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Linear systems, Convolutions and Optical blur

Linear Systems
Linear system models are important to vision for modeling: optical, retinal sampling, and neural transfor-
mations of image data. The basic requirements for a system T to be linear are:

T(a+b) = T(a) + T(b)
T(λa) = λT(a)

For continuous models, the so-called linear superposition operator  for an image transformation can be 
expressed as:

Exercises
1. As an pencil and paper exercise, show that the above 2D linear superposition operator satisfies the 
above two criteria.

2. Use Mathematica  to verify that matrix multiplication on vectors satisfies the two criteria for a linear 
sytem: superposition and homogeneity. The matrix WW is the transformation applied to vector inputs aa 
or bb. 

In[544]:= aa = Table[a[i],{i,1,3}];
bb = Table[b[i],{i,1,3}];
WW = Table[W[i,j],{i,1,3},{j,1,3}];

Answer to 2--or at least one way of doing it

In[547]:= Simplify[WW.aa + WW.bb -− WW.(aa + bb)]
Simplify[WW.(k aa) -− k WW.aa]

Out[547]= {0, 0, 0}

Out[548]= {0, 0, 0}

Convolutions
Often we can assume that the transformation is space invariant. This is a reasonable assumption if we 
restrict ourselves to small optical patches (so-called isoplanatic patches), uniform retinal sampling, or 
subgroups of neural systems whose receptive fields subtend  small regions of the visual field.  

For a space invariant system, W(x,y; x',y') is equal to W(x-x',y-y') and the linear operation becomes a 
continuous convolution:  from -infinity to +infinity :
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subgroups of neural systems whose receptive fields subtend  small regions of the visual field.  

For a space invariant system, W(x,y; x',y') is equal to W(x-x',y-y') and the linear operation becomes a 
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For computations, we usually model the system operation as a discrete matrix multiplication. Let  W be 
the matrix, r and l are vectors: 

r = WI
2D convolution is used to model: 

1) optical blur, 
2) discrete retinal sampling by the photoreceptors, and 
3) the linear part of "neural image" transformations by ganglion cell arrays, and in 

general populations of visual cortical cells
4) A pre-process for edge-detection, in models of color constancy, and motion 

detection.

So it is worth spending time to understand it.

Continuous 1-D convolution
In[549]:= a = 3; b = 5;

Clear[filter]; (*⋆ When you play with building up definitions,  you should clear the function to make sure you don't have constraints left hanging from earlier tries*⋆)

filter[x_]:= N[(1-−Abs[x]/∕a)] /∕; x>-−a && x <0
filter[x_]:= N[(1-−x^2/∕b^2)] /∕; x < b && x>=0
filter[x_]:= 0.0 /∕; x<=-−a || x >= b

In[557]:= Plot[filter[x], {x, -−8, 8}, PlotRange → {-−1, 1}]

Out[557]=
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/; means "such that". Mathematica uses notation borrowed from the C programming language for logical 
operations such as:
                              OR => ||
 and 
                               AND => &&
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/; means "such that". Mathematica uses notation borrowed from the C programming language for logical 
operations such as:
                              OR => ||
 and 
                               AND => &&

In[558]:= edge[x_] := N[If[x<4,1/∕2,1.5]];

In[559]:= Plot[edge[x], {x, -−10, 10}]

Out[559]=
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A 1-D convolution operation is written:

It is useful to visualize this as the area underneath the curve formed by the product of edge and the  left-
right reversed filter as it slides along the x-axis.
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In[560]:= Animate[Plot[{edge[x] + .5, edge[x] filter[z -− x]},
{x, -−30, 30}, PlotRange → {{-−15, 15}, {-−1, 2}}], {z, -−10, 10, 0.5}]

Out[560]=
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We can find the area under each of the above curves by using Mathematica's built-in numerical integra-
tion capability, NIntegrate[]. It helps if we specify the range of necessary integration as precisely as 
possible. Inspection of the above curves shows that {z-b,z+a} is an appropriate range for x.

In[561]:= r1 =
Table[{z,NIntegrate[edge[x] filter[z -− x],

{x,z-−b,z+a}]}, {z,-−20,20,1}];

In[563]:= continousconvg = ListPlot[r1, PlotRange → {-−1, 8}, PlotStyle → {RGBColor[1, 0, 0]}]

Out[563]=
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Discrete 1-D convolution as matrix multiplication
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Discrete 1-D convolution as matrix multiplication

In this section, we will pass the 1-D "edge" through the filter again, but this time we will set it up as a 
discrete matrix operation. We'll apply a convolution matrix to a vector that represents a sharp edge, 
l=edge, at x = size/2. 

In[569]:= size = 30; edge[x_] := NIfx < 4,
1

2
, 1.5`;

edgelist = Table{x, edge[x]}, x, -−
size

2
,
size

2
-− 1;

edgevector = Transpose[edgelist]〚2〛; edgelistg =
ListPlot[edgelist, PlotRange → {-−1, 8}, PlotStyle → {RGBColor[0, 0.5`, 0]}]

Out[569]=
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Because the integration is finite, we have to make some decision about what to do at the boundaries. 
One choice is to assume that w and l are zero beyond the boundaries. Another is to assume that they 
are periodic with a shared common period, and we are just representing one period of the signal. 

Now we construct a size x size matrix that will perform a convolution operation.

In[570]:= w = Table[filter[i-−j], {i,size},{j,size}];

A convenient way to view the matrix is to use MatrixPlot[], () where you can see how each row is a 
shifted version of the preceding row. 

In[571]:= MatrixPlot[w, ImageSize → Tiny]

Out[571]=
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Note that ArrayPlot[w], does almost the same thing, except that it reverses the order.

In[572]:= rvect = w.edgevector;

r = Tablei -−
size

2
, rvect〚i + 1〛, {i, 0, size -− 1}; matrixconvolg =

ListPlot[r, Joined → True, PlotRange → {-−1, 8}, PlotStyle → {RGBColor[0, 0, 0.5`]}];
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In[573]:= Show[{matrixconvolg, edgelistg, continousconvg}]

Out[573]=
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The convolution matrix "blurs" out the edge and is in reasonable agreement with the approximation to 
the continous convolution. Note that the  left and right boundary edges also got "blurred" by the matrix 
convolution. 

Exercise: Blur the above edge with a  line-spread function 
(LSF) that models diffraction-limited optics

Introduction to diffraction limited blur
Pin-hole optics are limited by diffraction. The image of a point though a circular aperture is an Airy 
pattern. We have to take care to define the function at x and y =0.

(*⋆Cell inactive*⋆)
Airy2D[x_,y_] := 
If[x==0 && y==0,1,
(2 BesselJ[1,Pi Sqrt[x^2+y^2]]/∕(Pi Sqrt[x^2+y^2]))^2]
Plot[Airy2D[x,0],{x,-−3,3}];

For a single slit aperture, the "line-spread-function" for a diffraction limited system is a "sync" function 
squared: 

In[574]:= SincSq[x_]:= If[x==0,1.0,N[(Sin[Pi x]/∕(Pi x))^2]];
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In[575]:= Plot[SincSq[x], {x, -−3, 3}, PlotRange → {0, 1}]

Out[575]=
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Now as an exercise, construct a weight or filter matrix with the SincSq[] function, 
do a discrete convolution with the above edge, and plot up the results.

Convolutions and eigenvectors
In[576]:= size=30;

a = 3; b = 3;

Clear[filter]; (*⋆ When you play with building up definitions,  you should clear the function to make sure you don't have constraints left hanging from earlier tries*⋆)

filter[x_]:= N[(1-−Abs[x]/∕a)] /∕; x>-−a && x <0
filter[x_]:= N[(1-−Abs[x]/∕a)] /∕; x < b && x>=0
filter[x_]:= 0.0 /∕; x<=-−a || x >= b

In[583]:=

ww = Table[filter[N[i-−j]], {i,size},{j,size}];
ee = Eigenvectors[ww];

In[586]:= MatrixPlot[ww, ImageSize → Tiny]

Out[586]=
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In[587]:= ListPlot[ww[[15]], Joined → True]

Out[587]=
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Let's plot a few of the eigenvectors of w:

In[588]:= g1 = ListPlot[ee〚2〛, Joined → True];
g2 = ListPlot[ee〚4〛, Joined → True];
g3 = ListPlot[ee〚8〛, Joined → True];
Show[{g1, g2, g3}]

Out[589]=
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They sure look a lot like sinewaves, and in fact, they are pretty close. This is related to the fact that the 
sine-wave gratings keep the same form when imaged by the optics--even in the presence of aberra-
tions. Why? Because the linear, shift-invariant model is a reasonable approximation.

Exercise
Verify that ee[[5]] is indeed an eigenvector of ww by showing that ww.ee[[5]] points in the same direc-
tion as e[[5]]. 
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In[590]:= ListPlot[ee〚5〛, Joined → True]

Out[590]=
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Here is a plot of the sorted eigenvalues for ww:

In[591]:= lambda = Sort[Eigenvalues[ww]]; ListPlot[N[lambda], PlotRange → {-−0.2`, 0.3`}]

Out[591]=
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Later on we will use eigenvectors and eigenvalues in a completely different context when we discuss 
efficient ways of representing image information.

2D Convolution computation and the FFT (Fast Fourier 
Transform)

In this notebook, we've taken a preliminary look at linear filtering with simple examples in 1-D. Later, we 
will extend our techniques to efficiently handle 2-D images. Convolution can either be done in the space 
domain (as above), or in the Fourier domain. If we multiply the fourier transform of the image with the 
fourier transform of the filter (e.g. point spread function), and then take the inverse fourier transform of 
this product, we have the convolution of the image with the filter. Why bother? The main reason is that 
there are fast digital techniques, e.g. the Fast Fourier Transform or FFT, which make doing convolutions 
by multiplying in the fourier domain much more efficient.

Note: Convolutions vs. cross correlations
Convolution can be thought as two steps: 1) flip the filter about the vertical axis (i.e. x -> -x); 2) correlate 
the flipped filter with the signal. If we skip the flipping step, we just have correlation. The following 
illustrates the process of sliding the (unflipped) filter over the signal:
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Convolution can be thought as two steps: 1) flip the filter about the vertical axis (i.e. x -> -x); 2) correlate 
the flipped filter with the signal. If we skip the flipping step, we just have correlation. The following 
illustrates the process of sliding the (unflipped) filter over the signal:

a = 3; b = 5;

Clear[filter]; (*⋆ When you play with building up definitions,  you should clear the function to make sure you don't have constraints left hanging from earlier tries*⋆)

filter[x_]:= N[(1-−Abs[x]/∕a)] /∕; x>-−a && x <0
filter[x_]:= N[(1-−x^2/∕b^2)] /∕; x < b && x>=0
filter[x_]:= 0.0 /∕; x<=-−a || x >= b

In[601]:= Animate[Plot[{edge[x] + .5, edge[x] filter[x -− z]},
{x, -−30, 30}, PlotRange → {{-−15, 15}, {-−1, 2}}], {z, -−10, 10, 0.5}]

Out[601]=
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So why bother flipping in the first place? First, it doesn’t matter if the filter is symmetric. But the reason 
for flipping first is to make the operation associative. So if f, g, and h are filters that get sequentially 
applied to a signal I: f*h*g*I, it doesn’t matter how we group the operations. So f*(h*g)*I =  (f*h)*g*I. This 
is very useful when we want to precompute a filter such as a ∇2G operator for edge detection.
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