Bidirectional processing I:

feedforward & feedback networks for
recognition

Focus today on feedforward architectures

recognition

» The computational problems of scalability and
flexibility

* Feedforward models

* Feedback models

computational problems

Inferences about the
image involve various
inferences:

¢ types of features &
attributes (shapes,
material)

® recognition over
levels of

abstraction (parts,
objects, actions,
scenes)

* spatial scales

* relationships

Descriptions are inferences of object properties and relationships
— i.e. causes of image intensities, not of image intensity patterns

A crucial assumption is that these inferences are based on
deep, generative knowledge of how virtually any natural
image could be produced




computational problems
Need to model uncertainty

vision is concerned with causes of image intensity patterns, but the
causes of behavioral relevance are encrypted and confounded

many hypotheses about cause can be consistent with the same
local image evidence

local variations in image evidence can be consistent with the same
cause

accurate perceptual decisions resolve these ambiguities by
combining lots of image evidence with built-in knowledge

computational problems

Need to solve scalability

Solving toy (low-dimensional) problems rarely
scales up to deal with the complexity of natural
images.

In object recognition, humans have the capacity to
quickly deal with an enormous space of possible
objects (30 to 300K) as they appear in different
contexts in natural images for different tasks.

computational problems

Need to solve task flexibility

Vision stimulates and support answers to a
limitless range of questions. Human vision doesn’t
just recognize, it interprets scenes.

e.g. description of the fox

“One can see that there is an animal, a fox~in fact a baby fox. It is emerging from behind the base of a tree not too far from the
viewer, is heading right, high-stepping through short grass, and probably moving rather quickly. Its body fur is fluffy, reddish-brown,
relatively light in color, but with some variation. It has darker colored front legs and a dark patch above the mouth. Most of the body
hairs flow from front to back...and what a cute smile, like a dolphin.”

A little history of computational
pattern/object recognition
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template models, e.g. SDT




1950s

Rosenblatt’s perceptron
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random connections.
perceptron learning algorithm enabled it to feedback too
to learn to classify

Rosenblatt, F. 'The Perceptron, a Perceiving and Recognizing Automaton’, Cornell Aeronautical Laboratory Report No.
85-460-1 (1957);

Rosenblatt, F. Principles of Neurodynamics (Washington, D.C.: Spartan, 1962).

Threshold-logic and
the perceptron
learning rule
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adjust weights, w, to find separating line
limited to linearly separable classification

Rosenblatt, F. 'The Perceptron, a Perceiving and Recognizing Automaton', Cornell Aeronautical Laboratory Report No.
85-460-1 (1957);

Rosenblatt, F. Principles of Neurodynamics (Washington, D.C.: Spartan, 1962).

support vector machines

1963 — linear
1992 — non-linear kernels

. i =sgn Z wiyik(x;,x")
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1980s through 1990s
getting multi-layer perceptrons to work

Output
signal

Input First Secand Output
layer hidden hidden layer
layer layer
GURE 4.1 Architeetural graph of a multilayer perceptron with two hidden layers

solving the supervised learning problem:

error-back propagation for learning weights

Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (8 October 1986). ‘Learning representations by back-propagating errors'.
Nature 323 (6088): 533-536

LeCun,Y,Bottou,L,Bengio,Y,andHaffner,P.Gradient-basedlearningappliedtodocumentrecognition. Proceedings of the IEEE, 86(11):2278—
2324, November 1998.

Paul J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University,
1974

Bryson, A.E.; W.F. Denham; S.E. Dreyfus. Optimal programming problems with inequality constraints. |: Necessary conditions for extremal
solutions. AIAA J. 1, 11 (1963) 2544-2550




1980s

e

recurrent networks
Hopfield network
Boltzmann machines

JeYe)e

e theoretical understanding of what networks were doing
e development of cost (energy) function methods for finding
solutions and learning

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cognitive Science, 9(1), 147-169.

The need for an “architecture” for vision

to manage local uncertainty

and the complexities of real-world images

Pandemonium 1959

| Decision Demon J

Cognitive
Demons

¢ hill-climbing cost functions

1
i Computation
e parallel processing, D D Demons
e |earning /
Data or Image
PR Demons

0. G. Selfridge. "Pandemonium: A paradigm for learning." In D. V.
Blake and A. M. Uttley, editors, Proceedings of the Symposium on
Mechanisation of Thought Processes, pages 511-529, London, 1959.
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Fukushima, K. (1988). Neocognitron - a Hierarchical Neural Network Capable of Visual-Pattern Recognition. Neural Networks, 1(2), 119-130.

supervised and unsupervised learning




primate visual hierarchical neuroarchitecture

1978....1991

Zeki, S. M. (1978). Functional specialisation in the visual cortex of the rhesus
monkey. Nature, 274(5670), 423-428.

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing
in the primate cerebral cortex. Cerebral Cortex, 1(1), 1-47.
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Hierarchical models
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bread and butter of ventral

. Hegde and Felleman, 2007
stream modeling

Hierarchical models
for feature extraction for recognition

Local features progressively grouped into more
structured representations

* edges => contours => fragments => parts =>
objects

Selectivity/invariance trade-off
* Increased selectivity for object/pattern type

* Decreased sensitivity to view-dependent variations
of translation, scale and illumination




ANDs & ORs
Recognize the letter “t”

“t” is represented by the conjunction
of a vertical and horizontal bar: l AND — =t

i=|_l_i=2 i=3 i=l i=3|_ i=3 i=l [i=2 [i=3

OR OR ...
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which can occur at any one of many locations i

“I”: hisavi | h2sava h3asvs.

simple and complex cells as AND- and OR-
like operations

contributing towards an end-goal of invariant
recognition

Riesenhuber & Poggio model
* combine the properties of simple- and

complex-like cells with hierarchical
organization to achieve invariance

Poggio, T. (2011). The Computational Magic of the Ventral Stream: Towards a Theory. Nature Precedings.

two main classes of V1 cells’

* Simple cells
* detect conjunctions of inputs @ -
* similar to a logical AND
* e.g. of similar pixels to form an edge template
* ‘“phase sensitive”

° Complex Ce||S Energy filter
N\ BV i)
* detect disjunctions of inputs @ =

* similar to a logical OR

* e.g. any of several similar oriented edges within a
region of space will fire cell

* ‘“phase insensitive”

“The distinction isn't categorical--i.e. a range of phase sensitivities. And
there other types of cells, e.g. end-stopped. See Mechler, F., & Ringach,
D. L. (2002). On the classification of simple and complex cells. Vision
Research, 42(8), 1017-1033.
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re|ation 1o “deep Filter/feature hierarchies
can be “learned” from

object label . »
. convolutional networks natural image input
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GURE 4.1 Architectural geaph of a multilayer perceptron with two hidden layers.

Deep convolutional network learning
What's new since the 1980s?

large labelled image datasets
faster computations—GPUs

What determines feature hierarchies?

Grouping to form more abstract features, given image regularities that support tasks
— “hand - wire” based on analysis of computation and neural models
* e.g. Riesenhuber and Poggio, ...
— unsupervised learning based on based on successive discovery of image regularities (Barlow)
* detecting “suspicious coincidences”:
- Is p(feature A, feature B) >> p(feature A) p(feature B)
- if s0, recode to remove dependence. E.g. contingent adaptation example
- advantage of general features. but perhaps more useful at lower levels of the hierarchy
— supervised learning
* — “20 questions” approach (Ephstein et al.)

- find diagnostic features that distinguish the categories for the most important tasks to
determine the top level

- repeat at a lower level of abstract to find sub-features that distinguish the diagnostic
features

- ...and so forth

 deep convolutional networks

Filter/feature hierarchies
can be “learned” from

unsupervised natural image input
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Zhu, L., Chen, Y., Torralba, A., Freeman, W., & Yuille, A. (2011).
Part and appearance sharing: Recursive compositional
models for multi-view multi-object detection. IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, 1919-1926.

Zeiler, M., Taylor, G., & Fergus, R. (2011). Adaptive
deconvolutional networks for mid and high level feature
learning. Computer Vision (ICCV), 2011 IEEE International

Conference on, 2018- 2025.

“Compositional” constraints: “Deep belief” networks
suspicious coincidences learning constrained by generative
part-sharing prediction

Explicit, “symbolic” Implicit




What determines feature hierarchies?
An example based on task requirements

Need features for rapid, accurate generalization, given
a visual task requirement.

Object recognition in the context of a task
requirement

What do
these
scenes
Find features of “intermediate complexity”, i.e. have in
image “fragments”, that are most informative for common?
category distinctions
Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate
complexity and their use in classification. Nature Neuroscience
Up” curbs-- requiring a step up Distinguish
from non “up
curpbs”
...that do not

require a step
up and require
different actions




Learning based on informative
fragments for the task

Algorithm finds
fragments that maximize
mutual information

Detect “up curbs” from
an approach angle that
requires a step.

View-specific

Works well T

False Positive Rate

Experimentally tractable
Evgeniy Bart

Do people learn to use fragments of
predicted “intermediate complexity”

Virtual morphogenesis

Brady, M. J., & Kersten, D. (2003).
Bootstrapped learning of novel objects.
Journal of Vision, 3(6), 413-422.

Generating naturalistic object classes

Virtual Phylogenesis
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Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object
Categories. Curr Biol. 18, 597-601

Training

Member of category A or B?




Results

Features of intermediate complexity (local image
patches) predicted human observers ability to classify
new objects from learned categories

A Viam Kragments
0 1 2 3 4
5 6 7 8 9

C Control Fragments
0 1 2 3 4
5 6 7 8 9

Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object
Categories. Curr Biol. 18, 597-601




