
Computational Vision
U. Minn. Psy 5036
Daniel Kersten
Lecture 1

The course

Syllabus is online at courses.kersten.org

Prerequisites
Readings and lecture material

a "lab course"
Grading

General class goals are to learn...

about your own visual system
an interdisciplinary approach to a complex problem
statistical techniques for making good guesses from lots of weak information
how knowledge of vision can be applied to everyday problems
a high-level programming language
to improve your writing

Introduction to the problem of vision

Understanding visual perception is an important problem in psychology
One of the great mysteries of psychology is how the human visual system determines what and where
objects are just by looking. This is the problem of vision. The perception of what is out there in the world
is accomplished continually, instantaneously and usually without conscious thought. The very effortless-
ness of perception disguises the underlying difficulty of the problem.

Vision is important because it is one of the principle routes to our acquisition of knowledge, as well as
guide to its utilization. It takes just one quick glance at the picture in the Figure below to recognize the
fox, a tree trunk, some grass and background twigs. But that is just the beginning of what vision enables
us to do with this picture. With a few more glances, one can see, as one person describes it, that:

“It is a baby fox emerging from behind the base of a tree not too far from the viewer. It is heading right,
high-stepping through short grass, and probably moving rather quickly. Its body fur is fluffy, reddish-
brown, relatively light in color, but with some variation. It has darker colored front legs and a dark patch
above the mouth. Most of the body hairs flow from front to back...and what a cute smile, like a dolphin.”
The ability to generate an unbounded set of descriptions from a virtually limitless number of images
illustrates the extraordinary versatility of human visual processing

Vision is important because it is one of the principle routes to our acquisition of knowledge, as well as
guide to its utilization. It takes just one quick glance at the picture in the Figure below to recognize the
fox, a tree trunk, some grass and background twigs. But that is just the beginning of what vision enables
us to do with this picture. With a few more glances, one can see, as one person describes it, that:

“It is a baby fox emerging from behind the base of a tree not too far from the viewer. It is heading right,
high-stepping through short grass, and probably moving rather quickly. Its body fur is fluffy, reddish-
brown, relatively light in color, but with some variation. It has darker colored front legs and a dark patch
above the mouth. Most of the body hairs flow from front to back...and what a cute smile, like a dolphin.”
The ability to generate an unbounded set of descriptions from a virtually limitless number of images
illustrates the extraordinary versatility of human visual processing

Image

Understanding vision is an important aspect of brain science
With about 10 million retinal receptors, the human retina makes on the order of 10 to 100 million mea-
surements per second. These measurements are processed by about a billion plus cortical neurons.

Visual neuroscientists currently estimate that 40 to 50% of human visual cortex (your gray-matter) is
closely involved in visual processing. The general structure of cortical layers and pattern of inter-connec-
tivity is similar across the neocortex. Thus the hope that if we can understand visual computations in the
cortex, this knowledge may generalize to other cognitive domains.

Panel A of the figure below shows a subset of the visual areas of the monkey, together with their
interconnections. The areas of the rectangles represents the relative proportions of neurons in each,
and the thickness of the lines the proportion of feedforward neural fibers connecting them.

 Vision is a complex process requiring mathematical modeling and programming tools...

Vision is a challenging mathematical and computational problem
The problem of vision is not only important from the point of view of understanding the brain, but it is
also theoretically challenging. Formal solutions have implications for robotics and artificial intelligence.
As such vision is an active area of research for computer scientists, engineers, and mathematicians as
well.

Why is it a hard formal problem?
A central mathematical problem is the multiplicity of possible scene or object configurations that could
have caused a particular set of image measurements. Richard Feynman compared the problem of
vision to deciding what jumped into a swimming pool just by measuring the bobbing water height as a
function of time using a ruler in the corner of the pool. There are lots of ways of in which a given pattern
of water heights could arise. Further, as with water height, image measurements are very indirectly
related to useful scene information--like was it a beach ball or infant that fell in? An understanding of
image formation and optics does not sufficiently constrain the number of possible scene descriptions, S
that could have given rise to any one image, l. This is one of the defining characteristics of inverse
problems in general--the data underconstrain the solution.

2 1.IntroToComputationalVision.nb

A central mathematical problem is the multiplicity of possible scene or object configurations that could
have caused a particular set of image measurements. Richard Feynman compared the problem of
vision to deciding what jumped into a swimming pool just by measuring the bobbing water height as a
function of time using a ruler in the corner of the pool. There are lots of ways of in which a given pattern
of water heights could arise. Further, as with water height, image measurements are very indirectly
related to useful scene information--like was it a beach ball or infant that fell in? An understanding of
image formation and optics does not sufficiently constrain the number of possible scene descriptions, S
that could have given rise to any one image, l. This is one of the defining characteristics of inverse
problems in general--the data underconstrain the solution.

Here is a demonstration of the lack of locally recognizable features in a typical "natural" image -- the
problem of local ambiguity.

In[1]:= Manipulate

ImageApplyUnitStep[#] &, , Masking → Graphics[Disk[Scaled[{x, y}], r]],

{x, 0, 1}, {y, 0, 1}, {{r, .1}, .01, .5}

Out[1]=

x

y

r

Not only can the same object can give rise to different images (panel a below), but different objects can
give rise to the same image (panel b below).

1.IntroToComputationalVision.nb 3

Panel b illustrates global ambiguity. The left column illustrates the “true” shapes of two facial profiles.
The top right image is an image of the “squashed” face on the left, and the bottom right image is an
image of the elongated face to its left. But these images in the right column are identical. How can this
be?

Although there has been considerable progress in computer vision, no general-purpose algorithm can
make decisions about objects in natural images with the precision and accuracy of a human--e.g. to
determine not only identities, but object properties such as the material, the precise shape of parts and
relations, or the object’s boundaries.

From images to actions, objects: Preview of formalizing the problem
Formally, we want to understand how to get useful actions A, from image measurements I:
 I -> A
Think of I and A as multivalued descriptions (e.g. vectors) of image measurements and action parame-
ters. Actions are general--they could be motor actions such as reach and grasp, or descriptions of the
fox above. To get from I to A, vision usually requires information about objects, surfaces, and scenes
and their relationships to the viewer. Properties of objects and their relationships will be called scene
attributes, represented by a vector S.

Consider the question: How can one estimate parameters of objects--their colors, shapes, materials,
their relationship to other objects, to the viewer, to the viewer's hands, etc..--all from a glance? This is
often referred to as the problem of image understanding, to emphasize that vision is a problem of
perceptual inference. That is, given an image which is just a description of the light intensities at each
point in space, and time (e.g. video camera or the sensors at the back of your eye), how can one infer
the properties of the scene that caused the image?

In general, we'll represent the image by an array of intensities, I(x,y,t), varying in space and/or time.
(More generally, I could be some derived image measurements, like the location and orientation of local
edge segments). Actions A, such as parameters required for grasping an object, or saying "that's a
dog", require information about scene attributes S. Thus sometimes, we'll think of A as a function of S:
A(S). But many times, we'll study problems in which A ~ S, i.e. in which an action parameter is the
same as the scene property.

Then the problem is:
 I -> S

An example is S = depth of an object from the viewer, or S = pigment property of the object. For exam-
ple, the pattern of intensities on the left and right rectangles of the left block are the same. Further, the
right pair of cylinders as the same pattern in the horizontal direction. Yet, the left rectangle appears
darker than the right. But not so much for the cylinders. Why? The answer is that your visual system is
trying to estimate the pigment level of the presumed surface being viewed--NOT the intensity. (example
from: Knill & Kersten, 1991)

4 1.IntroToComputationalVision.nb

In general, we'll represent the image by an array of intensities, I(x,y,t), varying in space and/or time.
(More generally, I could be some derived image measurements, like the location and orientation of local
edge segments). Actions A, such as parameters required for grasping an object, or saying "that's a
dog", require information about scene attributes S. Thus sometimes, we'll think of A as a function of S:
A(S). But many times, we'll study problems in which A ~ S, i.e. in which an action parameter is the
same as the scene property.

Then the problem is:
 I -> S

An example is S = depth of an object from the viewer, or S = pigment property of the object. For exam-
ple, the pattern of intensities on the left and right rectangles of the left block are the same. Further, the
right pair of cylinders as the same pattern in the horizontal direction. Yet, the left rectangle appears
darker than the right. But not so much for the cylinders. Why? The answer is that your visual system is
trying to estimate the pigment level of the presumed surface being viewed--NOT the intensity. (example
from: Knill & Kersten, 1991)

The problem of computing scene parameters from images is an example of an inverse problem. It is
called this, because the goal is to estimate cause, such as change in pigment level, from data--the
image measurements. Computing image intensities (the data) from the causes is called the forward
problem, and involves specifying a “generative model”.

The generative model
Visual understanding is only possible because images are a structured function of what is out there, i.e.
images are functions of scenes: I = function(S). Scene properties can be said to cause image patterns.
This is called a forward or generative model.

3D computer graphics is a good example of a forward problem involving generative models. Sometimes
called of "forward optics" -- how to go from a description of the scene environment to the image:

 S -> I

In other words, a function that describes what "out there in the world" (object shape, lighting, etc.)
causes the image intensities observed. This is also the problem of creating "virtual reality".

The causal structure leading to the data (image) is well-defined, hence generative model. The figure
below shows how one might specify a set of "knobs" S when synthesizing or generating stimuli I (which
could include image, as well as other sensory patterns, such as tactile ones) using scene descriptions:

We'll spend some time learning both about methods for generative modeling of images, as well as
techniques for solving vision problems by inverse inference.

Generative models are important because: 1) they are the causes of the regularities that vision must
exploit; 2) they can provide quantitative models for experimenters to manipulate visual stimuli to test
models; 3) generative models may indeed by used explicitly by the brain--a topic we return to at the end
of the course.

1.IntroToComputationalVision.nb 5

We'll spend some time learning both about methods for generative modeling of images, as well as
techniques for solving vision problems by inverse inference.

Generative models are important because: 1) they are the causes of the regularities that vision must
exploit; 2) they can provide quantitative models for experimenters to manipulate visual stimuli to test
models; 3) generative models may indeed by used explicitly by the brain--a topic we return to at the end
of the course.

Vision as (statistical) inference
So to sum up so far, the formal problem of vision is:

1. An image I has regularities caused by an underlying structure that has useful components S:
I = function(S)

2. The visual system has various goals (make decisions, estimates, descriptions, actions...) based on
components in the underyling structure (S). I.e.
 to go from I to a description (or decision, estimate, etc.) S or more generally, an action A. We'll put a
prime on S, i.e. S' to distinguish our estimate of a scene attribute from its actual value S:

 I -> S'

This is the sense in which vision can be viewed as an inverse inference problem--inferring useful
causes from image data.

Distinguishing our estimate from the true value is important, because any estimator, including our own
visual systems will make mistakes--we don't always see the correct depth. Further, we don't always see
the same thing given the same image. Later we'll look at visual illusions that illustrate these points. We
will see that the theory of statistical inference provides a natural framework to model under-constrained
problems.
Over a century ago, Hermann Helmholtz described perception as "unconscious inference". Another way
of expressing this is to view perception as a process that makes good guesses from indirect and ambigu-
ous image input. As we proceed through the course, we will justify and amplify on the Helmholtz defini-
tion of perception.

More on the problem of ambiguity for objects

An example of ambiguity in depth and brightness: a "mystery image"
The following section has a "mystery" image I, which is just a 2D list (matrix) of light intensity values.
Let's make a plot that represents intensity as height:

6 1.IntroToComputationalVision.nb

10

20

30

40

5

10

15

0
50

100
150
200

10

20

30

40

This is a plot of I as a function of position, (x,y).

Suppose our goal is to estimate depth at each position, i.e. obtain S'(x,y) from I. One idea is to
assume that I is proportional to depth, S at each location. Although naive, it isn't a terrible idea--there is
some correlation between intensity and depth. Given this assumption, we'd conclude that the high
middle ridge is closer than the bottom ridge. But as we will see in a moment, the dominant middle ridge
that we see here does not correspond to near depths.

Consider another perceptual inference goal. What if we want to estimate the surface color (pigmentation
or "paint") of the image? Let S'' be the surface color, where S'' is big for white surfaces, and low for
black surfaces. Now it seems even more plausible that I would correlate very well with S''. But how
well?

Let's represent the mystery image in a form where your own visual system can judge...

Intensity representation of same data in mystery image:

First, note that the high intensity areas of the teeth are poor predictors of "nearness" in depth. They
seem to be better measures of "whiteness". But what about the highlight on the lower lip? This pro-
duces a bump in the surface height plot above, but this a highlight due to the glossiness of the lip, and
the pigmentation of the actual lip surface is not any lighter than other areas of the lip.

Information about shape and pigment is ambiguous, and the two are confounded in the simple image
intensity measurements.

The problem of task
A recurring theme that will appear throughout this course is the importance of carefully characterizing
the task of the person or "agent". Some kinds of scene or object information are more important to
estimate the other kinds depending on the task of the agent, the behavioral goals.

Here's example of two tasks: Face identity vs. illumination direction. In the first task, given an image,
decide whether it belongs to the George (s1) or Jim (s2).

Alternatively, there could be another task: given the same image, decide whether it is illuminated from
the left or right.
The figure below illustrates the kinds of image variation that can result from different facial shapes (just
two in this case), and different illumination conditions:

1.IntroToComputationalVision.nb 7

A recurring theme that will appear throughout this course is the importance of carefully characterizing
the task of the person or "agent". Some kinds of scene or object information are more important to
estimate the other kinds depending on the task of the agent, the behavioral goals.

Here's example of two tasks: Face identity vs. illumination direction. In the first task, given an image,
decide whether it belongs to the George (s1) or Jim (s2).

Alternatively, there could be another task: given the same image, decide whether it is illuminated from
the left or right.
The figure below illustrates the kinds of image variation that can result from different facial shapes (just
two in this case), and different illumination conditions:

There are HUGE objective changes in the image going from left to right ("variability in illumination") that
human perceptual judgments give very little weight to. The identity of a face is more important than
which direction the light is coming from.

Where does the field of computational vision stand today?
It is only relatively recently that machine vision is getting close to practical solutions to the

general object recognition problem: identify objects in natural images from arbitrary viewpoints, illumina-
tion conditions, and in arbitrary contexts. However, algorithms still lack the flexibility and robustness of
human vision. Further, it isn’t clear how the algorithms of computer vision relate either to human behav-
ior or to the brain’s neural networks.

One of the major contributions of computer vision has been to define the mathematical problems
of vision and to show that these can be quite difficult to solve. Historically, the problem of chess was
considered a prototypical problem for Artificial Intelligence. Today we have machines that can beat most
of us at chess. A lot of their power comes from high speed brute force search, likely quite different from
the brain processes of the grand masters. Nevertheless, they can beat us, whereas the problem of
picking out the chess pieces from the box (because of variability over viewpoint, lighting, material, and
style) and setting them up on the board in the right places is still a formal challenge.

In this course we will study how the visual system deals with variability, such as due to over
illumination, viewpoint and material. In addition to the problem that different illumination conditions (e.g.
light source coming from above left or above right), and different viewpoints produce different images of
the same object, vision has to cope with occlusion of one piece by another. Further, like fonts, different
chess sets have different styles. To some extent style variation can be modeled in terms of geometric
variation. But the variations can be quite complex to characterize.

To further sober (and challenge you), the remarkable limitation of our understanding of visual
inference is underscored by the fact that there are no machine systems that can solve the patently
simple problem of deciding whether a surface has a light or dark pigment under general illumination.
I.e., given a white or black chess piece, what color is it? The problem is that a black piece in bright light
can have the same average intensity as a white piece in dim light. This is a problem that we will return
to later in the context of human material and lightness perception.

On the positive side, there has been considerable theoretical and empirical progress in under-
stand the problems of vision, how to solve them, and how the brain enables us to see with such remark-
able competence. Hopefully this course will give you a useful and exciting introduction to the field. To
get started, it helps to have an understanding of the interdisciplinary nature of vision science.

8 1.IntroToComputationalVision.nb

To further sober (and challenge you), the remarkable limitation of our understanding of visual
inference is underscored by the fact that there are no machine systems that can solve the patently
simple problem of deciding whether a surface has a light or dark pigment under general illumination.
I.e., given a white or black chess piece, what color is it? The problem is that a black piece in bright light
can have the same average intensity as a white piece in dim light. This is a problem that we will return
to later in the context of human material and lightness perception.

On the positive side, there has been considerable theoretical and empirical progress in under-
stand the problems of vision, how to solve them, and how the brain enables us to see with such remark-
able competence. Hopefully this course will give you a useful and exciting introduction to the field. To
get started, it helps to have an understanding of the interdisciplinary nature of vision science.

Computational vision: combining disciplines

Combining approaches from psychology, neuroscience, and computation
Vision is a part of cognitive science -- an interdisciplinary effort to understand the nature of knowledge,
its acquisition, storage and utilization. It is also part of Cognitive Neuroscience—the study of the relation-
ship between brain and cognitive behavior. I'd like to spend some time motivating the importance of an
interdisciplinary study of vision.

Some motivation may be required here because of the nature of the course. In this course, we
will study vision from a computational point of view. The topics are exciting because the course
involves integrating knowledge across disciplines. But it can be frustrating because although it involves
some math and computation, it isn't like most quantitative disciplines that have a structured sequence,
and you will have to revisit content you've studied before, fill in gaps in your knowledge, and learn new
concepts to make the interdisciplinary picture come into focus.

What is Computational Vision? It is the study of how to compute useful scene information, object
properties, and action parameters from image measurements. And central to this course, it is in particu-
lar the study of how we as humans accomplish this computation. Thus, we will study human visual
behavior to understand what information is and is not used for visual inference. And we will study neural
systems because we would like to understand how the machinery of the eye and brain enables actions
and the inference of properties of scenes in the world from images.

What does it mean "to understand visual perception"?
If we think we understand human vision, then we should be able to build or simulate a machine "which
sees like we do". But what does this mean? There are several levels of abstraction that have to be
considered, and the answer to this question requires careful thought. Robot vision, even if excellent,
would not necessarily work the same way as human vision even at a very general level. For example, a
vision system could rely on the reception of natural image patterns, or could actively send out signals
to see how the environment modulates them. An example of the latter case would be to project alternat-
ing stripes of light and dark on surfaces, and then use the systematic distortion of the stripes in the
image which to decode the shape. In fact, this latter principle is used (laser painted stripes) in commer-
cial applications to measure shapes (e.g. Cyberware scans of the human face). But biological vision (in
contrast to echo location) processes nature’s patterns without active modulation of its images.

The study of cognitive science involves behavioral, biological and mathematical approaches.
Let’s take a closer look at the methods of three specific areas within each of these general approaches:
Psychophysics, Neuroscience and Computer Vision. We will gain some familiarity with all three of these
disciplines in this course, but let us first have a preview of their respective contributions and see how
they relate to different levels of analysis.

1.IntroToComputationalVision.nb 9

Behavior and Psychophysics: Black-box approach to construct a model
that "sees like we do"

This approach has a major goal to qualitatively and quantitatively describe visual behavior. Psy-
chologists, ethologists and behavioral and systems neuroscientists all study behavior...but even physi-
cists and mathematicians get in the act. Careful description is an essential first step in any science (e.g.
Mendel, and genetics).

The study of behavior can be of at least two types:

First, we need to know and understand the visual functions of an organism--its purpose and

goals. Human vision is used to identify objects, to read, to walk, to drive, to steady oneself, to reach and
grasp, to throw, to plan, to judge beauty, and the list goes on. Different tasks require different kinds of
image processing and inference.

The second type of behavioral study is psychophysical analysis. Psychophysics measures the
behavioral consequence of physical (or informational) variations in the image stimulus with a goal
towards understanding underlying neural mechanisms. Examples are: the measurement of apparent
brightness as a function of physical light intensity; just discriminable differences in light intensity;
changes in sensitivity as a function of adaptation; changes in recognition performance as a function of
viewpoint. Clever psychophysical experiments can reveal not only the diverse visual processing require-
ments, but also test hypotheses about alternative accounts of a given process.

Psychophysics goes beyond mere description and historically has made some striking predic-
tions about the nature of the underlying biology. For example, the psychophysics of color matching in
the 19th century anticipated three physiological cone receptor types and their relative spectral sensi-
tivites as a function of wavelength. This so-called “trichromacy” theory of was not physiologically estab-
lished at the cell level until the 1960’s. We will see later how psychophysics in the 1940’s showed that
photoreceptors (rods) in the eye could transduce single photons into an electrical signal. Certain bright-
ness illusions discovered in the 19th century suggested patterns of neural connectivity and spatial
interaction (called “lateral inhibition”) that were not put on a firm physiological and neural foundation
until the 1950’s.

A psychophysical approach has clear limits in its ability to give an account of how we see. One
reaches a point where too many theories of what is “inside the box” give the same input/output relation
in the psychophysical data. For example, computing y as: y = x(x - 1) gives the same mathematical
relationship as a different computation in which x is subtracted from its square : y = x^2 –x. The fact
that different combinations of wavelengths of light appear the same could have many neural explana-
tions. Researchers eventually "go inside the box", an animal "model" of the box (like a frog, cat or
monkey) to find out what was going on at a finer level of analysis. This brings us to the methods of
neuroscience, such as anatomical tracing, electrophysiologal recording from single neurons, and in
humans, brain imaging.

10 1.IntroToComputationalVision.nb

Neuroscience: Going inside the box
What happened when physiologists and anatomists looked at the biological basis of the psy-

chophysical descriptions? Indeed, as discovered using microspectrophotometry of single cones in the
1960’s, there are 3 distinct types of cone photoreceptors in the retina at the back of the eye. Electro-
physiological recordings showed that their spectral sensitivities were remarkably similar, but not identi-
cal, to those inferred from psychophysics. It was discovered that are neural circuits (lateral inhibition)
in the retinas of horseshoe crabs, cats, and monkeys that behave like Ernst Mach predicted to account
for certain brightness illusions.

And as we will see in the next lectures, 1940s psychophysical predictions were by verified neuroscien-
tists in the 1970’s: when rod photoreceptors were sucked up into tiny glass tubes and exposed to
extremely small amounts of light, they could be seen to transduce single photons. Later, we will see
examples of more recent neural accounts of psychophysical observations that go beyond retinal process-
ing to other parts of the brain, accounts that are being tested using both electrophysiological and brain
imaging techniques.

In the 1950's and 1960's there was a tremendous excitement that we could understand the
brain's function and in particular visual perception in terms of single neurons....but neurobiologists had
probably been particularly lucky...at least they were more fortunate than if the brain had been designed
like a modern digital computer. In the 1970’s, it became increasingly apparent that understanding how
biological systems discriminated light and pattern was only scratching the surface of the problem of
vision. Computer vision was beginning to show that competent vision was truly a problem of sophisti-
cated inference and estimation. The number of visual areas discovered in the cortex of the brain grew.

Vision was becoming more complicated and harder than expected.

Computer Vision: The need for tools to deal with the complexities of
perceptual inference

Imagine the following example. Sometime in the distant future, Martian scientists have acquired a
Terran computer device that plays an ancient video game, say Super Mario Brothers. Now consider the
various ways these scientists might go about trying to understand this device.

First, they could adopt technique adapted from a neuroscience, "anesthetize" the computer (i.e.
just take away the screen, so there is no external output), and begin using a volt meter or a logic probe
to figure out what the box is doing. This is like doing neuroscience without psychology or psy-
chophysics. The scientists might learn about logic gates, shift registers, and RAM, etc.. But, what are
the chances of figuring out that the machine was even designed to play a game? Pretty slim.

But now give the scientists a working system complete with screen and the controls, but minus
the logic probe. This is like doing behavioral science--psychophysics. With some careful experiments,
they could begin to figure out the rules of the game. (Although, they might be left with questions forever
unanswerable, like "why was this machine built in the first place?"). If asked to "build a machine" that
does the same thing, the Martian scientists might still have a hard time. They might be able to build a
copy that mimics the behavior of the game, but even if the scientists had a solid body of results using
the logic probe and observing the functioning system as a whole with the screen on, there is still some-
thing missing. They would have missed the point that the essential structure of the game is not the
hardware, nor the input-output relations, but rather a highly complex computer program. They need an
understanding of the the algorithms, and how that these are related to the hardware that supports it.

In short, what is missing is an understanding of how the pieces fit together to solve a specific
information processing task-- a task that involves getting magic mushrooms, escaping turtles, smashing
brick ceilings to get coins, jumping up flag poles, etc. Without this knowledge, they would be unable
build new video games, like Mario Brothers. True understanding of vision should result in the generaliza-
tion, e.g. the capability of building a machine that sees like us, but which may differ from the original in
ways that we can understand.

This example illustrates the need for a computational approach to vision. The computational
level involves understanding how image patterns are formed (generative models), and how scene
inferences can be drawn from image patterns. To handle the complexity of natural patterns requires the
tools of computer programming, and has been increasingly emphasized in recent years, the mathemat-
ics of statistical inference.

Although the computational approach grew out of the early communications theory, cybernetic,
and artificial intelligence studies of the late 1940's, 1950's and 1960's (e.g. Turing, von Neumann,
Wiener, Shannon), one of the chief protagonists of this approach for the study of visual perception was
the late David Marr from MIT in the early 1980’s.

1.IntroToComputationalVision.nb 11

In short, what is missing is an understanding of how the pieces fit together to solve a specific
information processing task-- a task that involves getting magic mushrooms, escaping turtles, smashing
brick ceilings to get coins, jumping up flag poles, etc. Without this knowledge, they would be unable
build new video games, like Mario Brothers. True understanding of vision should result in the generaliza-
tion, e.g. the capability of building a machine that sees like us, but which may differ from the original in
ways that we can understand.

This example illustrates the need for a computational approach to vision. The computational
level involves understanding how image patterns are formed (generative models), and how scene
inferences can be drawn from image patterns. To handle the complexity of natural patterns requires the
tools of computer programming, and has been increasingly emphasized in recent years, the mathemat-
ics of statistical inference.

Although the computational approach grew out of the early communications theory, cybernetic,
and artificial intelligence studies of the late 1940's, 1950's and 1960's (e.g. Turing, von Neumann,
Wiener, Shannon), one of the chief protagonists of this approach for the study of visual perception was
the late David Marr from MIT in the early 1980’s.

Computational vision requires study at several levels of analysis

Although the MIT scientist, David Marr made a number of specific contributions to understanding human
vision in the late 70s early 80s, he is particularly well-known for his elucidation of a computational
approach to vision as necessarily involving of multiple levels of explanation (Marr, 1982). Let's see
what this means.

Functional ("computational") Theory. What is the goal of a computation?
Why is it appropriate? What strategy can carry it out? Both psychology and theoretical analysis help to
answer these questions. For example, the Necker cube (below) perceptually flips because the goal of
the visual computation is to represent the 3D structure of the objects causing the 2D retinal image.
There are two equally plausible 3D interpretations. But are there only two?

Necker cube

Representation and algorithm. How to represent input and output? How to get
from input to output?
Psychology and computer program models help answer these questions. For example, mental rotation
experiments done with human observers give clues as to how visual information is represented and
processed. The time to decide whether a sample figure on the right is a rotated version of the one on
the left or not, increases monotonically with the actual angle required to check the match (over a certain
range and conditions).
The right figure is an image of the same object as the one on the left, but is rotated by 30 degrees about
the vertical axis:

12 1.IntroToComputationalVision.nb

Psychology and computer program models help answer these questions. For example, mental rotation
experiments done with human observers give clues as to how visual information is represented and
processed. The time to decide whether a sample figure on the right is a rotated version of the one on
the left or not, increases monotonically with the actual angle required to check the match (over a certain
range and conditions).
The right figure is an image of the same object as the one on the left, but is rotated by 30 degrees about
the vertical axis:

In the next figure below, the right figure is rotated by 80 degrees:

Implementation or hardware. How to build it with actual components?
An algorithm can be implemented with pencil and paper, devices with mechanics, vacuum tubes, silicon
chips, or neurons. Neurobiology and neural network computer simulation help to understand the particu-
lar characteristics of neural computation. For example, after-images are a well-known perceptual phe-
nomenon. The after-image of a flash from a camera has to do with how human vision implements
transduction in the retina, and the receptors in particular.

In future lectures we will see the relationships between human behavior, neurophysiological mecha-
nisms, and computational theory. Sometimes the computational theory comes first, but sometimes we
will work backward from an experiment or visual phenomenon to the theory. For example, we will look
at:

o quantum limits to vision-- What are the theoretical limits to light discrimination? -> Computa-
tional theory of discrimination.

o lateral inhibition in neural networks-- for detecting edges? or to reduce redundancy? -> Compu-
tational theory of neural image coding.

The next lecture will begin by studying one of the simplest of vision problems: How well can we detect
and discriminate light intensity? What are the limits to this ability? Quantum nature of light? What is the
computational theory for brightness discrimination?

Getting started with Mathematica
Mathematica vs. Matlab vs. Python

Introduction

See Assignment #0 in the course web page.

1.IntroToComputationalVision.nb 13

To get an overview with audio, go to the screencast:

http://www.wolfram.com/broadcast/screencasts/handsonstart/

or for version 9:

http://www.wolfram.com/support/learn/get-started-with-mathematica/

Go to the Help menu in Mathematica. Go to Documentation Center, and from
there to Getting Started Videos or Find Your Learning Path.

You can read Mathematica files free with Mathematica Player.

Front-end and Notebooks: Organize, outline, document. Program, evaluations,
data all in one place
Kernel: Separate program does the calculations

Some practice

Numerical Calculations. You can do arithmetic. For example, type 5+7 as shown in
the cell below, and then hit the "enter" key. Note that if you
try division, e.g. 2/3, you get the exact answer back. To get a decimal
approximation, type N[2/3].

5+7

12

2 /∕ 3

2

3

N[2/∕3]

0.666667

You can go back and select an expression by clicking on the brackets on the far right. These brackets
serve to organize text and calculations into a Notebook with outlining features. You can group or
ungroup cells for text, graphs, and expressions in various ways to present your calculations. Explore
these options under Cell in the menu. You can see the possible cell types under the Style menu.

Try some other operations, 5^3, 4*3 (note that 4 3, where a space separates the digits is also inter-
preted as multiplication.

◼ Evaluate 4*3

◼ Compare with 4 3 (i.e. 4 followed by a space, and then 3).

◼ Seems pretty dumb so far...but you can see that Mathematica's default handling of arithmetic is
special:

◼ Compare the square roots of : 12345678987654321 and 12345678987654321.0

14 1.IntroToComputationalVision.nb

◼ Compare (2^.000000000001)^1000000000000 with (2^(1/1000000000000))^1000000000000

If you don't explicitly tell Mathematica that your expressions involving floating point numbers, it will treat
the numbers as true integers. And in general, Mathematica will do symbolic processing as a default,
and assume you want as general an answer as possible. Because symbolic processing demands
considerably more computer resources than numerical processing, this result in annoying conse-
quences, like slow or no responsivity. So remember to include a decimal point somewhere, or use N[] to
force a floating point representation, and consequently numerical computations.

Front-end stuff
There's a lot to explore stylistically in Notebooks, but one of the most common things you will do is to
select and manipulate the brackets on the far right. You can go back and select an expression by
clicking on the brackets on the far right. These brackets are features of the user interface and serve to
organize text and calculations into a Notebook with outlining features. You can group or ungroup cells
for text, graphs, and expressions in various ways to present your calculations. Explore these options
under Cell in the menu. You can see the possible cell types under the Style menu.

By ending an expression with ; you can suppress the output.

(3/∕4)/∕6;
(3 4)/∕6;

a = Table["hi", {50000}]

A verylargeoutputwasgenerated. Showinga sampleof it.

{hi, hi,
hi, hi, hi, hi, hi, hi, hi, hi, "49940#, hi, hi, hi, hi, hi, hi, hi, hi, hi,
hi, hi}

showless showmore showall setsizelimit...

The most recent result of a calculation is given by %, the one before by %%, and so forth. Try it on the
previous two outputs

Built-in functions

Mathematica has a very large library of built-in functions. They all begin with an uppercase letter and
the arguments are enclosed by square brackets. Knowing that, you can often guess the form of a
function.

◼ Try taking the logarithm of 8.0

◼ Did it return log to the base 10 or e? Check the definition by typing "?Log" or by typing "Log[E]" and
"Log[10]"

You can get information more about a function, by clicking on the resulting link >>

◼ Try Log[2,8]

 You can get information about a function, e.g. for the exponential of a function, or for plotting graphs by
selecting the function (e.g. Exp) and going to "Find Selected Function" in the Help menu. Or you can
enter:

1.IntroToComputationalVision.nb 15

?Exp

Exp[z] givestheexponentialof z. $

and then click on >> to take you to the documentation page.

?Plot

Plot[f , {x, xmin, xmax}] generatesa plotof f as a functionof x fromxmin to xmax.
Plot[{ f1, f2,…}, {x, xmin, xmax}] plotsseveralfunctionsfi. $

If you type two question marks before a function, ??Plot, you'll get more information. Try it. What does
the Random function do?

Lists

We will uses lists a lot. Lists are general in Mathematica. Their elements can be numbers, symbols,
other lists, and a list can have mixed types.

{1.1, "hi", {Pi, 33 /∕ 2}}

1.1, hi, π,
33

2

Mostly we will use lists to represent vectors and matrices. You can quickly make a list using the Table
function:

avector = Table[i^2, {i, 1, 6}]

{1, 4, 9, 16, 25, 36}

amatrix = Table[N[Cos[Sqrt[i^2 + j^2]]], {i, -−6, 6}, {j, -−6, 6}];

Remove the ; above to see what the list looks like in output form.
We will use matrices (a list of lists of pixels) to represent images. We can visualize what this 2D list
looks like using Image[]

Image[amatrix]

Defining your own functions

Let's illustrate function definition by building a really simple model of a neuron, such as a retinal gan-
glion cell in the eye. We'll see the justification later. Suppose the neuron takes a set of inputs, say x1,
x2, x3, (e.g. from the outputs of three other neurons in the network) and produces an output signal, call
it y. For a so-called linear model, the output is the weighted sum of the inputs. We'll assume the weights
are fixed and given by w1, w2, w3.

w1 = -−1; w2 = 2; w3 = -−1;

y[x1_, x2_, x3_] := w1 *⋆ x1 + w2 *⋆ x2 + w3 *⋆ x3;

(This code is pretty primitive and not very general--don't worry, we'll get more sophisticated later).
The underscore in x1_ is important because it tells Mathematica that x1 represents a slot for a variable,
not an expression.

16 1.IntroToComputationalVision.nb

(This code is pretty primitive and not very general--don't worry, we'll get more sophisticated later).
The underscore in x1_ is important because it tells Mathematica that x1 represents a slot for a variable,
not an expression.

:= vs. =
Note that when defining a function, we used a colon followed by equals (:=) instead of just an equals
sign (=). When you use an equals sign, the value is calculated and assigned immediately. When there is
a colon in front of the equals, the value is calculated only when called on later. So we use := for function
definition because we need to define the function for later use and evaluation, when we may have new
values for its arguments.
A double equals (==) has yet another meaning and is used to represent a symbolic equation which
evaluates to True if left and right hand sides are identical.

Let's define xv using :=, and xf using =

xv := RandomInteger[10];
xf = RandomInteger[10];

Now evaluate r1 and r2 three times each. What is the difference between the two definitions?

{xv, xf}

{6, 3}

..but if we evaluate xf = RandomInteger[10] again, we re-initialize it:

xf = RandomInteger[10]

7

xf = RandomInteger[10];
y[xf, xf, xf]

0

y[xv, xv, xv]

-−5

Why does our neuron model always output a zero when the inputs all have the same value? What
other family of inputs will all produce zero output?
Hint: The weights we defined can be thought of as a discrete approximation to a 2nd derivative operator
in differential calculus.

Graphics & more function definitions

Later on we'll require defining a function that suppresses small outputs and "squashes" or clamps large
outputs to a maximum level. Here is an example:

squash[x_] := N[1/∕(1 + Exp[-−x+4])];

Also note that our squashing function was defined with N[]. Again, remember that Mathematica trys to
keep everything exact as long as possible and thus will try to do symbol manipulation if we don't explic-
itly tell it that we want numerical representations and calculations.

Let's plot a graph of the squash function using the syntax we discovered above for -5<x<10

1.IntroToComputationalVision.nb 17

Plot[squash[x], {x, -−5, 10}]

-−4 -−2 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

We'll use this and similar functions to model the small-signal compression and large signal saturation
characteristics of neural output.

Define a new function squashedExp[] that applies squash to an exponentiated value (i.e. takes Exp[x]
as the argument of squash[])

squashedExp[x_] := squash[Exp[x]];

Plot squashedExp[] for x going from -5 to 5

Plot[{Exp[x], squashedExp[x]}, {x, -−5, 5}]

-−4 -−2 2 4

2

4

6

8

10

Even though Exp grows exponentially fast with x (by definition!), squash “keeps a lid” on it.

Ask Mathematica for the definition of squashedExp[]

It can be important to check your definitions like this. One reason is that, as we will see later, Mathemat-
ica definitions can be built up with multiple constraints. And sometimes you might add to a function
unwittingly and it appears to misbehave. You can check your defintion by asking Mathematica for it.

Define a new version of the squash function to include a steepness term λ𝜆, and use Manipulate to
control λ𝜆
Mathematica has particularly convenient GUI tools. One of the most common is Manipulate[]

18 1.IntroToComputationalVision.nb

dsquash[x_,λ_] := N[1/∕(1 + Exp[(-−x+4)/∕λ])];
Manipulate[Plot[dsquash[x,λ], {x, -−5, 10}],{{λ,1},0.1,2}]

λ

-−4 -−2 2 4 6 8 10

-−1.0

-−0.5

0.5

1.0

Here’s a 3D surface plot representing possible selectivities in the receptive field of a simple cell in the
visual cortex:

Manipulate[Plot3D[Exp[-−x^2 -− y^2] *⋆ Sin[a *⋆ x + b *⋆ y],
{x, -−2, 2}, {y, -−2, 2}, PlotRange → {-−1, 1}], {a, 1, 6}, {b, 1, 6}]

a

b

1.IntroToComputationalVision.nb 19

Try using your mouse and mouse button to rotate the above plot. What does the Option or Alt key do?

Image processing

Mathematica has a large library of built-in image processing functions. (Go to Help/Wolfram Documenta-
tion, and then search
for image processing.)

You can drag an image into the argument slot

Image ;

You can select, copy, and the paste the image into other function, e.g. to extract the data in list form:

idata = ImageData ;

Images are often really big, so we can check the format and size of the image data using Dimensions[]

Dimensions[idata]

{107, 85, 3}

So it isn’t a simple matrix. The first two entries tell us the number of rows and columns respectively.
Note that although an image might look black and white, it’s pixels have still three values, one for each
color channel. This is because it is in color format. We can convert it to black and white using
ColorConvert[]

ColorConvert , "Grayscale"

20 1.IntroToComputationalVision.nb

DimensionsImageDataColorConvert , "Grayscale"

{107, 85}

Try dragging a new image into one of the above image functions.

Mathematica Demonstrations project

Check out the Demonstrations center at the Wolfram Mathematica site for some cool examples, such as:

Manipulate[Module[{bluecol, colfunc},
bluecol[n_] := Blend[{Black, Blue, White}, n];
If[usecol, colfunc = bluecol, colfunc = GrayLevel];

Graphics[{colfunc[left], Rectangle[{0, 0}, {3, 3}],
colfunc[right], Rectangle[{3, 0}, {6, 3}], colfunc[mid],
Rectangle[{1, 1}, {2, 2}], Rectangle[{4, 1}, {5, 2}]}]],

{{left, .35, "left square"}, .2, .8}, {{right, .75, "right square"}, .2, .8},
{{mid, .5, "middle squares"}, .2, .8},
{{usecol, True, ""}, {True → "blues", False → "grays"}, ControlPlacement → Bottom}]

leftsquare

rightsquare

middlesquares

blues grays

"The Simultaneous Contrast Effect" from The Wolfram Demonstrations Project http://demonstrations.wolfram.com/TheSimulta-
neousContrastEffect/

References

1.IntroToComputationalVision.nb 21

References
Helmholtz, H. v. (1867). Handbuch der physiologischen optik . Leipzig: L. Voss.
Hoffman, D. D. (1998). Visual Intelligence . New York: W. W. Norton & Company.
Kersten, D. High-level vision as statistical inference. (1999) The New Cognitive Neurosciences, 2nd
Edition, Gazzaniga (Ed.). MIT Press.
Kersten, D., & Yuille, A. (2003). Bayesian models of object perception. Current Opinion in Neurobiology,
13(2), 1-9.
Knill, D. C., & Richards, W. (1996). Perception as Bayesian Inference . Cambridge: Cambridge Univer-
sity Press.
Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing
of Visual Information. . San Francisco, CA: W.H. Freeman and Company.
Mumford, D. (1995). Pattern theory: A unifying perspective. In D. C. Knill, & R. W. (Ed.), Perception as
Bayesian Inference (Chapter 2). Cambridge: Cambridge University Press.
Poggio, T. (1984). Vision by Man and Machine. Scientific American, 250, 106-115.
Zeki, S. (1993). A Vision of the Brain . Oxford: Blackwell Scientific Publications.

© 2008, 2010, 2013, 2015 Daniel Kersten, Computational Vision Lab, Department of Psychology, University of Minnesota.
kersten.org

22 1.IntroToComputationalVision.nb

