detection should be the solution to an image-based genera-
tive problem: Given intensity f as a function of x, estimate a step-function g(x):

f(x) = ∫g(x - x ')blur(x ') ⅆ x ' + noise

We used the cup image to illustrate how scale and noise (represented by the blur and noise processes) 
confound estimates of g(). But the cup image had a fairly uniform figure and background. Consider the 
more typical case of a patterned cup against a non-uniform background:
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We used the cup image to illustrate how scale and noise (represented by the blur and noise processes) 
confound estimates of g(). But the cup image had a fairly uniform figure and background. Consider the 
more typical case of a patterned cup against a non-uniform background:

camo = ImageDataColorConvert , "Grayscale";

camod = downsample[camo, 2];
cupd = downsample[cup, 2];
images = {Image[cupd], Image[camod]};
Manipulate[
Pane[
Map[Binarize[ImageAdjust[GradientFilter[#, radius], {.7, .6}], t] &, images],
{300, 150}], {radius, 1, 10, 1}, {t, 0, 1, .1}, SaveDefinitions → True]

radius

t

 , 

From: http://www.flickr.com/photos/96221617@N00/280637989/

The above example illustrates the problem of misleading edges both at the boundary between the 
object and background, but also between texture elements in the object and its boundary. One needs 
to take into account texture as well as intensity in determining object boundaries (see Malik et al, 2001).

The problem of edge cause: the same intensity gradient means different things 
depending on context

Land & McCann's "Two squares and a happening"

size = 256;Clear[y]; slope = 0.0005;
y[x_] := slope x +0.5 /;x<1*size/2
y[x_] := slope (x-128) +0.5  /; x>=1*size/2
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picture = Table[Table[y[i],{i,1,size}],{i,1,size}];
ArrayPlot[picture,Frame->False,Mesh->False, 

PlotRange->{0,1}, AspectRatio->Automatic]

The left half looks lighter than the right half. But, let's plot the intensity across a horizontal line:

new = picture;
new[[128, All]] = 0;
GraphicsRow[{ArrayPlot[new, PlotRange → {0, 1}],

g0 = ListPlot[ picture[[128]], Joined → True, PlotRange → {0.2, .8}]}]
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The two ramps are identical...tho' not too surprising in that that is how we constructed the picture. 
How can we explain this illusion based on what we've learned so far about  human contrast sensitivity 
as a function of spatial frequency--in terms of a single-channel model?
One explanation is that the visual system takes a spatial derivative of the intensity profile. Recall from 
calculus that the  second derivative of a linear function is zero. So a second derivative should filter out 
the slowly changing linear ramp in the illusory image. We approximate the second derivative with a 
discrete kernel (-1,2,-1). 
The steps are: 1) take the second derivative of the image; 2) threshold out
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filter = {-1, 2, -1};

(*Take the second derivative at each location*)
fspicture = ListConvolve[filter, picture[[128]]];
g1 = ListPlot[fspicture, Joined → True, PlotRange → {-0.1, .1}, Axes → False];

(*Now integrate twice--to undo the the
second derivative and "restore" the picture*)

integratefspicture = FoldList[Plus, fspicture[[1]], fspicture];
integratefspicture2 =

-FoldList[Plus, integratefspicture[[1]], integratefspicture];

g2 = ListPlot[integratefspicture2, Joined → True, Axes → False];
GraphicsRow[{g0, g1, g2}, ImageSize → Large]
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To handle gradients that aren't perfectly linear, we could add a threshold function to set small values 
to zero before re-integrating:

threshold[x_, τ_] := If[x > τ, x, 0];
SetAttributes[threshold, Listable];
fspicture = threshold[fspicture, 0.025];

Or one can take just the first derivative, followed by the threshold function

"Two cylinders and no happening"

But is edge enhancement and and spatial filtering a good way to explain the lightness effect? Up until 
the early 1990's many people thought so, and this was a standard textbook explanation of these kinds 
of lightness illusions.
What if we measure the intensity across a horizontal line in the "slab" on the left, and the "two-cylin-
ders" on the right?
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They are also the same! They would both look something like this:
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But the perceived lightness contrast for the slabs is significantly stronger than it is for the two cylinders. 
A spatial convolution/derivative model would predict the same for both. The spatial convolution 
operation won't work as an explanation!
One interpretation of this observation is that the visual system has knowledge of the type of edge--i.e. 
whether it is due to pigment or to self-occlusion/contact. (See Knill and Kersten, 1991).

Edge interpretation depends on knowing context

E.g. famous “Mooney image” -- the Dalmation dog.

Edge classification: Some causes of edges are more important than others: task-
dependence

We’ve seen that uncertainty due to noise and spatial scale confound reliable edge detection. But the 
above demonstrates another reason why edge detection is hard--local intensity gradients can have 
several possible meanings. Even when there is little or no noise, local measurements of contrast 
change say very little about the physical cause of the gradient. And a "smart" visual system takes the 
causes into account.
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So on the one hand, it still makes sense to interpret lateral inhibitory filters and oriented cortical filters 
as possible components of an edge detection system, but we have to allow for considerable uncer-
tainty in the significance of their outputs--i.e. a local edge detector typically has a low signal-to-noise 
ratio for a variety of ways of defining signals, e.g., whether the causes are geometric or photometric.

For tasks such as object recognition, vision places a higher utility on surface and material edges than 
on other types, such as shadow edges. Surface edges are used differently from material edges. Shadow 
edges are variable yet potentially important for stereo. Specular edges are variable, but problematic 
for stereo because they are at different surface positions for the two eyes.

Combining signal detection theory with edge detection

Canny (1986). 

◼ Possible project idea: Build a Bayesian edge detector using gradient statistics measured on and off 
of real edges, and using methods from signal detection theory to decide theory to decide whether a 
given measurement is on or off of an edge.

The left panel of the figure below shows "range data", where geometric depth from the camera is 
represented by graylevel, with dark meaning close, and light meaning far. The right panel shows 
intensity data. The data in the left can be used to define measures of "geometric ground truth", and 
one can devise edge detectors based on a signal detection theory analysis of how well the intensity 
changes on the right predicts geometrical changes on the left. In other words, what edge detector 
provides the best ROC performance? (See Konishi et al., 2003).

Natural images & segmentation

Where to draw the important contours? Here’s the output from Mathematica’s built-in EdgeDetect[] 
function (its default is Canny edge detection, Canny (1986)). The sliders allow you to select r -- the 
range of pixels over which to blur, and  t --- the threshold to drop edges.
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Where to draw the important contours? Here’s the output from Mathematica’s built-in EdgeDetect[] 
function (its default is Canny edge detection, Canny (1986)). The sliders allow you to select r -- the 
range of pixels over which to blur, and  t --- the threshold to drop edges.

ManipulateEdgeDetect , r, s, {r, 1, 4}, {s, 0, 1}

r

s

How can one go from the imperfect output of a low-level edge detector to a clean "line-drawing" 
representing the true boundaries of an object? Grouping local measurements that are similar is one 
step. This can be at the edge or region level, i.e. grouping local edge measurements into longer lines 
and grouping features within a region.  Grouping processes are sometimes called "intermediate-level" 
because they don't rely on specific knowledge about particular object classes, but just on how con-
tours typically go, or how features are typically related (i.e. similar orientations, colors, motion direc-
tion,...). Perceptual grouping or similarity principles were studied by Gestalt psychologists in the early 
1900s. 

In addition,  the visual system seems able to solve, i.e. invert, a generative model that is more scene-
based than image-based--it cares about the type of edge, and the types of objects and arrangements 
likely to be encountered. This will be the focus of the next few lectures.
Even with intermediate-level grouping, and edge selection based on scene-based filtering, finding the 
boundaries of objects requires more specific knowledge or memory about the possible shapes of 
previously seen objects. The dalmation dog illusion, above, illustrates  the human visual system brings 
experience and high-level knowledge to bear on the problem of segmenting an object.

Finding useful segmentations is an image parsing problem. It is a non-trivial computer vision problem. 
For  work on this, see Malik et al. (2001) and Tu and Zhu (2002), and a preprint: http://www.stat.ucla.e-
du/~sczhu/papers/IJCV_parsing.pdf
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Finding useful segmentations is an image parsing problem. It is a non-trivial computer vision problem. 
For  work on this, see Malik et al. (2001) and Tu and Zhu (2002), and a preprint: http://www.stat.ucla.e-
du/~sczhu/papers/IJCV_parsing.pdf

Given the problems of edge detection in the absence of context, it seems more appealing to interpret 
the spatial filtering properties of V1 as efficient encoding. However, if one thinks of V1 oriented cell 
responses as representing tentative "edges", perhaps with a representation of confidence, then one 
can begin to understand how high-level "models" may be used to select the edges that belong, and 
reject those that don't (Yuille and Kersten, 2006). How these tentative edges might be extracted from 
both intensity and textural transitions, and how high-level information might constrain these remains a 
challenging area of research.

Other than edges: Curvature, interest points & saliency
Human vision does more than seek out edges as a basis for object detection and recognition. One basic 
function is to direct the eyes to so-called salient points in an image. In 1954, Fred Attneave pointed out 
that people’s eye fixations were attracted to some features of an image more than others. In 
“Attneave’s cat”, shown below, eye movements tend to go to points of high curvature. The Appendix 
shows one way to extend derivative operators to amplify corners using the Hessian. 

There is a line of research to model first fixations in natural images (Itti & Koch, 2001; Torralba et al., 
2006, Zhang et al., 2008). The idea is that first-fixations may be driven by fairly low-level image proper-
ties. The key idea is that eye movements go to regions that have low probability (high information) 
given either the current image context, or a generic natural image context. These points are said to 
have high saliency.

Subsequent fixations are more difficult to model because they are dominated by the task the person is 
trying to accomplish, rather than by bottom-up novelty or “surprise”. See: Tatler et al., 2011.

Zhang et al (2012) provide evidence and argument that primary visual cortex (V1) is provides the basis 
for a spatial saliency map. 

Recognition models in computer vision often rely on the detection of salient or “interest” points, using 
detectors chosen to be robust over local variations in position or lighting in complex natural images. 
(Later we’ll talk about the problems of recognition). One popular method is to use SIFT operators 
(Lowe, 2004), http://en.wikipedia.org/wiki/Scale-invariant_feature _transform,  or HOG filters --  
“Histograms of Oriented Gradients”.

Mathematica has a built-in function, ImageKeyPoints[] based on a related method (SURF; Bay et al., 
2006).
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Mathematica has a built-in function, ImageKeyPoints[] based on a related method (SURF; Bay et al., 
2006).

img = ;

points = ImageKeypoints[img,
{"Position", "Scale", "Orientation", "ContrastSign"}, MaxFeatures → 100];

Show[img, Graphics[Table[{{If[p[[4]] ⩵ 1, Yellow, Red],
Circle[p[[1]], p[[2]] * 2.5], Line[
{p[[1]], p[[1]] + p[[2]] * 2.5 * {Cos[p[[3]]], Sin[p[[3]]]}}]}}, {p, points}]]]

▶  2. Try replacing the above mountain image with Attneave’s cat

img2 = ;

▶  3. Try using ImageCorners[] and HighlightImage[] applied to Attneave’s cat:   HighlightImage[ 
img,ImageCorners[img]]

▶  4. Compare the results with ImageSaliencyFilter[] applied to the cat:  ImageSaliencyFilter[img] 
//ImageAdjust

For more information on saliency benchmarks, see: http://saliency.mit.edu
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Next time

Beyond V1: Extra-striate visual cortex

Surfaces from images

Scene-based modeling

Appendices

Symbolic convolution solution for 1D gaussian blur of a step function

blur = Exp[-(x / s)^2 / 2] / (Sqrt[2 Pi] s);
Convolve[blur, UnitStep[x], x, y]

1

1

s2

+ s Erf y

2 s


2 s

ManipulatePlot

1

1

s2

+ s Erf y

2 s


2 s
, {y, -2, 2}, {s, .1, 4};

The Hessian, "Interest operators", and saliency.

SetOptions[ArrayPlot, ColorFunction → "GrayTones",
DataReversed → True, Frame → False, AspectRatio → Automatic,
Mesh → False, PixelConstrained → True, ImageSize → Small];

The input 64x64 image: face

width = Dimensions[face]〚1〛; size = width;

hsize =
width

2
;

hfwidth = hsize;
height = Dimensions[face]〚2〛;
face;
gface = ArrayPlot[face];

Computing both the first and second derivatives of image intensity can be thought of as filters to pick 
out regions of an image that have "salient", i.e. rapid, intensity changes. A natural extension is to look 
at all four combinations of second derivatives. 
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Computing both the first and second derivatives of image intensity can be thought of as filters to pick 
out regions of an image that have "salient", i.e. rapid, intensity changes. A natural extension is to look 
at all four combinations of second derivatives. 

Calculating the Hessian of an image using function interpolation.

The Hessian of a function f, H(f(x1, x2, ..., xn)) is given by:

For our purposes, {x1,x2} = {x,y}, so the Hessian of an image returns a 2x2 matrix at each point (x,y) that 
represents the four combinations of second derivatives in the x and y directions. The determinant of 
each of the 2x2 matrices provides a scalar which is a measure of the "area" of each 2x2 matrix. The area 
can be used as a rough measure of saliency or local "interest", which takes into account rates of change 
in x and y, for example at "corners". 

Let filterface = f, where we' ve blurred out face a little to reduce quantization artifacts :

kernel = N[{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}}];
filterface = ListConvolve[kernel, face];

faceFunction = ListInterpolation[Transpose[filterface], {{-1, 1}, {-1, 1}}];

hessian[x_, y_] := Evaluate[D[faceFunction[x, y], {{x, y}, 2}]];

Calculate and plot each of the components of the Hessian at each image point

dxxtemp =

Table[hessian[x, y][[1, 2]], {x, -1, 1, 0.005}, {y, -1, 1, 0.005}];

GraphicsRow[{gface, ArrayPlot[Transpose[dxxtemp]], Histogram[Flatten[dxxtemp]]}]

The determinant of the Hessian provides a simple measure of "salience". Better models take into 
account how unexpected local features are relative to the background or likely backgrounds (See 
Torralba et al., 2006, Itti & Koch, 2001,  and Zhang et al., 2008.) These models have been applied to 
predicting human visual eye movements.)

htemp = Table[Det[hessian[x, y]], {x, -1, 1, 0.005}, {y, -1, 1, 0.005}];
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GraphicsRow[{gface, ArrayPlot[Transpose[htemp]], Histogram[Flatten[htemp]]}]

For current computer vision work on local feature detection, see papers by Lowe in the references, and      
http://en.wikipedia.org/wiki/Scale-invariant_feature_transform

Also see: http://en.wikipedia.org/wiki/Interest_point_detection

Morrone & Burr: polarity sensitive & polarity insensitive

Morrone and Burr edge/bar detectors

Suppose we convolve an input signal with an even filter (e.g. Gaussian enveloped cosine-wave) to 
produce reponse Re, and then convolve the same input with an odd filter (say, a Gaussian enveloped 
sine-wave) to produce response Ro. The filters are orthogonal to each other, and so are the responses. 
Re will tend to peak at "bars" in the image whose size is near half the period of the cosine-wave. Ro will 
tend to peak near edges.

The local contrast "energy" is defined to be: Sqrt[Re^2 + Ro^2]. Morrone and Burr showed that the 
local energy peaks where the Fourier components of an image line up with zero-phase--i.e. at points 
where the various Fourier components are all in sine-phase. These points are edges. But it also peaks 
near bar features, arguably also interesting image features where the phase coherence is at 90 degrees. 
In addition to its neurophysiological appeal, a particularly attractive feature of this model is that if one 
adds up responses over multiple spatial scales, evidence accumulates for edges because the local 
energy peaks coincide there. They also showed how their model could be used to explain Mach bands.

▶  5. Use the model to show that the response to a white dot on a black background is the same as to 
black dot on a white background.

▶  6. Calculate the response to a vertical edge that goes from white to black, and compare it to the 
response of an edge that goes from black to white.

Mach bands & the Morrone & Burr edge detector

size = 256;Clear[y];
low = 0.2; hi = 0.8;
y[x_] := low /; x<size/3
y[x_] :=

((hi-low)/(size/3)) x + (low-(hi-low)) /; x>=size/3 && x<2*size/3
y[x_] := hi /; x>2*size/3
Plot[y[x],{x,0,256},PlotRange->{0,1}];
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picture = Table[Table[y[i],{i,1,size}],{i,1,size}];
ArrayPlot[picture,Frame->False,Mesh->False, 

PlotRange->{0,1}, AspectRatio->Automatic];

picture2

picture2

Gabor filters

sgabor[x_, y_, fx_, fy_, sig_] :=
N[Exp[(-x^2 - y^2) / (2 sig * sig)] Sin[2 Pi (fx x + fy y)]];

cgabor[x_, y_, fx_, fy_, sig_] :=
N[Exp[(-x^2 - y^2) / (2 sig * sig)] Cos[2 Pi (fx x + fy y)]];

fsize = 32;
sfilter =

Table[sgabor[(i - fsize / 2), (j - fsize / 2), 0, 1 / 8, 4], {i, 0, fsize}, {j, 0, fsize}];
sfilter = Chop[sfilter];
g10 = ArrayPlot[sfilter, Mesh → False, PlotRange → {-1, 1}, Frame → False];

fsize = 32;
cfilter =

Table[cgabor[(i - fsize / 2), (j - fsize / 2), 0, 1 / 8, 4], {i, 0, fsize}, {j, 0, fsize}];
cfilter = Chop[cfilter];
g11 = ArrayPlot[cfilter, Mesh → False, PlotRange → {-1, 1}, Frame → False];

Apply odd (sine) filter

fspicture = ListConvolve[sfilter, picture];
ArrayPlot[fspicture, Mesh → False];

Apply even (cosine) filter

fcpicture = ListConvolve[cfilter, picture];
ArrayPlot[fcpicture, Mesh → False];

Look for peaks in local contrast energy

ss = Sqrt[fspicture^2 + fcpicture^2];

ArrayPlot[ss, Mesh → False]
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ListPlot[ss[[128]]]
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Two cylinders, no illusion

twoc = ImageData ;

reds = twoc[[All, All, 2]];
Dimensions[reds]

{376, 984}

ArrayPlot[reds, DataReversed → False]
ListPlot[reds[[Dimensions[reds][[1]] / 2]]]
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