
Computational Vision
U. Minn. Psy 5036
Daniel Kersten
Lecture 10: Image processing

Initialize

Read in Add-in packages:
In[8]:= Off[General::"spell1"];

SetOptions[ArrayPlot, ColorFunction → "GrayTones",
DataReversed → True, Frame → False, AspectRatio → Automatic,
Mesh → False, PixelConstrained → True, ImageSize → Small];

The input 64x64 image: face
Cell below is closed to conserve screen space.

In[11]:= width = Dimensions[face]〚1〛; size = width;

hsize =
width

2
;

hfwidth = hsize;
height = Dimensions[face]〚2〛;
face;
gface = ArrayPlot[face]

Out[12]=

Upcoming dates:
Mid-term: Oct. 26th. Study-guide available later this week.
Final project outlines due: Nov. 18th.

Final projects

Format
Should be written like a scientific paper.
Might require most of the code to be put in appendices.
Can use modules you find elsewhere, but preserve copyrights, and reference
Your "audience" will be your class peers.

Should be written like a scientific paper.
Might require most of the code to be put in appendices.
Can use modules you find elsewhere, but preserve copyrights, and reference
Your "audience" will be your class peers.

Previously: Multiresolution, spatial fiter models of early
visual processing

Single-channel spatial filtering

One assumes a convolution filter of a fixed shape (e.g. the weights of a DOG filter) that gets applied
across the whole image to predict an output "neural image".

images can be represented in the fourier domain in terms of: amplitude and phase spectra.

convolution of an image with a filter in the space domain is mathematically equivalent to: InverseFourier[-
Fourier[filter]*Fourier[image]].

convolution is used to model: blur, neural images, the linear stage in neural networks.

Multiple spatial frequency channels

Many neurons in primary visual cortex, in particular “simple cells”, have receptive fields whose sizes
are limited, and are selective for particular spatial frequencies and orientations. This suggests that
neurons in primary visual cortex can be grouped into “channels” consisting of neurons at different
retinotopic locations, but with similar frequency and orientation tuning. (See classic experiment of
Campbell and Robson, 1968)

To model these, one assumes a set of convolution filters, each set has a fixed shape (e.g. the weights
of gabor filters describe a fixed template) that get applied across the whole image to predict a set of
output "neural images", where each neural image represents information at a particular spatial scale
and orientation. The collection of filters, identical except for position, is called a channel.

Global vs. local:
Sinusoidal basis functions are global filters. Global filtering is not a good model because they

give up spatial localization, at the expense of spatial frequency information (the filters would have to
extend across the whole space implying large receptive fields).

Multiresolution analysis with local filters

Instead of sinusoidal basis functions, we can filter with localized "gabor function" filters:

In[13]:= Clear[Grating, GratingPatch, kern];

In[14]:= Grating[x_,y_,fx_,fy_,phase_] := Cos[(2.0 Pi (fx x + fy y) + phase)];
GratingPatch[x_,y_,fx_,fy_,sig_,phase_] := Exp[-((x)^2 + (y)^2)/(2*sig^2)]*Grating[x,y,fx,fy,phase];
kern[fx_, fy_, sig_,phase_] :=
 Table[GratingPatch[x, y, fx, fy, sig,phase], {x, -1, 1, .1}, {y, -1, 1, .1}];

The following demo illustrates a single neural image for various choices of spatial frequency and orienta-
tion. In addition, the envelope width manipulates "bandwidth"--i.e. more cycles under the gabor means
narrow spatial frequency tuning and thus narrow bandwidth. The phase slider moves one from "bar" to
"edge" type receptive fields.

2 10.ImageProcessing.nb

In[17]:= Manipulate
GraphicsRow[{

ArrayPlot[kern[fr * Cos[theta], fr * Sin[theta], sig, phase]], ArrayPlot[
ListConvolve[kern[fr * Cos[theta], fr * Sin[theta], sig, phase], face]]}],

{{fr, 1, "radial frequency"}, .1, 2}, {{theta, .4, "orientation"}, 0, Pi},
{{sig, .4, "envelope width"}, .001, 1}, {phase, 0, "phase"}, .0, Pi 2

Out[17]=

radial frequency

orientation

envelopewidth

phase

◼ If you wanted to design a simple template to detect (rather than identify) faces based on a
convogabor filter, what parameters might you use?

Self-similarity

When the filters have the same shape except for a change of scale (x→αx), they are called self-similar.
The self - similar idea is important to vision because of the importance of scale sensitive and scale
invariant processing. Further, the self - similar aspect of neural filter models bears a close resemblance
to the emerging mathematical field of wavelet analysis.

Human statistical efficiency for detecting gabor patches
Burgess, Wagner, Jennings and Barlow (1981) combined the SKE observer and spatial frequency
analysis of human vision to find out how efficiently humans detected patterns. They showed in a 1981
Science article that narrowly windowed sinusoids were detected with high efficiency (>70%) when
added to static visual noise. Further, these targets were detected more efficiently than disks of light.

You have all the tools to replicate the experiment of Burgess et al. You can compute d' for the ideal
observer for signal-known-exactly patterns. And you can generate Gaussian-windowed sinusoids and
add them to gaussian white noise. If you measure the percent correct, and convert that to d' for the
human observer, you can calculate the absolute efficiency for human detection--and contribute to
answer the question of what the eye sees best.
Watson, Barlow & Robson (1983) found that that a 7 c/deg grating drifting at 4 Hz, (with a narrow
gaussian envelope in space and time) was detected more efficiently than other patterns. Further, the
quantum efficiency was very low (<0.05%).

10.ImageProcessing.nb 3

Burgess, Wagner, Jennings and Barlow (1981) combined the SKE observer and spatial frequency
analysis of human vision to find out how efficiently humans detected patterns. They showed in a 1981
Science article that narrowly windowed sinusoids were detected with high efficiency (>70%) when
added to static visual noise. Further, these targets were detected more efficiently than disks of light.

You have all the tools to replicate the experiment of Burgess et al. You can compute d' for the ideal
observer for signal-known-exactly patterns. And you can generate Gaussian-windowed sinusoids and
add them to gaussian white noise. If you measure the percent correct, and convert that to d' for the
human observer, you can calculate the absolute efficiency for human detection--and contribute to
answer the question of what the eye sees best.
Watson, Barlow & Robson (1983) found that that a 7 c/deg grating drifting at 4 Hz, (with a narrow
gaussian envelope in space and time) was detected more efficiently than other patterns. Further, the
quantum efficiency was very low (<0.05%).

Bottom-line: image coding in terms of scale and orientation:
A model for human spatial image representation

At each spatial location, project the image onto a collection of basis vectors (i.e. compute the dot prod-
uct) that span a range of spatial scales and orientations:

In general, these neural models of basis functions may be over-complete, and non-orthogonal. And
there may be a range of phases. Above we show only the "sine-phase" or "edge-detectors" of Hubel
and Wiesel.

How linear are V1 neurons?

There are kinds of non-linearities that have been introduced to refine, or model other types of neural
populations: 1) rectification--neuronal firing rate is by definition non-negative. The combination of on-
center, off-center responses can be treated as a theoretical unit to represent negative and positive
signal values. 2) adding squared outputs of sine-phase and cosine-phase filter to produce “contrast
energy” filters; 3) Contrast normalization, where the output of an otherwise linear neuron is normalized
by the “energy” ouputs of ones nearby in space. We’ll discuss some of these in later lectures

What is a multiresolution scale/orientation representation good for?

What is the computational significance of a wavelet-like decomposition?
Efficient coding?

-> savings in neurons, or metabolic requirements?
-> representations for efficient learning, subsequent coding?
-> analysis of natural image statistics

Analysis of what vision needs to recognize objects, etc..
-> Edge detection?
-> Edge detection at different spatial scales. Combining over spatial scale

4 10.ImageProcessing.nb

What is the computational significance of a wavelet-like decomposition?
Efficient coding?

-> savings in neurons, or metabolic requirements?
-> representations for efficient learning, subsequent coding?
-> analysis of natural image statistics

Analysis of what vision needs to recognize objects, etc..
-> Edge detection?
-> Edge detection at different spatial scales. Combining over spatial scale

Image processing tools

Mathematica has a library of built-in functions for doing image manipulations

See the Basic Image Manipulation, Image Processing & Analysis, and the Image Filtering & Neighbor-
hood Processing guides.
Here are some examples:

In[18]:= Image[Reverse[face]]

Out[18]=

We’ve seen a simple blur using BoxMatrix:

In[19]:= ImageConvolve , BoxMatrix[2] 9 // ImageAdjust ;

In[20]:= BoxMatrix[2] 9

Out[20]=
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,

1

9
,
1

9
,
1

9
,
1

9
,
1

9
,

1

9
,
1

9
,
1

9
,
1

9
,
1

9
,

1

9
,
1

9
,
1

9
,
1

9
,
1

9
,

1

9
,
1

9
,
1

9
,
1

9
,
1

9

And the built-in Laplacian of a Gaussian filter which can be used to model center-surround, lateral
inhibitory filtering:

In[21]:=

ifiltered = ImageAdjustLaplacianGaussianFilter , 2

Out[21]=

In[22]:= ImageAdjust[ifiltered]

Out[22]=

◼ What does ImageAdjust do? Try ListPlot[ImageData[ifiltered][[32]]] with and without using
ImageAdjust

We can quickly generate the “neural images” for on- and off-center responses:

10.ImageProcessing.nb 5

In[23]:= GraphicsRow[{ifiltered, ImageMultiply[Binarize[ifiltered], ifiltered],
ImageMultiply[ColorNegate[Binarize[ifiltered]], ifiltered]}]

Out[23]=

The above used a default threshold to separate above mean from below mean responses. You could

use: threshold = MeanMeanImageData as the second argument of Binarize[].

Point operations

Various contrast definitions
For simple stimuli, contrast can be defined as:

(Imax - Imin)/(Imax + Imin): Called "Michelsen contrast". Particularly appropriate for gratings, or
stimuli with primary luminance peak and valleys in the image.

ΔI/Ibackground: Often used in psychophysics of small points/disks against a larger background, or
temporal increments/decrements (ΔI) relative to a base level (Ibackground).

ΔI/Imean: Gives same number as Michelsen for gratings, when ΔI corresponds with the amplitude
of the grating.

For complex stimuli, we could represent contrast in terms of standard statistical measures on lumi-
nance. Let the mean luminance: Imean = ∑x,y I(x,y)/N, where N is the number of pixels. The variance of

the luminance is: ∑x,y (I(x,y)-Imean)2

N . Then the standard deviation could be used to provide an overall mea-
sure of contrast:

∑x,y (I(x,y)-Imean)2

N

(The formula for the unbiased variance estimate could also used, where N is replaced by N-1).

However, the above standard deviation definition depends on the units (e.g. candelas/meter^2). Further,
it is useful to have contrast definitions that come closer to capturing the perceptual aspects of contrast
in an image. We begin by defining contrast at a point--called local contrast.

The visual system is relatively insensitive to the mean luminance, suggesting that a useful measure of
local contrast is luminance divided by the mean, whose ratio is dimensionless. In addition, the subjec-
tive, qualitative difference between “bright” and “dark” suggests positive and negative contrast, respec-
tively. Thus we define local contrast at a point (x,y) as:

6 10.ImageProcessing.nb

However, the above standard deviation definition depends on the units (e.g. candelas/meter^2). Further,
it is useful to have contrast definitions that come closer to capturing the perceptual aspects of contrast
in an image. We begin by defining contrast at a point--called local contrast.

The visual system is relatively insensitive to the mean luminance, suggesting that a useful measure of
local contrast is luminance divided by the mean, whose ratio is dimensionless. In addition, the subjec-
tive, qualitative difference between “bright” and “dark” suggests positive and negative contrast, respec-
tively. Thus we define local contrast at a point (x,y) as:

c(x,y) = I(x,y) - Imean
Imean

The mean of c(x,y) is zero by definition, with positive and negative values corresponding to bright and
dark relative to the mean. (Note that local contrast can be defined as function of time too, c(x,y,t).) The
definition of local contrast at a point raises the question: over what range should Imean be calculated?
This question is relevant to the problems of local adaption to light level, and to tone mapping. The
default for us will be to take the mean over the whole image.

Given c(x,y), we now calculate a summary measure of contrast. The variance of c(x,y) is the same as

the variance of I(x,y)/Imean and is given by: ∑x,y c
2(x,y)
N . The root mean square (r.m.s.) of set of measure-

ments mi2 is by definition: ∑i mi2
N . Thus one can define r.m.s. contrast as the square root of the vari-

ance of c:

∑x,y c2(x,y)
N

This definition of r.m.s. contrast provides us with a useful summary measure of overall “contrastiness”
for a complex image.

By analogy with physics (substituting space for time) the square of r.m.s contrast is sometimes called
“contrast power”. And then “contrast energy” is defined as: contrast power x area. In psychophysics,
“area” is often measured in squared degrees of visual angle. Contrast energy is a useful measure when
one is concerned about how the size (or duration) of an image patch affects its visibility. If x and y are
measured in degrees of visual angle, then, ∫c2(x, y) dxdy is the contrast energy, which in the discrete
case can be estimated as:

∑x,y c2(x, y) x area
N = ∑x,y c2(x, y) ΔxΔy, where Δx and Δy are the dimensions of a pixel in

degrees.

If we extend the above contrast definitions to time, in terms of general appearance, the apparent con-
trast of an image doesn’t increase with time, so contrast energy (contrast power x duration) is irrelevant.
However, over short durations (less than 100 msec or so), human vision approximately integrates
contrast power, so contrast energy is a better predictor of threshold. But for longer durations, contrast
power is the better predictor.

Side note on the relation of contrast energy of an image to its fourier representation: Parseval’s theorem
says that the contrast energy of an image is equal to the integral of the square of the amplitude spec-
trum (called the power spectrum) over spatial frequency. Contrast energy doesn’t depend on the phase
relationships.

Contrast manipulations
Adjusting contrast (gain=1 leaves image unchanged, gain=0 reduces it to a uniform field):

10.ImageProcessing.nb 7

In[24]:= μ = Mean[Flatten[face]]; gain = 0.045;
Manipulate
ArrayPlotgain face - μ + μ, Mesh → False,

Frame → False, PlotRange → {Min[face], Max[face]},
{{gain, 0.045}, 0, 1}

Out[25]=

gain

Psychophysics and contrast
When measuring human visual sensitivity, it is important to carefully measure and calibrate the image
stimuli. Because standard 8-bit computer displays resolve 256 graylevels, it can be useful to convert the
stimuli into a range going from 0 to 255. Scale so values are represented as graylevels between 0 and
255:

In[26]:= α = 255 Max[face] - Min[face];
β = -α Min[face];

In[28]:= face256 = α face + β;

◼ Exercise: Normalize “face” so that it has a mean level of zero, and an r.m.s. contrast of 1. Use
ListPlot and Flatten[] to show a scatter plot of the values before and after the scaling.

◼ Exercise: Given that human contrast sensitivity for a sinewave grating can be as high as 500, could
you get a good measure of it using a typical computer graphics screen? (answer: for fine
measurements of human contrast sensitivity, 8 bits of intensity is too coarse. 10 to 12 bits is better.)

◼ Exercise: Produce a negative image by reversing the contrast

Gamma correction
Computer operating systems allow one to adjust for various non-linearities between displays. A typical
screen has a non-linear relationship between measured screen intensity and the voltage supplied. A
traditional way of summarizing the non-linear relationship is in terms of "gamma": intensity = a x volt-
age^gamma. Let's assume that we are using intensity units that range from 0 to 255 and voltage units
also going from 0 to 255. intensity = 255^(1-gamma) x voltage^gamma:

8 10.ImageProcessing.nb

In[29]:= output[input_, gamma_] := 2551-gamma inputgamma;
Plot[output[x, 2], {x, 0, 255}, Frame → True, ImageSize → Small]

Out[30]=

0 50 100 150 200 250
0

50

100

150

200

250

The computer’s display card has a look-up-table (LUT) that can be loaded with the inverse gamma
function to linearize the display. The LUT remaps input values to output voltages so that there is a
linear relationship between internal values and screen luminance.

In[31]:= Solve[output == 255^(1 - gamma) input^gamma, input]

Solve::ifun :
Inversefunctionsare beingused by Solve, so some solutionsmay notbe found; use Reduce forcompletesolutioninformation. +

Out[31]= input → 255-1+gamma output
1

gamma

In[32]:= inverse[output_, gamma_] := 255-1+gamma output1/gamma;
Plot[inverse[x, 2], {x, 0, 255}, Frame → True, ImageSize → Small]

Out[33]=

0 50 100 150 200 250
0

50

100

150

200

250

One can do silly things too, like a many-to-one mapping:

In[34]:= output2[input_] := 127. Sin
input

8
 + 127; ;

Plot[output2[x], {x, 0, 255}, Frame → True, ImageSize → Small]

Out[35]=

0 50 100 150 200 250
0

50

100

150

200

250

In[36]:= ArrayPlot[output2[face256], PlotRange → {0, 255}]

Out[36]=

..but maybe this isn’t so silly. What does the fact that you can still see a recognizable form in the above
picture tell you about human vision?

10.ImageProcessing.nb 9

..but maybe this isn’t so silly. What does the fact that you can still see a recognizable form in the above
picture tell you about human vision?

Using gamma to do point operations
You can also use the gamma transformation to do non-linear point operations on an image to concen-
trate some intensity values more than others.

In[37]:= Manipulate[
GraphicsRow[{Plot[output[x, gamma], {x, 0, 255},

Frame → True, ImageSize → Small, PlotRange → {0, 255}],
ArrayPlot[output[face256, gamma], PlotRange → {0, 255}]}],

{gamma,
0.1,
4}]

Out[37]=

gamma

Sigmoidal contrast manipulation
Here is a gain function (called the "logistic function") that manipulates contrast smoothly--a "soft"
threshold:

In[38]:= squash[x_, μ_, γ_] := N
1

1 + ⅇ-γ (x-μ)
;

Plot[squash[x, 128, 1], {x, 0, 255}, Frame → True, ImageSize → Small]

Out[38]=

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

10 10.ImageProcessing.nb

In[39]:= gain = 0.045`; μ0 = Mean[Flatten[face256]];
ManipulateGraphicsRow

Plot[squash[x, μ, γ], {x, 0, 255}, Frame → True, PlotRange → {{0, 255}, {0, 1}}],
ArrayPlotsquashface256 - μ0 + μ0, μ, γ, PlotRange → {Min[face], Max[face]},

{{μ, 128}, 0, 255}, {{γ, .5}, 0, 1}

Out[40]=

μ

γ

As γ grows, the sigmoid approaches a hard-threshold. Images that are forced to have only two values
are called "Mooney images".
We can make Mooney images more directly using a function that takes an image and sets pixels bigger
than τ to 255, and if less than (or equal to) τ, to 0:

In[41]:= Mooney[image_, τ_] := Map[If[# > τ, 255, 0] &, image, {2}];
Image[Mooney[face256, 32]]

Out[42]=

See also: Binarize[], ColorQuantize[]. And the famous Dalmation dog in perception books.

See Moore and Engel, 2001, and Hegdé J & Kersten D. (2007) for applications of Mooney images to
studying vision.

Gray levels are effectively quantized at low light levels. Mooney images mimic this effect but at high
light levels.

◼ Exercise: Write a function that quantizes an image to a set of gray levels specified by a set of
thresholds:
τ1, τ2, τ3, ...,τN-1. Set N=3. (Try using Which[]).

Simple statistics

First-order, i.e. don't take into account relations between pixels

10.ImageProcessing.nb 11

Mean, variance, r.m.s. contrast

In[43]:= μ = Mean[Flatten[face]];
σ = Sqrt[Variance[Flatten[face]]];

r.m.s. contrast can be calculated as:

In[45]:= Sqrt[Variance[Flatten[face]]] Mean[Flatten[face]]

Out[45]= 0.600059

Histograms
For images:

In[46]:= ImageHistogram

Out[46]=

For any data:

In[47]:= Histogram[Flatten[face]]

Out[47]=

You can tell that the image is quantized at a coarse level (less than 4 bits).

Alternatively, you could calculate the histogram with more basic functions. To do the pattern match
below, the floating point numbers are first converted to integers using Round[]:

In[48]:= domain = Range[0, 255];
Freq = Map[Count[Round[Flatten[face256]], #] &, domain];

If we normalize the histogram so that the sum is one, then we have a probability:

12 10.ImageProcessing.nb

In[50]:= ListPlot
Freq

Plus @@ Freq
, PlotStyle → PointSize[0.02], PlotRange → {0, .3}

Out[50]=

0 50 100 150 200 250

0.05

0.10

0.15

0.20

0.25

0.30

Getting regions of images

Three ways to pull out a region:

In[51]:= ArrayPlot[Take[face256, {1, 32}, {1, 64}]]

Out[51]=

Or to get rows 1 to 32 and columns 1 to 64 you can use:

In[52]:= ArrayPlot[face256[[1 ;; 32, 1 ;; 64]]]

Out[52]=

The above method is particularly useful to learn because it has parallels in both python/numpy and
matlab.

We can also use the built-in image function ImageTake[] to get rows 32 through 64:

In[53]:= ImageTake , {32, 64}

Out[53]=

◼ Use Manipulate[] and ImageTake[] to make an interactive selection tool for picking out rectangular
regions of arbitrary size

10.ImageProcessing.nb 13

Getting coordinates by hand
In[54]:= ArrayPlot[face256, PixelConstrained → {1, 1}]

Out[54]=

In[55]:=

Out[55]=

Click on the image above to select it. Now bring up the Drawing Tools, under the Graphics menu. Now
use the “cross hairs” tool to select the first the lower left point{x0,y0}, and then the upper right point
{x1,y1} as the corners of the rectangular patch that you want. Copy and paste in the argument of the
Round[] cell below. Here are coordinates for diagonal points for the eyes.

In[56]:=

Round[{{6, 36.4}, {52.4, 48.4}}];
Reverse[Transpose[%]];
ArrayPlot[Take[face256, %[[1]], %[[2]]]]

Out[58]=

And...finally
Click out the output of Image[]. This will bring up a whole set of image processing tools

14 10.ImageProcessing.nb

In[59]:= Image

Out[59]=

Geometric image manipulations using function interpolation
Compare the plots with InterpolationOrder → 0 and InterpolationOrder → 1.

In[60]:= faceFunction =
ListInterpolation[Transpose[face], {{-1, 1}, {-1, 1}}, InterpolationOrder → 1];

DensityPlot[faceFunction[x, y], {x, -1, 1}, {y, -1, 1}, PlotPoints → 256,
Mesh → False, AspectRatio → Automatic, Frame → None, ColorFunction → "GrayTones"]

Out[61]=

Now you can calcualte intensities “between pixels”:

In[62]:= faceFunction[.1, .23]

Out[62]= 0.437402

Morphing

In[63]:= faceFunction = ListInterpolation[Transpose[face], {{-1, 1}, {-1, 1}}];

10.ImageProcessing.nb 15

In[64]:= DensityPlotfaceFunctionSign[x] x2, Sign[y] y2, {x, -1, 1},
{y, -1, 1}, PlotPoints → 100, Mesh → False, AspectRatio → Automatic,
Frame → None, ColorFunction → "GrayTones", ImageSize → Small

Out[64]=

◼ FINAL project idea: How does our ability to recognize objects degrade with geometrical deformations?

◼ FINAL project idea: Use the log polar model of the retinotopy of primary visual cortex to show how
the foveal representation gets expanded on cortex.

More filtering: Calculating the spatial gradient of an image
using function interpolation

As we will see later, both first and second spatial derivatives have been used to model edge detec-
tion/amplification by neural processes in primary visual cortex.

Hubel and Wiesel’s “edge detector” can be interpreted as an approximation to a first order derivative
(“gradient” in 2D, see ∇f), and their “bar detector” as a second derivative (see ∇2G below).

Here we show how to use symbolic derivatives to find the gradient.

The gradient of an image intensity function f, ∇f, has a maximum value in the direction of greatest
change.b

∇f =
∂f

∂x
,

∂f

∂y
=

∂f

∂x

2

,
∂f

∂y

2

Let filterface =f, where we've blurred out face a little to reduce quantization artifacts:

In[65]:= kernel = {{1, 1, 1}, {1, 1, 1}, {1, 1, 1}};
(*Alternatively, you could use BoxFilter[]*)
filterface = ListConvolve[kernel, face];

In[66]:= faceFunction = ListInterpolation[Transpose[filterface], {{-1, 1}, {-1, 1}}];

In[67]:= Clear[x, y]

In[68]:= nx[x_, y_] := Evaluate[D[faceFunction[x, y], x]];
ny[x_, y_] := Evaluate[D[faceFunction[x, y], y]];
ImageGradient[x_, y_] := Evaluate[Sqrt[D[nx[x, y], x]^2 + D[ny[x, y], y]^2]];

Plot the rate of change in the x-direction:

16 10.ImageProcessing.nb

In[71]:= temp = Table[nx[x, y], {x, -1, 1, .005}, {y, -1, 1, .005}];
ArrayPlot[Transpose[temp]]

Out[72]=

You can use VectorPlot to visualize the gradient field:

In[73]:= VectorPlot[{nx[x, y], ny[x, y]}, {x, -1, 1}, {y, -1, 1}, ImageSize → Small]

Out[73]=

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Plot the magnitude of the gradient to highlight regions of the image where contrast is changing the most
rapidly:

In[74]:= DensityPlot[ImageGradient[x, y], {x, -1, 1}, {y, -1, 1}, PlotPoints → width,
Mesh → False, Frame → False, ColorFunction → "Rainbow", ImageSize → Small]

Out[74]=

Discrete spatial derivative filtering with built-in image functions
Use can also use image specific filters. GradientFilter[image,r] gives an image corresponding to the
magnitude of the gradient of image, using discrete derivatives of a Gaussian of pixel radius r.

10.ImageProcessing.nb 17

In[75]:= GradientFilter , 6 // ImageAdjust

Out[75]=

The ∇2G operator (one of the forms used to represent a “mexican hat” filter) in the previous lecture first
convolves the image with a Gaussian blur kernel, and then takes the Laplacian ∇2. This filter effectively
blurs an image before taking the derivatives.

Later we’ll see why when we study edge detection.

In[76]:= LaplacianGaussianFilter , 2 // ImageAdjust

Out[76]=

Manipulating color images
In[77]:= image = ExampleData[{"TestImage", "Mandrill"}]

Out[77]=

In[78]:= RGBvalues = ImageData[image];
Dimensions[RGBvalues]

Out[79]= {512, 512, 3}

In[80]:= {512, 512, 3}

Out[80]= {512, 512, 3}

In[81]:= {512, 512, 3}

Out[81]= {512, 512, 3}

In[82]:= {512, 512, 3}

Out[82]= {512, 512, 3}

18 10.ImageProcessing.nb

In[83]:= {512, 512, 3}

Out[83]= {512, 512, 3}

In[84]:= {512, 512, 3}

Out[84]= {512, 512, 3}

In[85]:= reds = Map[#[[1]] &, N[RGBvalues], {2}];
greens = Map[#[[2]] &, N[RGBvalues], {2}];
blues = Map[#[[3]] &, N[RGBvalues], {2}];

In[88]:= GraphicsRow[{Image[reds], Image[greens], Image[blues]}]

Out[88]=

In[89]:=

Out[89]=

You can also use the function:

In[90]:= ColorSeparate ;

A weighted average of RGB values to produce a luminance image:

In[91]:= grayscale = Map
0.3 #[[1]] + 0.59 #[[2]] + 0.11 #[[3]]

255
&, N[RGBvalues], {2};

Image[grayscale] // ImageAdjust ;

Note the weights above are arbitrary, and the chosen values will depend on the color calibration.

10.ImageProcessing.nb 19

Putting the R, G, B images back together:
In[93]:= r = reds;

g = greens;
b = blues;
temp2 =

Partition[Transpose[{Flatten[r], Flatten[g], Flatten[b]}], Dimensions[r][[2]]];
Image[
temp2]

Out[97]=

Next time
Efficient coding

References
Adelson, E. H., Simoncelli, E., & Hingorani, R. (1987). Orthogonal Pyramid Transforms for Image
Coding. Paper presented at the Proc. SPIE - Visual Communication & Image Proc. II, Cambridge, MA.
Barlow, H. B., & Olshausen, B. A. (2004). Convergent evidence for the visual analysis of optic flow
through anisotropic attenuation of high spatial frequencies. J Vis, 4(6), 415-426.
Daugman, J. G. (1988). An information-theoretic view of analog representation in striate cortex, Compu-
tational Neuroscience. Cambridge, Massachusetts: M.I.T. Press.
Engel, S. A., Glover, G. H., & Wandell, B. A. (1997). Retinotopic organization in human visual cortex
and the spatial precision of functional MRI. Cereb Cortex, 7(2), 181-192.
Gold, J. M., Murray, R. F., Bennett, P. J., & Sekuler, A. B. (2000). Deriving behavioural receptive fields
for visually completed contours. Curr Biol, 10(11), 663-666.
Hegdé, J., & Kersten, D. (2010). A Link between Visual Disambiguation and Visual Memory. Journal of
Neuroscience, 30(45), 15124–15133. doi:10.1523/JNEUROSCI.4415-09.2010
Konishi, S. M., Yuille, A. L., Coughlan, J. M., & Zhu, S. C. (2003). Statistical edge detection: Learning
and evaluating edge cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(1),
57-74.
Olman, C. A., & Kersten, D. (2004). Classification objects, ideal observers & generative models. Cogni-
tive Science, 28, 227-239.
Moore, C., & Engel, S. A. (2001). Neural response to perception of volume in the lateral occipital com-
plex. Neuron, 29(1), 277-286.
Schwartz, E. L. (1980). A quantitative model of the functional architecture of human striate cortex with
application to visual illusion and cortical texture analysis. Biol Cybern, 37(2), 63-76.
http://library.wolfram.com/howtos/images/#histograms

20 10.ImageProcessing.nb

© 2008, 2010, 2013, 2015 Daniel Kersten, Computational Vision Lab, Department of Psychology, University of Minnesota.
kersten.org

10.ImageProcessing.nb 21

