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Initialize

In[71]:= Off[General::spell1];
SetOptions[ArrayPlot, ColorFunction → "GrayTones",

DataReversed → True, Frame → False, AspectRatio → Automatic,
Mesh → False, PixelConstrained → True, ImageSize → Small];

SetOptions[ListPlot, ImageSize → Small];

In[74]:= nbinfo = NotebookInformation[EvaluationNotebook[]];
dir = ("FileName" /. nbinfo /. FrontEnd`FileName[d_List, nam_, ___] ⧴ ToFileName[d]);

Histogram
In[75]:= myhistogram[image_] := Module[{histx},

histx = BinCounts[Flatten[image], {0, 255, 1}];
Return[N[histx / Plus @@ histx]];

];

Entropy

In[76]:= entropy[probdist_] := Plus @@ (If[# == 0, 0, -# Log[2, #]] & /@ probdist)

Image data

In[77]:= granite = ImageData ;

{N[Mean[Flatten[granite]]]
, N[StandardDeviation[Flatten[granite]]],
width = Dimensions[granite][[1]]}

Out[78]= {0.507939, 0.0773643, 64}



Outline

Last time

First-order intensity statistics. Explain point non-linearities in terms of histogram 
equalization natural image intensities

The assumption was that the cell’s output range was effectively fixed to encode N levels, and that an 
efficient use of those levels was to not favor one over another. Limited resolution doesn’t mean that 
the output is digital, but rather that noise limits the number of resolvable levels. 

The question then was how best to allocate input contrasts to those levels, so that probability of using 
an output value was equal across all N levels. The answer was to use the cumulative distribution 
function of the input histogram as the mapping function. If the input is bell-shaped, a sigmoidal non-
linearity results.

A deeper interpretation: mutual information

We assumed that an efficient output representation should divide up the output space to maximize the 
entropy of the responses. Why should this be? A deeper principle is that to maximize the “channel 
capacity”, roughtly, the number of signals transmitted from input X to output Y, for an arbitrarily small 
error rate, one should maximize the mutual information I(X,Y). There are various equivalent expres-
sions for mutual information, but the one that captures what we need here is:

I (X, Y) = H (Y) - H (Y X)

where H(Y) is the entropy of Y, and H(Y|X) is the entropy of Y conditional on X. One can interpret the 
right hand size as the amount of information conveyed by Y minus the amount of information about Y if 
X is known. H(Y) can be viewed as a measure of uncertainty about Y, and H(Y|X) is a measure of what X 
does not  convey about Y. For example, if Y = X + N, where N is additive noise, H(Y|X) would be the 
contribution of the noise. If the noise can’t be changed, one can try to maximize I(X,Y) by maximizing 
H(Y), the output entropy. Given the constraint of a  fixed range, the maximum entropy probability 
distribution is uniform. But there are other possible constraints, such as fixed variance, which results 

Introduction to 2nd order statistics

A difference histogram is a “marginal” distribution, which means the histogram you get when you 
project higher-dimensional data points onto a lower-dimensional axis. If natural images were gaussian, 
the marginals would be too. But in general, they are not. The differences concentrate near zero (“blue 
sky effect”), but also get spread out in the tails (big intensity jumps at edges contribute to the “heavy 
tails” of the histogram). Difference histograms for natural images are said to have “excess kurtosis”--i.e. 
a normal distribution has kurtosis of 3, but natural images tend to have larger values. 
This doesn’t just show up with simple differences between nearby pixels, but more generally with any 
derivative-type filter in which uniform values map to zero. (i.e. because the excitatory and inhibitory 
contributions cancel out). For example, consider the ∇2G filter:
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derivative-type filter in which uniform values map to zero. (i.e. because the excitatory and inhibitory 
contributions cancel out). For example, consider the ∇2G filter:

In[47]:= LaplacianGaussianFilter , 2 // ImageAdjust

Out[47]=

In[48]:= KurtosisFlattenImageDataLaplacianGaussianFilter , 2 

Out[48]= 5.69827

compared with the kurtosis of gaussian noise:

In[49]:= igaussiannoise = RandomImage[NormalDistribution[0, .2], {64, 64}] // ImageAdjust;

KurtosisFlattenImageDataLaplacianGaussianFilter , 2 

Out[50]= 2.97776

Today

2nd order spatial statistics and efficient coding

We've learned about localized spatial frequency filters in early vision. We now ask: Why?

Efficient representation of information: the range problem
When we considered the rationale for a point-wise sigmoidal non-linearity, we assumed a fixed output 
range. But what if we could code the input efficiently so that an even smaller range would do. This 
could lead to metabolic savings. First, let’s see why there is a range problem.

We'll first consider the single-channel spatial filtering model and retinal coding. Lateral inhibition is 
pervasive in early visual coding across many species of animals, from invertebrates like the horseshoe 
crab to primates. We would like to have a computational theory for lateral inhibition. We already saw 
an argument for lateral inhibition as a front-end for edge detection. It is also a means to reduce the 
dynamic range--but is there a principled way of reducing the dynamic range without losing informa-
tion? Let’s look at possible explanation is in terms of efficient encoding.

The retina needs to encode a large number of levels of light intensities into a small number of 
effective neuronal levels. There is the huge range of physical light energy, ranging from 10-6 to 107 
candelas/m2 (a measure of luminance of a surface)--from the just visible to painfully bright. But the 
number of physically distinguishable levels can be much smaller over a large range of intensities 
because of photon fluctuations.

A straightforward calculation based on Poisson statistics shows that in about a 1/5 second, there 
are about 200 reliably distinguishable light levels given a potential range of  between 1010 and 10-2 
photons/sec/receptor at 555 nm.

A similar calculation  based on Poisson statistics for neural discharge indicates only about 14-16  
levels can be encoded in 1/5 of  a second. (Ganglion cell discharge is in general modeled by a Gamma 
distribution on inter-spike intervals, and Poisson statistics are a convenient approximation that corre-
sponds to a first-order gamma distribution; Gerstein, 1966; Robson and Troy, 1987.) 

Let’s make a calculation based on a first order Poisson approximation:
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Let’s make a calculation based on a first order Poisson approximation:

p k spikes in Δt =
e-λΔt λΔtk

k!

(λ=average rate, λ(t)=f(intensity or contrast) . Because of the refractory period, the maximum rate is 
less than 1000 Hz.  In general, it is much lower for ganglion cells, and 250 would be a liberal upper 
bound. And 250 Hz => 50 spikes in 1/5 sec. Working down in steps of 1 standard deviation produces 
about 14 levels. The challenge then is how to go from 200 levels to 14:

Log2200 -> Log214, with minimal loss of information?

This  would require squeezing 7.6 to 3.8 bits/receptor. Of course, we don't have to handle this whole 
range for a given scene and using a single mechanism. A duplex receptor system (rods and cones) 
helps, and sigmoidal compression based on tuning to naturally occurring input intensity statistics.  
What tricks that could be used to handle the range problem? 

It turns out that for an arbitrary image ensemble where there are no spatial (or temporal) depen-
dencies, one cannot construct a reversible coding scheme that could squeeze the number of bits down. 
But for an image ensemble with some spatial (or temporal) statistical structure or redundancy, there is 
hope. What is meant by statistical structure or redundancy?

In a 128 x 128 x 4 bit graphics display, there are 2^(128*128*4) or about 10^19,728 possible pic-
tures.  Imagine a machine that started iterating through them. The vast majority would appear unnatu-
ral and look like TV "snow" or visual noise.  Only a near infinitesimal small fraction would correspond to 
natural images...i.e. are likely to occur.  So what is this fraction? One can estimate an upper bound on 
this fraction using theoretical results from Claude Shannon's famous guessing game for the predictabil-
ity of written English text (Kersten, 1987; D’Antona et al., 2013). The result was that  number of possible 
meaningful images <  106905 .  If you could sit for multiple eons of time and view all the 1019,728 on your 
128 x 128 x 4 bit computer display, about one out of every 1012,823 pictures and your brain would "click" 
and you would say "aha, that one looks natural."  Why is this?  One fundamental reason is that there 
are dependencies, such as correlations, between neighboring pixel intensities. Correlations are one 
simple and basic measure of redundancy in images.
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We need tools for measuring correlations, and redundancy in images.

2nd order statistics

Example of the idea: a non-isotropic "1-D random-walk" image ensemble

We can build our intuitions be considering a space of 1-D images that, like natural images, is con-
strained to have similar nearby pixels. We start with a gray-level of 128, and then flip a coin to decide 
whether to increase or decrease the intensity of the next pixel by one gray-level. So nearest-neighbor 
pixels are close, but not identical in intensity.

1-D Brownian images

In[79]:= step := 2 (Random[Integer, 1] - 1 / 2);
next[x_] := Mod[x, size] + 1;

In[81]:= size = 64;
brown = N[Table[128, {i, 1, size }, {i, 1, size }]];

In[83]:= For[j = 1, j < size, j++,
For[i = 1, i < size, i++,

If[Random[] > 0.5, brown[[next[i], j]] = brown[[i, j]] + step,
brown[[next[i], j]] = brown[[i, j]] - step];

If[brown[[i, j]] > 255, 255];
If[brown[[i, j]] < 1, 0];

];
];

Visual each 1-D image using Image[]. Let’s stack the images horizontally, one on top of the other:
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In[84]:= ImageRotate[Image[brown, ImageSize → Small] // ImageAdjust]

Out[84]=

As we get farther away from the starting value of 128, along a vertical line, the differences in intensity 
samples become increasingly hard to predict. The gray-levels from pixel to pixel become less 
correlated.

In[109]:= ListPlot[brown[[32]], ImageSize → Small]

Out[109]=
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And the entropy increases:

In[86]:= {Entropy[2, brown[[32]]] // N, entropy[myhistogram[brown[[32]]]]}

Out[86]= {3.39777, 3.39777}

In contrast, horizontal lines show a degree of regularity:

In[87]:= ListPlot[Transpose[brown][[32]], ImageSize → Small]

Out[87]=
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In[88]:= {Entropy[2, Transpose[brown][[32]]] // N,
entropy[myhistogram[Transpose[brown][[32]]]] // N}

Out[88]= {2.4312, 2.4312}

Calculate the entropy of the brown image as a whole:
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In[89]:= histobrown = myhistogram[brown];
ListPlot[histobrown, PlotStyle → PointSize[0.015], PlotRange → {0, 0.1}]
entropy[histobrown] // N

Out[90]=
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0.10

Out[91]= 4.61412

Efficient encryption code for 1-D brownian images

How can we recode the brownian images to preserve information, but reduce the range of values 
required to represent the data?
Let’s encode the brownian images as the difference between neighboring pixel values:

In[92]:= codebrown = Table[0, {size}, {size}];
For[j = 1, j < size, j++,

For[i = 1, i < size, i++,
codebrown[[i, j]] = brown[[next[i], j]] - brown[[i, j]] + 128;

];
];

In[94]:= ArrayPlot[codebrown, Mesh → False, PlotRange → {126, 130}]

Out[94]=

In[95]:= ListPlot[codebrown[[32]], PlotRange → {120, 130}, Joined → True, ImageSize → Small]

Out[95]=
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In[96]:= histocodebrown = myhistogram[Flatten[codebrown]];
ListPlot[histocodebrown, PlotStyle → PointSize[0.015], PlotRange → {0, 1}]
entropy[histocodebrown]

Out[97]=
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1.0

Out[98]= 1.16837

Entropy is reduced. And note that if we transmitted the initial starting value, and then all the differ-
ences, we could perfectly reconstruct the input from the output. 

Second order statistics in natural images

Let’s now look at common ways of quantifying second-order dependencies. First we look at 1D data, by 
analyzing dependencies across single lines of an image.

Autocorrelation function

ListCorrelate[ker, list] computes ∑r Kr as+r.  Autocorrelation corresponds to Kr→ ar: ∑r ar as+r.

Let’s analyze the correlation between pixel gray levels for each line, and then average them:

Example with granite image
In[112]:= Image[granite]

Out[112]=

Autocorrelate each row with itself, add them up, and normalize:

In[113]:= autogranite = Table[0, {width}];
For[i = 1, i < width + 1, i++,

autogranite += ListCorrelate[granite[[i]], granite[[i]], width / 2]];
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In[115]:= ListPlot[autogranite / Max[autogranite],
Joined → True, PlotRange -> {.95, 1}, ImageSize → Small]

Out[115]=
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Note how this measure of correlation drops as pairs of lines get shifted away from each other. 

Covariance matrices, and the outer product

Recall that the covariance is: Cov[X, Y] = E[[X - μX] [Y - μY]], where X,Y are scalar random 
variables. The correlation gives a dimensionless measure of covariation, relative to the standard 
deviations: ρ[X, Y] = Cov[X,Y]

σX σY
. 

Now let X={x1 ...} and Y = {y j ...} be vectors, and the lower case letters represent the scalar random 

variable elements. The average of the products xi y j or discounting the means, (xi - μxi) y j - μy j give 

measures of how well xi and y j predict each other. The latter collection of average products is called 

the covariance matrix: 
Cov[X, Y] = E[X - μX] [Y - μY]

T 

where XYTis the notation for outer product of X and Y. Mathematica notation for the outer product is: 
Outer[Times, X,Y]. The outer product takes two vectors and produces the matrix whose entries are all 
possible pair-wise products of the elements of the two vectors. Contrast the outer with the inner (or 
dot) product (XTY) which returns a scalar given two input vectors. 

▶  1. Try this: Outer[Times, {x, y, z}, {a, b, c}] // MatrixForm

Given M vector samples indexed by s, {Xs, Y s}, we can estimate the covariance matrix as: 
1
M∑s=1

M [Xs - μX] [Y s - μY ]T.

When X=Y, an covariance matrix is called an autocovariance matrix, and similarly for autocorrelation. A 
covariance matrix is a symmetric matrix, and thus has orthogonal eigenvectors with real eigenvalues--a 
property that will become useful later.

▶  2. Try this: Outer[Times, {x, y, z}, {x, y, z}] // MatrixForm

Multivariate gaussian (See ProbabilityOverview.nb)

If the distribution is assumed to be multivariate gaussian, then the vector mean and covariance matrix 
fully determine the distribution. The multivariate gaussian is a generalization of the gaussian distribu-
tion to higher dimensions, in which the standard deviation is replaced by the covariance matrix. The 
multivariate gaussian plays a central role in statistics, and provides a crude approximation as a genera-
tive model for natural images. The probability density for vector x of dimension p is given by:

p(x) = 1

(2 π)p Σ
e- 1

2
(x-μ)T Σ-1(x-μ), where |Σ| = Det[Σ].
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p(x) = 1

(2 π)p Σ
e- 1

2
(x-μ)T Σ-1(x-μ), where |Σ| = Det[Σ].

where μ is the vector mean, and Σ is the covariance matrix. Mathematica has an add-in package that 
extends the normal routines to the multivariate case:

A two-dimensional example.

In[118]:= Σ = {{1, .6}, {.6, 1}};
μ = {1, 1};
ndist = MultinormalDistribution[μ , Σ ];
ContourPlot[PDF[ndist, {x, y}], {x, -1, 3}, {y, -1, 3},
ImageSize → Tiny, ColorFunction → "DarkRainbow", ContourStyle → None]

Out[121]=
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Going to higher dimensions, an exponential drop-off in correlation,  can be modeled as a covariance 
matrix with diagonal elements equal to 1, and an exponential drop-off away from the diagonal. An 
exponential drop-off is a good first approximation to the drop-off in autocorrelation in the granite 
image.

With an exponential model of the autocorrleation, the first row would be:

In[122]:= row1[ρ_] := Tableρi, {i, 0, 15};

Later we show how the covariance matrix can be used to find a new basis set for images such that when 
we project images onto the basis elements, the projections are no longer correlated. One way to do this 
is through the classical statistical technique called Principal Components Analysis or PCA. 

But first, let's look at some early and recent research that has sought to explain receptive field struc-
ture in terms of redundancy reduction.

Efficient coding by the retina

Predictive coding & retina

Srinivasan et al. (1982) were the first to make quantitative predictions of how the retina makes use 
of inherent spatial and temporal correlations between light intensities found in natural images to 
reduce the output range required to send information about images. They showed that the autocorrela-
tion of a natural image could be fit with an exponential curve.
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Srinivasan et al. (1982) were the first to make quantitative predictions of how the retina makes use 
of inherent spatial and temporal correlations between light intensities found in natural images to 
reduce the output range required to send information about images. They showed that the autocorrela-
tion of a natural image could be fit with an exponential curve.

Autocorrelation measurements & model

Linear neural network

They assumed a linear model at the front-end:

The result

Given the autocorrelation function, and the linear model, R j = ∑i wji Li = L j - ∑i≠ j Hji Li, they were able to 

show that the receptive field weights that minimized the average value of the squared response, E(R j
2) 

predicted a "center-surround" receptive field:

12.SpatialCodingEfficiency.nb     11



They also showed that one would expect the inhibitory side lobes to get smaller at low light levels. 
Compare with the CSF functions for various light levels below. 

At high light levels, the CSF is band-pass, and its corresponding filter in the space domain has a center-
surround structure. Recall that you can calculate the shape of the filter by taking the inverse Fourier 
transform of the amplitude spectrum, represented by the CSF. At low light levels, the CSF is low-pass, 
and the corresponding filter in the space domain would have much reduced inhibitory side-lobes.

The results of Srinivasan et al. were a “proof of concept”. Ten years later, Atick & Redlich (1992) showed 
how the exact shape of the human CSF as a function of mean light level could be accounted for in terms 
of efficient coding given the statistics of natural images (see below). 

The left figure shows contrast thresholds for various light levels (from van Nes, & Bouman, M. A. (1967). Spatio modulation transfer in the human eye. J Opt Soc 
Am, 57(3), 401-406). The right figure is a replot of the left figure from: Atick, J. J., & Redlich, A. N. (1992). What does the retina know about natural scenes? 
Neural Computation, 4(2), 196-210. The solid lines show fits  by Atick & Redlich based on an efficient coding model.

There has been considerable work since the above early studies. For example, see the review by Simon-
celli and Olshausen, and a more recent review by: Fairhall, A., Shea-Brown, E., & Barreiro, A. (2012). 
Information theoretic approaches to understanding circuit function. Current Opinion in Neurobiology, 
22(4), 653–659. http://doi.org/10.1016/j.conb.2012.06.005

Principal components analysis

12     12.SpatialCodingEfficiency.nb



Principal components analysis
In the next two sections we will look at ways of encoding patterns, including natural images, that take 
advantage of statistical regularities. First we study a classical technique in statistics called principal 
components analysis (PCA). Then in the following section, describe how the notion of sparse coding 
provides an elegant explanation for how the visual cortex exploits redundancy in natural image 
patterns.

Introduction to PCA

Principal components analysis (PCA)  is a statistical technique that is applied to an ensemble of n-
dimensional measurements (vectors or in our case images). To do PCA, all one needs is the autocovari-
ance matrix and a good PCA algorithm. Good because images are big enough (p=mxn), and the covari-
ance is much bigger (p^2).

PCA finds a matrix that transforms the input vectors into output vectors, such that output elements are 
no longer correlated with each other. There is more than one matrix that will do this however, and PCA 
find the matrix which is a rigid rotation of the original coordinate axes, so it preserves orthogonality. 
(The Fourier transform is also a rotation.) Further, the  new coordinates can be ordered in terms of how 
much variance is captured when the data is projected on to each coordinate. The new coordinates turn 
out to be eigenvectors of the covariance matrix. The directions or eigenvectors with the biggest vari-
ances are called the principal components. So the dominant principal component has the most vari-
ance, and so forth. For data that are highly redundant, PCA can be used to eliminate dimensions that 
do not contribute much to the total variance. 

PCA is important in computational models of visual processing (See Wandell, pages 254-258). For 
example, PCA has been used to account for and model:

opponent color processing
visual cortical cell development
efficient representation of human faces
face recognition given variability over illumination
internal model of objects for visual control of grasping

There is a literature on theoretical neural networks and PCA. An introduction to some of the ideas is 
given in the optional section below. High-level languages and standard computer statistical packages 
provide the tools for doing PCA on large data sets. Below we try to provide intuition and background 
into the computation of principal components. 

Statistical model of a two-variable input ensemble

Consider a two variable system whose inputs are correlated--e.g. an ensemble of 2 pixel images. The 
random variable, rv, is a 2D vector. To be concrete, we’ll give the scatter plot for this vector an average 

slope of Tan[theta=Pi/8] = 0.41. The variances along the axes are 42 and .252 (16 and .0625).  gprinci-

palaxes is a graph of the principal axes which we will use for later comparison with the subsequent 
PCA calculations. 
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random variable, rv, is a 2D vector. To be concrete, we’ll give the scatter plot for this vector an average 

slope of Tan[theta=Pi/8] = 0.41. The variances along the axes are 42 and .252 (16 and .0625).  gprinci-

palaxes is a graph of the principal axes which we will use for later comparison with the subsequent 
PCA calculations. 

In[162]:= ndist = NormalDistribution[0,1];theta = Pi/8;
bigvar = 4.0; smallvar = 0.25;
alpha = N[Cos[theta]]; beta = N[Sin[theta]];
rv := 
{bigvar x1 alpha + smallvar y1 beta,
bigvar x1 beta - smallvar y1 alpha} /.{x1-> Random[ndist],y1-> Random[ndist]};

gprincipalaxes = Plot[{x beta, x (-1/beta)}, {x,-4,4},
PlotRange->{{-4,4},{-4,4}},
PlotStyle->{RGBColor[1,0,0]},
AspectRatio->1];

x1 and y1 are correlated. Let's view a scatterplot of samples from these two correlated Gaussian 
random variables.

In[169]:= npoints = 200;
rvsamples = Table[rv,{n,1,npoints}];

In[171]:= g1 = ListPlot[rvsamples,PlotRange->{{-4,4},{-4,4}},
AspectRatio->1];

Show[g1,gprincipalaxes,ImageSize→Small]

Out[172]=
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Standard Principal Components Analysis (PCA)

Let E[•] stand for the expected or average of a random variable, •. The covariance matrix of a of vector 
random variable, x,  is: 

E[  [x-E[x]][x-E[x]]T  ]. Let's compute the autocovariance matrix for rv.  The calculations are simpler 

because the average value of rv is zero. As we would expect, the matrix is symmetric:
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In[173]:= autolist = Table[
Outer[Times,rvsamples[[i]],rvsamples[[i]]],

{i,Length[rvsamples]}];
MatrixForm[auto=

Sum[autolist[[i]],
{i,Length[autolist]}]/Length[autolist]]

Clear[autolist];
Out[174]//MatrixForm=

14.8881 6.13387
6.13387 2.5845

The variances of the two inputs (the diagonal elements) are due to the projections onto the horizontal 
and vertical axis of the generating random variable.

Now we will calculate the eigenvectors of the autocovariance matrix

In[176]:= MatrixForm[eigauto = Eigenvectors[auto]]
Out[176]//MatrixForm=

-0.924158 -0.382009
0.382009 -0.924158

▶  3. The eigenvectors of a symmetric matrix are orthogonal. Verify that the rows are orthogonal. 

Let's graph the principal axes corresponding to the eigenvectors of the autocovariance matrix together 
with the scatterplot we plotted earlier.

In[177]:= gPCA =
Plot[{eigauto[[1,2]]/eigauto[[1,1]] x,
eigauto[[2,2]]/eigauto[[2,1]] x},

{x,-4,4}, AspectRatio->1,
PlotStyle->{{RGBColor[0,1,0],Dashed},{RGBColor[0,1,0],Dashed}}];

In[178]:= Show[g1, gPCA, gprincipalaxes, ImageSize → Small]

Out[178]=
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The eigenvalues give the ratio of the variances of the projections of the random variables rv[[1]], and 
rv[[2]] along the principal axes. Compare with the variances in the generating process.

In[179]:= eigvalues = Eigenvalues[auto]
Sqrt@%

Out[179]= {17.4236, 0.049009}

Out[180]= {4.17415, 0.22138}

The projections along the principal axes are now decorrelated. We can verify this by calculating the 
autocovariance matrix of the projected values:
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The projections along the principal axes are now decorrelated. We can verify this by calculating the 
autocovariance matrix of the projected values:

In[181]:= autolist =
Table[
Outer[Times,eigauto.rvsamples[[i]],

eigauto.rvsamples[[i]]],
{i,Length[rvsamples]}];

MatrixForm[Chop[
Sum[autolist[[i]],
{i,Length[autolist]}]/Length[autolist]]]

Clear[autolist];
Out[182]//MatrixForm=

17.4236 0
0 0.049009

These values are close to the true population variances of the generative model.

Note that the off-diagonal elements (the terms that measure the covariation of the transformed ran-
dom variables) are zero. Further, because the variance of one of the projections is near zero, one can in 
fact dispense with this component and achieve a good approximate coding of the data with just one 
coordinate.

PCA and natural images

Break a large image into a series of subimages. 

The idea is that each  subimage will be used as a statistical sample. We compute the outer product of 
each, and then average all 16 to get an estimate of the autocovariance matrix.

In[195]:= alpine = ImageData ;

In[196]:= awidth = Dimensions[alpine][[1]];
nregions = 16;
swidth = awidth / nregions;

In[198]:= subface = Table[Take[alpine, {i * swidth + 1, i * swidth + swidth},
{j * swidth + 1, j * swidth + swidth}], {i, 0, nregions - 1}, {j, 0, nregions - 1}];

In[199]:= subfacelist = Table[0.0, {256}];
Table[subfacelist[[i + 16 * (j - 1)]] = N[Flatten[subface[[i, j]]]],
{i, 1, 16}, {j, 1, 16}];

Subtract off the mean.

In[200]:= subfacelist2 = Table[subfacelist[[i]] - Mean[subfacelist[[i]]], {i, 1, 256}];
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Calculate the autocovariance matrix

In[201]:= {Dimensions[subfacelist2],
Dimensions[Outer[Times, subfacelist2[[1]], subfacelist2[[1]]]]}

Out[201]= {{256, 256}, {256, 256}}

In[202]:= temp = Table[0.0, {256}, {256}];
For[i = 1, i < Dimensions[subfacelist][[1]], i++,

temp = N[Outer[Times, subfacelist2[[i]], subfacelist2[[i]]]] + temp;
];

Image[temp] // ImageAdjust

Out[204]=

Calculate the eigenvectors and eigenvalues of the autocovariance matrix

Calculate the eigenvectors and eigenvalues of the autocovariance matrix

In[205]:= eigentemp = Eigenvectors[temp];
eigenvaluestemp = Eigenvalues[temp];
ListPlot[Chop[eigenvaluestemp]]

Out[207]=

50 100 150 200 250
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4

6

8
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Display the first 32 eigenvectors as "eigenpictures"

In[208]:= Table[ArrayPlot[Partition[eigentemp[[i]], 16],
Mesh → False, ImageSize → Tiny, PixelConstrained → {3, 3}], {i, 1, 32}]

Out[208]=  , , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, , , , , , , 

▶  4. Suppose we’ve measured the covariance between height in inches, and age in years. Would the 
principal component directions change if we changed height units to centimeters?

▶  5. How do point-wise non-linearities affect the principal components? Try replacing alpine with 
squashedalpine, and repeat the above analysis.

In[209]:= squash[x_, μ_, γ_] := N
1

1 + ⅇ-γ (x-μ)
;

gain = 0.045; μ0 = Mean[Flatten[alpine]]; γ = .5;
squashedalpine = squash[(alpine - μ0) + μ0, μ0, γ];

Efficient, sparse coding in V1

Olshausen & Field: Primary cortex

Fourier coefficients for natural images tend to be uncorrelated and indeed there is a close relationship 
between Fourier rotations and  Principal Components Analysis (or Karhunen- Loeve transformations) 
(e.g. Appendix A in Andrews, 1983).  There is also a long history to the study of the relationship between 
self-organizing models of visual cortex, as well as efficient coding of image information. For early work 
on this, see:  Yuille et al., 1989; Linsker, R. (1990) and  Barlow, H. B., & Foldiak, P. (1989). Linsker's 
computational studies show, for example, that orientation tuning, and band-pass properties of simple 
cells can emerge as a consequence of maximum information transfer (in terms of variance) given the 
constraint that the inputs are already band-pass, and the receptive field connectivity is  a priori limited.

In a highly influential study in 1996, Olshausen and Field provided an elegant explanation for the 
spatial filtering properties of V1 simple cells. They showed that one could derive a set of basis functions 
that have the same characteristics as the ensemble of visual simple cells in primary visual cortex by 
requiring two simple constraints:

1) One should be able to express the image I(x,y) as a weighted sum of the basis functions, {ϕi}
2) The total activity across the ensemble should, on average, be small. This latter constraint is 

called "sparse coding". That is, a typical input image should activate a relatively small fraction of 
neurons in the ensemble. S() for example could be the absolute value of the activity ai. Using a 
database of natural patches {I(x,y)}, they estimated the values of {ϕi} that minimized the following cost 
function: 
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spatial filtering properties of V1 simple cells. They showed that one could derive a set of basis functions 
that have the same characteristics as the ensemble of visual simple cells in primary visual cortex by 
requiring two simple constraints:

1) One should be able to express the image I(x,y) as a weighted sum of the basis functions, {ϕi}
2) The total activity across the ensemble should, on average, be small. This latter constraint is 

called "sparse coding". That is, a typical input image should activate a relatively small fraction of 
neurons in the ensemble. S() for example could be the absolute value of the activity ai. Using a 
database of natural patches {I(x,y)}, they estimated the values of {ϕi} that minimized the following cost 
function: 


x,y

I (x, y) - 
i

ai ϕi (x, y)
2
+ 

i

S (ai)

We will see later that cells in the visual cortex send their visual information to an incredibly complex, 
and yet structured collection of extra-striate areas. Any hypothesized function of striate cortex must 
eventually take into account what the information is to be used for. In the next lecture, we will give a 
quick overview of extra-striate visual cortex, and introduce the computational problem of estimating 
scene properties from image data.

Side note: adaptation & learning

Human orientation and spatial frequency selectivity changes with adaptation. Adaptation has been 
interpreted as an optimal change to new conditions in the input image statistics. (e.g. see,  Wainwright, 
M. J. (1999). Visual adaptation as optimal information transmission. Vision Research, 39, 3960--3974.)

Barlow argued that a decorrelated representation of sensory information is important for efficient 
learning (Barlow, 1990).

Side note: PCA and SVD

For reasons of numerical precision,  it is often better to find principal components by doing a singular 
value decomposition (SVD) on the m ⨯ n data matrix, X. Where there are n samples e.g. the vectors we 
get from flattening the image patches, and each sample has dimensionality given by m. The covariance 
matrix is the outerproduct XXT/m. The SVD is: X = UΣWTwhere the columns of W are the principal 
directions. For a full explanation of U, Σ, W and the connection to PCA,  see wiki entry. 

Side note: PCA and FLD (Fisher linear discriminant)

PCA can be thought of as unsupervised learning as a step towards reducing dimensionality. One can 
alternatively look for lower-dimensions that best discriminate between two classes. The Fisher linear 
discriminant finds projections that maximize a measure of the signal-to-noise ratio for class labels. FLD 
is a form of supervised learning, because it requires the data to be separated and labelled according to 
class before doing the calculation.
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PCA can be thought of as unsupervised learning as a step towards reducing dimensionality. One can 
alternatively look for lower-dimensions that best discriminate between two classes. The Fisher linear 
discriminant finds projections that maximize a measure of the signal-to-noise ratio for class labels. FLD 
is a form of supervised learning, because it requires the data to be separated and labelled according to 
class before doing the calculation.

Side note: PCA and ICA

PCA decorrelates the projected values between dimensions. A stronger condition would be to require 
that the projections be independent. This requirement is met by independent component analysis 
(ICA). There is a close relationship between ICA and sparseness (see: Hyvärinen, A. (2010). Statistical 
Models of Natural Images and Cortical Visual Representation. Topics in Cognitive Science, 2(2), 
251–264. http://doi.org/10.1111/j.1756-8765.2009.01057.x)

Using synthesis: How good is a 2nd order model of natural 
images? 

As we will see later, building a generative model for an ensemble of natural images (e.g. for a particular 
texture class or a “generic” class) can provide insights into how well the model is capturing the regulari-
ties of interest. We will see more of this later when we study texture perception.

Let's construct a 2nd order generic generative statistical model of images and see what the samples 
look like. We will use our fourier tools.

Random Fractals

Random fractals are a crude but good statistical models for the amplitude spectra certain classes of 
natural images. Random fractals can be characterized by the fractal dimension D (3<D<4) and ampli-
tude spectrum, 1/(fx

2 + fy
2)^(4-D). The amplitude spectrum is a straight line when plotted against 

frequency in log-log coordinates. The condition If[ ] is used to include a fudge term (1/(2)^(q)) to pre-
vent blow up near zero in the Block[ ] routine later.

In[225]:= size = 64;
hsize = size / 2;
fwidth = 2 * hsize; hfwidth = fwidth / 2;
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In[228]:= q = 2.5;
LogLogPlot[If[(i ≠ 0 || j ≠ 0), 1 / (i * i + 0 * 0)^(q), 1 / (2)^(q)],
{i, 0.0001, hfwidth - 1}, ImageSize → Small]

Out[229]=
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Here is a function to make a low-pass filter with fractal dimension D. (D, here 
should be between 3 and 4). Note that we first make the filter centered in the 
middle, and then adjust it so that it is symmetric with respect to the four corners.

In[230]:=

fractalfilter[D_] :=
Block[ {q,i,j,mat},

q = 4 - D;
mat = Table[If[(i != 0 || j!= 0),

1/(i*i + j*j)^(q), 1/(2)^(q)],
{i,-hfwidth,hfwidth-1},{j,-hfwidth,hfwidth-1}];
mat = RotateRight[mat,{hfwidth,hfwidth}];
Return[mat];
];

In[232]:= ArrayPlot[RotateLeft[fractalfilter[3.5], {hfwidth, hfwidth}], Mesh → False]

Out[232]=

Here is the amplitude spectrum plot for a random fractal image:

In[233]:= randomspectrum = Abs[temp = Fourier[Table[Random[], {size}, {size}]]];
randomphase = Arg[temp];
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In[235]:= ffilt = fractalfilter[3.5] randomspectrum;
ArrayPlot[RotateRight[ffilt, {hfwidth, hfwidth}], Mesh -> False, Frame -> False]

Out[236]=

Here is a random fractal image, with D = 3.2
In[237]:= ArrayPlot[Chop[

InverseFourier[
fractalfilter[3.2] randomspectrum Exp[I randomphase]]]]

Out[237]=

So what regularities are being captured and what ones are missing? The above gaussian fractal is low-
pass, which of course we built in. This is good. But natural images tend to have edges, and somewhat 
sharp patches over a range of scales. Can one do better? Yes. See the sample below from the paper by: 
Zhu, S. C., & Mumford, D. (1997). Prior Learning and Gibbs Reaction-Diffusion. IEEE Trans. on PAMI, 
19(11), 1236-1250.

Higher order redundancies & contrast normalization

Contrast normalization

There are higher order redundancies in natural images, and a major challenge is to characterize them, 
and understand how the visual system exploits these redundancies. For example, the figure below 
shows that the output response of one spatial filter (receptive field (RF) responses) influences the 
variability in a second spatial filter. Odelia Schwarzt and Eero Simoncelli have shown how a non-
linearity called "contrast normalization" serves to remove this redundancy; explaining a number of 
non-linearities observed in Vq cortical neurons. 
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There are higher order redundancies in natural images, and a major challenge is to characterize them, 
and understand how the visual system exploits these redundancies. For example, the figure below 
shows that the output response of one spatial filter (receptive field (RF) responses) influences the 
variability in a second spatial filter. Odelia Schwarzt and Eero Simoncelli have shown how a non-
linearity called "contrast normalization" serves to remove this redundancy; explaining a number of 
non-linearities observed in Vq cortical neurons. 

See Figure 8 in  Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural represen-
tation. Annu Rev Neurosci, 24, 1193-1216.(pdf). 

See also Figure 5 in Geisler, W. S. (2008). Visual perception and the statistical properties of natural 
scenes. Annu Rev Psychol, 59, 167-192. (pdf). 

Next time

Edge detection: noise vs. scale

Appendices

Neural networks and principal components

See: Pehlevan, C., Hu, T., & Chklovskii, D. B. (2015). A Hebbian/Anti-Hebbian Neural Network for Linear 
Subspace Learning: A Derivation from Multidimensional Scaling of Streaming Data. Neural Computa-
tion, 27(7), 1461–1495. http://doi.org/10.1162/NECO_a_00745

Neural network model using Hebb together with Oja's rule for extracting the 
dominant principal component

Oja, E. (1982). A simplified neuron model as a principal component analyzer. Journal of 
Mathematical Biology, 15, 267-273.
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