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Goals

Last time: ideal observer analysis

‡ Overview

Ideal observer

Model the data (image) generation process

Define the inference task

Determine optimal performance

Compare human performance to the ideal

Ideal normalizes for information available

Statistical efficiency

Explain discrepancies in terms of:

functional adaptation

mechanism

‡ The Receiver Operating Characteristic (ROC)

Although we can't directly measure the internal distributions of a human observer's decision variable, we've seen that we 
can measure hit and false alarm rates, and thus d'. 

By manipulating the criterion, we can generate a series of hit and false alarm rate pairst to plot an ROC curve.  We can use 
this to see if an observer's decisions are consistent with the assumption of Gaussian distributions with equal variance. One 
can best test the gaussian equal variance assumption by re-plotting the ROC curve in terms of the z-scores of the hit and 
false alarm rates. A straight line of slope 1 is consistent with equal-variance Gaussian assumption. 
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One can show that the area under the ROC curve is equal to the proportion correct in a two-alternative forced-choice 
experiment (Green and Swets). 

Sometimes, sensitivity is operationally defined as this area. This provides a single summary number, even if the standard 
definition of d' is inappropriate, for example because the variances are not equal.

‡ Applications of ROC to neural measures

The area under the ROC curve provides a useful measure of sensitivity even if the additive gaussian model isn't known to 
be correct. It can also be thought of as a measure of how much information about signal vs. no signal can be extracted 
from the data. ROC curves can be used characterize the sensitivity of single neurons, as well as gross overall  measures of 
activity such as comes from brain imaging data. 

In the figure below, the gray lines represent a behavioral response by a human observer--i.e. when the signal is high, the 
observer is indicating subjective perceptual state that we treat as a "detection". The red lines represent a measured fMRI 
brain signal. How well does the brain signal predict what the observer is reporting? 

‡ The 2AFC (two-alternative forced-choice) method

Rather than manipulating the criterion, we can use the 2AFC method to minimize the effect of an unstable criterion.

(1)d' = - 2 z Hproportion correctL
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Today: Probability Overview. SKE ideal observer
Review some probability and statistics

Pattern detection: The signal-known-exactly (SKE) ideal observer

Demo of 2AFC for pattern detection in noise

Motivation: What does the eye see best?

‡ Make the question precise by asking: 

For what patterns does the human visual system have the highest detection efficiencies relative to an ideal 
observer?

Animals, or particularly dangerous ones?

Faces, or a particular face?

Or something simple, like a spot?
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Or something complex, like a "frozen" noise image?

Or some pattern motivated by neurophysiology? E.g. the kinds of spatial patterns preferred by single neurons in the 
primary visual cortex  ...

Answering this question requires specification of 1) a generative model that describes the variations in both the signal and 
the non-signal conditions, 2) the task; 3) an inference method. In general 1) and 2) hard to do, but we can do it for simple 
cases such as when the signal image is constant, and the data is either "white gaussian noise" or the signal added to white 
gaussian noise.

‡ Some intuition: Measures of pattern similarity

The fundamental problem of pattern recognition is deciding whether an input pattern x matches a stored representation s. 
This decision requires some measure of comparison between the input and the stored "template" s. One might also want to 
know how close two input images are to each other. Given two patterns represented by vectors x and s, how can we 
measure how close or similar they are? 

Some possibilities are: Abs[x-s], Cos[x,s], or Dot[x,s]. 

(See: http:êêreference.wolfram.comêmathematicaêguideêDistanceAndSimilarityMeasures.html)

The subjective similarity between two images is a complex process, and there is no universal metric. There is substantial 
research on the topic, much of it addressing the need to quantify the difference between a decoded compressed image (e.g. 
for a lossy compression method like jpeg) and the original image.

A simple, useful measure often used in computer vision is normalized cross-correlaton. 

But in this lecture, we treat the very simple case of detection in noise, and will see below that the ideal strategy is to 
compute the cross-correlation decision variable for each image (i.e. the dot product between each image data vector, say x, 
and an exact template of the signal, s,  one is looking for), and pick the image which gives the larger cross - correlation.
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Probability Overview
For terminology, a fairly comprehensive outline, and overview, see notebook: ProbabilityOverview.nb in the syllabus web 
page, and for a general introduction in the context of modeling in cognition and perception see: Griffiths and Yuille (2008).

For the section below, we'll use the properties of independence. Here is a quick overview of what we need today.

‡ Expectation & variance

Analogous to center of mass:

Definition of expectation or average:

Average@XD = X = E@XD = S x@iD p@x@iDD ~ ‚
i=1

N

xi ê N

m = E@XD = ‡ x pHxL dx

Some rules:

E[X+Y]=E[X]+E[Y]

E[aX]=aE[X]

E[X+a]=a+E[X]

Definition of variance:

s2 = Var[X] = E[[X-m]^2] =⁄j=1
N HHpHxH jLLL HxH jL - mLL2 =⁄j=1

N Ix j - mM2 p j

Var@XD = ‡ Hx - mL2 pHxL dx ~‚
i=1

N

Hxi - m L2 ëN

Standard deviation:

s = Var@XD

Some rules:

Var@XD = EAX2E - E@XD2
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Var@XD = EAX2E - E@XD2

Var@aXD = a2 Var@XD

‡ Statistics for independent random variables

Independence means that knowledge of one event doesn't change the probability of another event. 

p(X)=p(X|Y)

p(X,Y)=p(X)p(Y) -- This is a key formula we will use below.

If p(X,Y)=p(X)p(Y), then

E@X YD = E@XD E@YD Hi.e. X and Y are uncorrelatedL

Var@X + YD = Var@XD + Var@YD Hfor uncorrelated random variables X and YL

Var@c XD = c2 Var@XD, where c is a constant

Ideal pattern detector for a signal which is exactly known ("SKE" ideal)
The signal-known-exactly ideal (SKE) has a built-in template that matches the signal that it is looking for. The signal is 
embedded  in "white gaussian noise", or more precisely the signal is added to the noise.   "white" means the pixels are not 
correlated with each other--intuitively this means that you can't reliably predict what one  pixel's value is from any of the 
others. (In general tho', lack of correlation doesn't necessarily imply independence.) 

Assignment 1 simulates the behavior of this ideal. In the absence of any internal noise, this ideal detector behaves as one 
would expect a linear neuron to behave when a target signal pattern exactly matches its synaptic weight pattern. There are 
some neurons in the the primary cortex of the visual system called "simple cells". These cells can be modeled as ideal 
detectors for the patterns that match their receptive fields. In actual practice, neurons are not noise-free, and not perfectly 
linear. For example, simple cells show a rectifying property in which summed inputs below a threshold produce zero (not 
negative) response. More on this later.

Calculating the Pattern Ideal's d' based on signal-to-noise ratio

‡ The signal + gaussian noise generative model

x = s + n,  where s is a vector of image intensities, e.g. corresponding to a face, snake, spot, ...or a gabor 
pattern

x = n,  where n is a vector representing a sample of white gaussian noise

Each element of n is assumed to have a mean of zero and standard deviation of s. See the Exercise section below 
for Mathematica code of the generative process.
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‡ Overview

We are going to do two things:

1. Show that a simple decision variable for detecting a known fixed pattern in white gaussian noise is the dot product, or 
cross-correlation, of the observation image x with the known signal image s.

r = x • s , or alternatively written as

r =⁄i=1
N xHiL sHiL

2. Show that d' is given by:

s and x are a vectors, i.e. lists, of the image intensities, and s is the standard deviation of the added gaussian noise. Know-
ing the d' for the ideal will enable us to calculate the absolute efficiency for human visual detection.

‡ 1. Cross correlation produces an ideal decision variable: Proof

What is the optimal decision variable? Starting from the maximum a posteriori rule, we noted that basing decisions on the 
likelihood ratio is ideal, in the sense of minimizing the probability of error. So the likelihood ratio is a decision variable. 
But it isn't the only one, because any monotonic function is still optimal. So our goal is to pick a decision variable which is 
simple, intuitive, and easy to compute. But first, we need an expression for the likelihood ratio:

(2)
p Hx signal plus noiseL

p Hx noise onlyL

where x is the vector representing the image measurements actually observed

x = s + n, under signal plus gaussian noise condition

x = n, under gaussian noise only condition

First let's consider just one pixel of intensity x. Under the signal plus noise condition, the values of x fluctuate (from one 
trial to the next) about the average signal intensity s with a Gaussian distribution (gp[ ]) with mean s and standard devia-
tion s.

So under the signal plus noise condition, the likelihood p[x | s] is the gp[x-s; s]:
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gp[x_,s_,s_]:= (1/(s*Sqrt[2 Pi])) Exp[-(x-s)^2/(2 s^2)]
gp[x,s,s]

‰
-
H-s+xL2

2 s2

2 p s

Now consider the noise only condition. Again, consider just one pixel of intensity x. Under the noise only condition, the 
values of x fluctuate about the average intensity corresponding to the mean of the noise, which we assume is zero. 

So under the  noise only condition, the likelihood p[x | n] is:

gp[x,0,s]

‰
-

x2

2 s2

2 p s

But we actually have a whole pattern of values of x, which make up an image vector x. So consider a pattern of image 
intensities represented by a vector x = {x[1],x[2],...x[N]} where x[i] is the measured intensity at pixel i. s[i] would be the 
measured intensity at pixel i if the signal was displayed with no noise. s[i] would also

be the average value of that pixel with added noise.

Let the mean values of each pixel under the signal plus noise condition be given by vector s = {s[1],s[2],...,s[N]}. The joint 
probability of an image observation x, under the signal hypothesis is:

Product[gp[x[i],s[i],s],{i,1,N}]

‰
i=1

N ‰
-
H-s@iD+x@iDL2

2 s2

2 p s

where i =1 to N pixels. We are assuming independence. Independence between pixels means we can multiply the individ-
ual probabilities to get the global joint image probability. (See above and ProbabilityOverview.nb)

In general, whether we can assume independence depends on the problem. In our case, the samples are independent by 
definition--as "experimenters" we generate the noise as independent samples. We don’t let other noise sample draws 
influence any other.

The joint probability of an image observation x, under the noise only hypothesis is:
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Product[gp[x[i],0,s],{i,1,N}]

‰
i=1

N ‰
-
x@iD2

2 s2

2 p s

Now we have what we need for the likelihood ratio:

Product@gp@x@iD, s@iD, sD, 8i, 1, N<D ê Product@gp@x@iD, 0, sD, 8i, 1, N<D

¤i=1
N ‰

-
H-s@iD+x@iDL2

2 s2

2 p s

¤i=1
N ‰

-
x@iD2

2 s2

2 p s

So at this point, we could just stop and write a program to use this product to make ideal decisions. E.g. if the product is 
bigger than 1, choose the signal hypothesis, and if less than 1 choose the noise hypothesis. But this is inefficient, and could 
be problematic because of the limitations in numerical precision (What if the computer rounds off just one of the factors in 
the denominator to zero?).

But we can get a much simpler rule with a little more work. 

Recall that any monotonic function, f() of the likelihood ratio would give the same performance. A monotonic function 
simply means that whenever the likelihood ratio is bigger than 1,  f(likelihood ratio) is bigger than f(1).  So if we can 
find some monotonic function of the likelihood ratio that is simple, we'll have a simpler thing to calculate. The optimal 
decision rule in a yes/no experiment will be to choose "signal" if f(likelihood ratio)>f(1), and noise otherwise).

Let's try one--the natural logarithm will turn the product into a sum:

LogB
¤i=1
N gp@x@iD, s@iD, sD

¤i=1
N gp@x@iD, 0, sD

F

LogB
¤i=1
N ‰

-
H-s@iD+x@iDL2

2 s2

2 p s

¤i=1
N ‰

-
x@iD2

2 s2

2 p s

F

(3)Log ‰
i=1

N ‰
-
HxHiL-sHiLL2-xHiL2

2s2

2 p s
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which is monotonic with:

(4)LogB‰
i=1

N

‰
2 xHiL sHiL

2s2 F

which simplifies to

(5)I1ë s2M‚
i=1

N

xHiL sHiL

But this is monotonic with:

(6)r =‚
i=1

N

xHiL sHiL

In case that went by too fast, we can use Mathematica's ability to handle symbolic expressions to see how to arrive at the 
same result. To be concrete, let N = 5. 

LogB
¤i=1
5 gp@x@iD, s@iD, sD

¤i=1
5 gp@x@iD, 0, sD

F

LogB

‰

x@1D2

2 s2
-
H-s@1D+x@1DL2

2 s2
+
x@2D2

2 s2
-
H-s@2D+x@2DL2

2 s2
+
x@3D2

2 s2
-
H-s@3D+x@3DL2

2 s2
+
x@4D2

2 s2
-
H-s@4D+x@4DL2

2 s2
+
x@5D2

2 s2
-
H-s@5D+x@5 2

2 s2

F

Now use PowerExpand[] and Simplify[] to simplify the above expression:

Simplify@PowerExpand@%DD

-
1

2 s2
Is@1D2 + s@2D2 + s@3D2 + s@4D2 + s@5D2 -

2 s@1D x@1D - 2 s@2D x@2D - 2 s@3D x@3D - 2 s@4D x@4D - 2 s@5D x@5DM

Notice that the terms s[i] are fixed by definition (the "signal is known exactly"), so we can lump them together as a 
constant c.

(7)I1ë s2M‚
i=1

N

xHiL sHiL + c

But because we only care that the final function is monotonic with the likelihood ratio, we can drop the I1ë s2M and c 
terms:
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Sum[x[i] s[i],{i,1,N}]

‚
i=1

N

s@iD x@iD

(8)r =‚
i=1

N

xHiL sHiL

In other words, we've proven that the dot product, r, (or cross-correlation or matched filter) provides a decision variable 
which is optimal--in the sense that if we use the rule, the probability of error will be least. Now, let's calculate d'.

‡ 2. Derive formula for d'

By definition

d'=(m2 - m1)/s

-m1 + m2

s

For our light discrimination example, m2 = b, and  m1 =d, the mean photon counts under the high and low switch settings. 
What are m2, and  m1 for the pattern detection case? Like the light or dot case, they are the mean values of the decision 
variable under the two hypotheses. 

So m2 is the mean of the decision variable, r under the signal hypothesis (i.e. "switch set to send signal"), and   m1 is the 
mean under the noise-only hypothesis (i.e. switch set to not send signal). 

To get d', we need formulas for the means and standard deviation for the decision variable, r under the two hypotheses, 
"signal plus noise" vs. "noise" only.

First, suppose the switch is set for signal trials. What is the average and standard deviation of r? I.e. m2  and s?

(9)

m2 = Average@rD = AverageB‚
i=1

N

xHiL sHiLF =

‚
i=1

N

Average@xHiL sHiLD = ‚ Average@xHiLD sHiL = ‚ sHiL sHiL = ‚ sHiL2

(10)m2 =‚
i=1

N

sHiL2

(We've used the above rules: E[X+Y]=E[X]+E[Y], E[aX]=aE[X]. And because x(i) = s(i) + n(i), Average[x(i)]=s(i), using 
E[X+a]=a+E[X].)

And the variance is:

(11)Var ‚
i=1

N

xHiL sHiL =‚
i=1

N

Var@xHiLD sHiL2 =‚
i=1

N

s2 sHiL2 = s2‚
i=1

N

sHiL2

We've used the rules: Var[Y + Z] = Var[Y] + Var[Z], and Var[constant + n]=Var[n]. The s(i)'s are constant.

And, recall that Var[c Y] = c^2 Var[Y])
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We've used the rules: Var[Y + Z] = Var[Y] + Var[Z], and Var[constant + n]=Var[n]. The s(i)'s are constant.

And, recall that Var[c Y] = c^2 Var[Y])

Second, suppose the switch is set for noise only trials. The average of the dot product is:

(12)

m1 = Average@rD =

AverageB‚
i=1

N

xHiL sHiLF = ‚
i=1

N

Average@xHiLD sHiL = ‚
i=1

N

0 sHiL = 0

The variance is the same as for the signal case:

(13)Var ‚
i=1

N

xHiL sHiL =‚
i=1

N

sHiL2 Var@xHiLD = s2‚
i=1

N

sHiL2

So d' is:

Sum[s[i]^2, {i, 1, N}]/Sqrt[(s^2 Sum[s[i]^2,{i,1,N}])]

⁄i=1
N s@iD2

s2 ⁄i=1
N s@iD2

FullSimplify[Sum[s[i]^2, {i, 1, N}]/Sqrt[(s^2 Sum[s[i]^2,{i,1,N}])],s>0]

⁄i=1
N s@iD2

s

Or using dot product notation:

(14)d ' =
⁄i=1
N sHiL2

s
=

s.s

s

Calculating the Pattern Ideal's d' for a two-alternative forced-choice experiment from a 
z-score of the proportion correct.
Recall that for a 2AFC experiment, the observer gets two images to compare. One has the signal plus noise, and the other 
just noise. But the observer doesn't know which one is which. An ideal strategy is to compute the cross-correlation deci-
sion variable for each image, and pick the image which gives the larger cross-correlation. This strategy will result in a 
single number, the proportion correct, Pc. As we've seen before, d' for a 2AFC task can be calculated:

z[p_] := Sqrt[2] InverseErf[1 - 2 p];

where Z(*) is the z-score for Pc , the proportion correct. 
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dprime[x_] := N[-Sqrt[2] z[x]]

So we have what we need to compare the d’s of humans (through a measurement of  Pc ) and the ideal (through s.s
s

). 

Now try the psychophysics demo for pattern detection in noise

‡ DEMO: GaborSKEDetection.nb

Next time

Bayesian decision theory

‡ Introduction to higher-level perceptual decisions as inference

‡ Bayesian decision theory

‡ More types of inference tasks: synthesis, inference (detection, classification, estimation), learning

Exercises

Exercise: Calculate the information capacity of the eye
Consider an m x n pixel image patch. Is there a quantum limit to the number of light levels that can be represented in a 
resolution cell? (The size of a resolution cell is determined by the modulation transfer function of the optical device under 
consideration, which in this case would be the eye. We look later at how to estimate the spatial resolution of an imaging 
system). 
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Let SN be the maximum number of photons that land in a resolution cell. One can't discriminate this level from any other 
with an infinitely small degree of precision. Requiring a sensitivity of d', determines the next dimmest light level:

SN-1 = SN - d ' SN
This effectively quantizes the dynamic range of a resolution cell. Write a small iterative program to count the number of 
levels down to S1 = zero. Say the number of levels is L, or LogsL = l  bits.  Of course, one has to decide a priori what is a 
suitable discrimination level. But once done, the information capacity can be estimated by lmn bits.

Generating gabor patch signals in additive noise
So what can you do with this particular ideal observer analysis? Take a look at:

Burgess, A. E., Wagner, R. F., Jennings, R. J., & Barlow, H. B. (1981). Efficiency of human visual signal discrimination. 
Science, 214, 93-94.

vs.

The signal + gaussian noise generative model
x = s + n,  where s is a vector of image intensities corresponding to a gabor pattern

x = n,  where n is white gaussian noise
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Gabor patterns as signals

‡ Basis set: Cartesian representation of Gabor functions:

ndist=NormalDistribution[0,1];

cgabor[x_,y_, fx_, fy_,sx_,sy_] := 
Exp[-((x/sx)^2 +  (y/sy)^2)] Cos[2 Pi(fx x + fy y)];

‡ Various  frequencies , vertical orientations,  and  fixed width

vtheta = Table[0, {i1,4}];
vf = {2,4};
hf = {0.0,0.0,0.0};
xwidth = {0.15,4};
ywidth = {4,4};
npoints = 128;
signalcontrast=0.15;
noisecontrast=0.2;

lr = -1; ur = 1; step = Hur - lrL ê Hnpoints - 1L;
signal =

Table@signalcontrast cgabor@y, x, vf@@1DD, hf@@1DD, xwidth@@1DD,
ywidth@@1DDD, 8x, lr, ur, step<, 8y, lr, ur, step<D;

noise = noisecontrast Table@Random@ndistD, 8npoints<, 8npoints<D;

‡ Signal, noise, signal + noise

sig = ArrayPlot@signal, Mesh Ø False, Frame Ø False, PlotRange Ø 8-1, 1<,
ColorFunction Ø "GrayTones"D;

noi = ListDensityPlot@noise, Mesh Ø False, Frame Ø False,
PlotRange Ø 8-1, 1<, ColorFunction Ø "GrayTones"D;

spn = ListDensityPlot@signal + noise, Mesh Ø False, Frame Ø False,
PlotRange Ø 8-1, 1<, ColorFunction Ø "GrayTones"D;

5_Psychophysics.nb 15



GraphicsRow@8sig, noi, spn<D
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