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Initialize
In[47]:=

Off@General::spell1D;
SetOptions@ArrayPlot, ColorFunction Ø "GrayTones", DataReversed Ø True,

Frame Ø False, AspectRatio Ø Automatic, Mesh Ø False,
PixelConstrained Ø True, ImageSize Ø SmallD;

SetOptions@ListPlot, ImageSize Ø SmallD;
SetOptions@Plot, ImageSize Ø SmallD;
SetOptions@Plot3D, ImageSize Ø Small, ColorFunction Ø "GrayTones"D;
SetOptions@DensityPlot, ImageSize Ø Small, ColorFunction Ø GrayLevelD;
nbinfo = NotebookInformation@EvaluationNotebook@DD;
dir =
H"FileName" ê. nbinfo ê. FrontEnd`FileName@d_List, nam_, ___D ß

ToFileName@dDL;

Outline

Last time

‡ Linearizing shape from shading. Learning shape from shading

‡ Formal ambiguities in the generative model, the bas-relief transform

‡ Task analysis:  discounting illumination & viewpoint -> constrains shape from shading

Genericity principle: Visual percepts corresponding to primary variables should produce 

images that are insensitive to small variations in the secondary variables. 
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Introduction to motion
It is convenient to divide motion processing up into several stages:

• Early local motion measurement: from optic flow (image intensity change) to motion flow (local surface 
movements)

• Selection & integration of local motion flow information

• End uses of motion measurements, e.g. shape/structure from motion, direction of heading, ...

This lecture looks at mechanisms of early motion measurements, and in particular the approximation of the 2D motion 
field using optic flow.

The mechanisms of early motion measurement are often interpreted as preliminary steps to obtain local estimates 
of some aspect of motion flow.  Each point of a surface describes a 3D trajectory that maps onto a 2D image trajectory. 
The problem of motion flow  is to estimate at each point in space and time a vector that points in the direction of the image 
point's trajectory, and whose magnitude is the speed. This is the projected velocity field. 

Estimates of the projected velocity field can then be used to estimate useful scene related information such as 
direction of heading and spatial layout. The sort of image measurements needed depends on the later uses of these motion 
measurements. For example, the full vector field may not be needed, because one might be satisfied with only direction 
information. And even this might be superfluous if we only need to  know whether something has moved or not.  Let's 
consider the jobs of vision that use motion.

Functional goals of motion measurement
Before embarking on a detailed study of theories of motion measurement, let's list some of the uses of this informa-

tion. What is motion information good for? 

• change detection - "first alert", but not necessarily directional

• image or gaze stabilization - motion measurement in order to reduce its effects on the sensed image

• segmentation--breaking camouflage

• object tracking

• three-dimensional structure-from-motion, object recognition

• relationship of the viewer to the environment

-- time to contact

-- direction of heading

-- 3-D layout
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‡ An illustration of change detection and segmentation

In[54]:=
nsize = 128; subnsize = 32;
noise = Table@RandomReal@D, 8nsize<, 8nsize<D;
subnoise = Table@RandomReal@D, 8subnsize<, 8subnsize<D;
Manipulate@
dnoise = noise;
dnoise@@x1 ;; x1 + subnsize - 1, y1 ;; y1 + subnsize - 1DD = subnoise;
ArrayPlot@dnoise, PlotRange Ø 80, 1<, PixelConstrained Ø 81, 1<D,
88y1, 20, "Horizontal"<, 1, nsize - subnsize, 1<,
88x1, 20, "Vertical"<, 1, nsize - subnsize, 1<D

Out[57]=

Horizontal

Vertical

Keeping in mind these goals provides important constraints on our consideration of the models of early visual motion 
measurements. One distinction that we mentioned in the context of shape from shading is whether we need to estimate a 
dense field or a sparse one. A sparse set of velocity estimates would be important for efficiently describing the trajectories 
of objects--i.e. at a given instant, one “summary” velocity vector for each object could be useful for deciding the chance of 
collision. On the other hand, a dense velocity field could be useful for segmenting an object from a background to deter-
mine its shape.

Let’s first look at how a change in image data is locally related to the velocity of a point in the scene.
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Keeping in mind these goals provides important constraints on our consideration of the models of early visual motion 
measurements. One distinction that we mentioned in the context of shape from shading is whether we need to estimate a 
dense field or a sparse one. A sparse set of velocity estimates would be important for efficiently describing the trajectories 
of objects--i.e. at a given instant, one “summary” velocity vector for each object could be useful for deciding the chance of 
collision. On the other hand, a dense velocity field could be useful for segmenting an object from a background to deter-
mine its shape.

Let’s first look at how a change in image data is locally related to the velocity of a point in the scene.

Models of early motion measurement
As we will see shortly, the problem of estimating motion flow is complicated by a number of factors, one of which is that 
we don't have the motion flow directly available at the image. What we do have, are estimates of intensity change in time 
at each location, which we will call optic flow.  Let's set this lecture in context and outline several historical approaches to 
motion measurement. As will become clearer later, there are theoretical connections between the various approaches.

‡ Correlation models

Correlation-like models use image correlations to find spatial shifts that can account for image intensity shifts over time. 
The work dates to the pioneering results of Reichardt and colleagues in Germany on the fly and beetle visual systems 
(Hassenstein, B., & Reichardt, W., 1956).  Later, mechanisms of directional selectivity were studied in vertebrate retina of 
the rabbit (Barlow, H. B., & Levick, R. W. , 1965). 

Some phenomena of human motion perception can be explained by modified versions of these early correlation or 
correlation-like models (Van Santen, J. P. H., & Sperling, G. , 1985; Adelson, E. H., & Bergen, J. R. , 1985).  The possible 
synaptic basis of early motion selectivity has a long history (e.g. Koch, C., Torre, V., & Poggio, T., 1986; He, S., & 
Masland, R. H. (1997), Barlow, H. (1996)). 

See the Appendix below for a demonstration of correlation.

‡ Gradient methods

Gradient models were developed in computer vision. Rather than being derived from an analysis of biological 
mechanisms, gradient models were developed from a computational analysis of the problem, in conjunction with the use 
of known mathematical tools for solving the resulting differential equations. 

Below, we will introduce the computational problems of motion detection by looking first at gradient models. We 
will look at one Bayesian model that can account for a large number of human perceptual results on motion integration. 
We will also see how gradient models are related to biologically plausible receptive field properties and mechanisms.

The above figure from Borst (2007) illustrates the difference between correlation (also "Reichardt" or Hassenstein-
Reichardt" detector) and gradient detectors. ("M" stands for multiplication.) For a recent discussion in the context of the 
fly visual system, see: Borst, A. (2007). Correlation versus gradient type motion detectors: the pros and cons. Philos Trans 
R Soc Lond B Biol Sci, 362(1479), 369-374. (pdf)
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The above figure from Borst (2007) illustrates the difference between correlation (also "Reichardt" or Hassenstein-
Reichardt" detector) and gradient detectors. ("M" stands for multiplication.) For a recent discussion in the context of the 
fly visual system, see: Borst, A. (2007). Correlation versus gradient type motion detectors: the pros and cons. Philos Trans 
R Soc Lond B Biol Sci, 362(1479), 369-374. (pdf)

‡ Feature tracking

Feature tracking. Both correlation and gradient models are low-level in that they are based on local image intensity 
changes. One could imagine a different kind of system that locates features (more complicated that “pixel intensity”, 
conceivably quite complex, like an "apple") at time t, find that feature again a small time interval later, and from there 
computes the motion vector. 

There is psychological evidence for both low-level (e.g. correlation) and feature tracking models. But the 
"features"  may be defined rather generally, e.g. anywhere from luminance of a point, to "corner", to "apple". A fair 
amount of psychophysics went into arguing for two separate motion systems in human vision (Braddick, O. J., 1974).

Object tracking has been an important problem in computer vision, where discounting view, illumination and 
occlusion has been taken into account (e.g. Isard & Blake, 1998; Hager & Belhumeur, 1996).

‡ Orientation in space-time

In the next lecture we will see how models of biological motion detectors can be interpreted as edge or "orientation 
detectors" but where the "orientation" is in space-time, rather than space-space. We'll also see how they relate to gradient 
models.

Geometry & kinematics
Generative model describing how the velocity of a point in 3D gets mapped to the velocity of its image point. The nodal 
point of a lens is where a light ray passes undeviated. Let robe a vector representing a point (x,y,z) on an object in the 3D 
scene.  Let ri be the vector representing its corresponding point in the projected image (e.g. on to the retina). z is a vector 
pointing along the axis between the nodal point and image origin (e.g. fovea). f is the distance from the nodal point to the 
image plane.
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Using similar triangles we have:

Object velocity is:

And the projected image velocity is:

With some vector calculus manipulations using identities, one can arrive at:

(e.g. See Horn's book Robot Vision)

It is important to underscore that this is just a statement about the kinematics of projection geometry.  Light intensity does 
not enter in. The equation tells us how to calculate the motion field   from a description of the 3D coordinates and veloci-
ties. 

We don't have access to the projected image velocity of 3D world points. The available  image data are intensity changes 
that are not directly related to geometry. How can we estimate the motion flow from retinal or image intensity changes? 
This, of course, is another example of a scene-from-image inference problem.

Geometry & photometry: Motion field vs. Optic flow
Image data involves measurements of light intensity over space and time, so it is not immediately obvious how to relate 
intensity change to geometry changes either in the world or on the retina. We've considered just the geometry to see the 
relationship between velocity in the world and velocity on the retina--ie. how we can calculate the projected velocity in the 
image from a knowledge of the 3D velocity of a point.

Our inverse problem is that we would like to go from the retinal flow of brightness (optic flow) to an estimate of 
the motion field.  To emphasize the difference between optic and motion flow, consider a rotating sphere--an illustration 
adopted from Horn.

  Assuming a surface of uniform material, the rotating sphere would not appear to rotate (optic flow would not 
change), but motion flow would change.  However, if the light source is rotated around the stationary sphere, the sphere 
appears to rotate (optic flow), while the motion field is actually constant.  Because the visual system relies on optic flow 
information, we must understand how to infer motion flow from optic flow.
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‡ Non-zero motion field: rotating object, fixed light source

Interactively rotate the gray lambertian shaded sphere in the Mathematica demo:

In[58]:=
Graphics3D@88GrayLevel@.5D, Sphere@80, 0, 0<D<,

8Red, Sphere@80, 0, 1<, .05D<<, Boxed Ø False, Lighting Ø "Neutral",
ImageSize Ø Tiny, RotationAction Ø "Clip"D

Out[58]=

‡ Non-zero optic flow: fixed object, moving light source

Now rotate the light source about the lambertian shaded sphere:
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In[59]:=
p1@q_D := RotationTransform@q, 80, 0, 1<D@80, 2, 0<D;
Animate@Graphics3D@8Sphere@D, Sphere@p1@qD, .1D<,

Lighting Ø 88"Ambient", GrayLevel@.1D<,
8"Point", GrayLevel@.5D, p1@qD<<, PlotRange Ø 2.5,

Background Ø Black, Boxed Ø False, ImageSize Ø SmallD,
8q, -Pi - Pi ê 4, -Pi ê 2<, SaveDefinitions Ø True, AnimationRunning Ø FalseD

Out[59]=

q
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The gradient constraint & the aperture problem 

Photometric generative model (inexact) -> gradient constraint

If one could pick a point, r in the image, on a curve at time t, and track it to its new location at time t + Dt, the motion flow 
would be given by dr/dt.  In order to track this point, we need to specify some "feature". The simplest is the luminance at 
point r.  Although this could be considered a primitive form of feature tracking, tracking the luminance in the image has 
fundamental ambiguities. The luminance corresponding to a point out in the scene is not guaranteed to remain constant  
with time in the image. And even if the points do maintain a constant intensity in time, there may be many points at time 
t+dt that match the intensity of the feature point at time t. However, it seems reasonable to assume that luminance doesn't 
change much over small displacements occurring over short times. So lets' suppose that intensity doesn't change over 
small distances Dx, Dy and short time intervals, Dt, then the total derivative of luminance would be zero:

 m is a quantitative expression for the optic flow at a point, but it is only an estimate of the motion field. Note that even if 
luminance did remain constant, (not a bad assumption for small Dt), we still have the problem of matching which of 
possibly many points of the same luminance in the second frame belong to our chosen feature in the first frame. This an 
example of the correspondence problem, which also crops up in stereo vision.
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 m is a quantitative expression for the optic flow at a point, but it is only an estimate of the motion field. Note that even if 
luminance did remain constant, (not a bad assumption for small Dt), we still have the problem of matching which of 
possibly many points of the same luminance in the second frame belong to our chosen feature in the first frame. This an 
example of the correspondence problem, which also crops up in stereo vision.

How would you approximate ¶∂L
¶∂t

, ¶∂L
¶∂x

, ¶∂L
¶∂y

 given two image frames: Lt+Dt(x,y) and Lt(x,y)?

Aperture problem

Let us look at what the generative equation buys us. What is measurable? Our measurables are: ¶∂L
¶∂t

, ¶∂L
¶∂x

, ¶∂L
¶∂y

, but u and v are 

unknown.  So we have two unknowns for each equation at a point (as with the shape from shading problem). The gradient 
flow equation provides a constraint on the solution to the problem of calculating optic flow. But it does not specify a 
unique solution. Again we see an example of a vision problem that is mathematically  underconstrained--even apart from 
any motion field ambiguity, there are too many optic flow solutions that satisfy the data.

Well, what do our measurements tell us? Note that —L points in the direction of maximum intensity change. 
(Recall this property of the vector gradient before in the context of edge detection with gradients in x and y.) We can see 
this by projecting —L onto a little vector dr of fixed length that we rotate around so that it makes various angles q with —
L. The dot product 

is biggest when cosq = 1, or q = 0  (e.g.  at an edge/contour). 

So, we can measure the component of optic flow perpendicular to the contour:

This formula makes explicit what we get, and what we lack in our effort to find a unique solution to the optic flow. We 
can get the velocity components in the direction of the gradient at each point, but not perpendicular to it.  This ambiguity 
is known as the aperture problem. This problem is faced by a measurement of motion that is restricted to an edge. For 
example, the motion and orientation selective cells in V1, are limited by the aperture problem because of their small, 
limited receptive field sizes.
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This formula makes explicit what we get, and what we lack in our effort to find a unique solution to the optic flow. We 
can get the velocity components in the direction of the gradient at each point, but not perpendicular to it.  This ambiguity 
is known as the aperture problem. This problem is faced by a measurement of motion that is restricted to an edge. For 
example, the motion and orientation selective cells in V1, are limited by the aperture problem because of their small, 
limited receptive field sizes.

‡ Aperture ambiguity: Demo of aperture problem

In[60]:=
gdiamond@x_, q_, s_D :=
8EdgeForm@8Thickness@.01D, Blue<D, FaceForm@D,
Translate@
Scale@Rotate@Rectangle@8-diasize, -diasize<, 8diasize, diasize<D, qD,
8s, 1<D, 8x, 0<D<

gbar@x_, q_D := 8EdgeForm@8Thick, Red<D, FaceForm@RedD,
Translate@Rotate@Rectangle@80, 0<, 8bwidth, 1<D, qD, 8x, 0<D<

In[62]:=
bwidth = 0.5; bspace = .25;
bdisp = .5; diasize = .6; bcolor = Black; bcolor2 = Black;
backcolor = bcolor;

gbar3@x_, q_, s_D := 8EdgeForm@8Thick, bcolor2<D, FaceForm@bcolorD,
Translate@Scale@Rotate@Rectangle@8bdisp, -1<, 8bdisp + bwidth, 1<D, qD,

8s, 1<D, 8.2, 0<D, EdgeForm@8Thick, bcolor<D, FaceForm@bcolorD,
Translate@
Scale@Rotate@Rectangle@8-bwidth - bspace + bdisp, -1<,

8bdisp - bwidth - bspace + bwidth, 1<D, qD, 8s, 1<D, 8x, 0<D,
EdgeForm@8Thick, bcolor2<D, FaceForm@bcolorD,
Translate@
Scale@Rotate@Rectangle@8bdisp + 2 * H-bspace - bwidthL, -1<,

82 * H-bspace - bwidthL + bwidth + bdisp, 1<D, qD, 84, 1<D, 8x, 0<D<
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‡ Translation

In[66]:=
Animate@Graphics@8gdiamond@x * .07, Pi ê 4, 1.D, gbar3@-.05, 0, 1.0D<,

PlotRange Ø 88-1.5, 1.5<, 8-1.5, 1.5<<, Background Ø backcolor,
ImageSize Ø SmallD, 8x, -1, 1, .1<, AnimationRunning Ø True,

DisplayAllSteps Ø True, AppearanceElements Ø All,
AnimationDirection Ø ForwardBackward, AnimationRate Ø 2D

Out[66]=

x

‡ Constraint lines: A sparse velocity solution to the aperture problem

What is the solution to this problem?  We need a priori  constraints, i.e. constraints that are not explicit in the data, but are 
based on assumptions of what the class of estimates are typically like. If for example, the local measurements come from 
rigid motion of an object in a plane, the following strategy could be used to estimate the actual velocity
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This solution would give us the right motion vector for rigid motion in the plane. See Movshon et a;/ (1986) possible 
physiological solution to this problem. One could ask whether there are more general constraints that are not restricted to 
assuming rigid planar motion.

Smoothness constraint to solve for a dense optic flow field

Combining prior smoothness constraint with generative constraint
An early method due to Horn & Schunck. Dense motion field is "area-based" rather than "contour-based". This means that 
optic flow is computed over each pixel in the field, rather than by tracking contours.

One way to solve the problem of being underconstrained, is to add some fairly general constraints on the class of allow-
able optic flow fields. In the spirit of a prior for "smooth shape" that we saw earlier,  Horn and Schunck's idea was to 
assume that flow fields are smooth almost everywhere. This constraint is generic.  That is, the hope is that it will more or 
less work regardless of the class of scenes causing the flow. If one knew ahead of time that the flow would always be 
caused by a rotating cube illuminated from above, one could use this knowledge to constrain the optic flow solution. This 
would be a domain specific constraint.

What is a suitable measure of smoothness? Both Laplacians and gradients of the velocity components at each pixel 
location provide measures:

Then, the constraints are that the flow estimates should be consistent with that expected from required the total derivative 
of the image data to be close to zero:

In the language of Bayesian inference,  Ei is a likelihood constraint, because it is based on the data.

The second constraint is an a priori constraint  that the flow estimates be locally smooth: 
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In the language of Bayesian inference,  Ei is a likelihood constraint, because it is based on the data.

The second constraint is an a priori constraint  that the flow estimates be locally smooth: 

Es is the smoothness cost  function. "a priori" means that we were assuming this about our solution independent of the 
data, as in a Bayesian prior. We saw this distinction between a priori and a posteriori constraints in shape from shading. 

The above two local constraints can be used to construct a global cost function, or more precisely functional (if the 
optic flow is assumed to be a continuous function):

The goal is to find the optic flow, u(x,y)  and v(x,y), that minimizes this functional. 

Recall that we saw an analagous cost function before in the Ikeuchi and Horn shape from shading cost function.

How can we find a solution?

One way to do this is to use the method of gradient descent. Here we are going to be taking an entirely different gradient--
not the gradient of intensity, but the gradient of the cost function e.

Visualization of gradient descent in 2D -- 
(Note:  “gradient” here is on a cost function--a totally different function!)

Gradient descent technique
Gradient descent is an important numerical technique that crops up in lots of applications including vision.

‡ Cost function or "Energy potential" surface

Also called error or objective function.  If continuous it is called a "functional", in that the energy depends on functions 
rather than scalar or vector values. If optic flow is a continuous vector field, it is a function, and you'd like to find exactly 
which optic flow function gives the smallest cost function.

Whatever it is called, the idea is that finding a solution requires finding the argument values that minimize the energy 
(under certain conditions, this is equivalent to finding the arguments that maximize the posterior probability).

Let's look at a small dimensional example. Here is the energy surface e = z(u,v):

In[67]:=
z[u_,v_]:= Sin[2 u] Sin[2 v];
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In[68]:=
Plot3D[z[u,v], {u,-2,2}, {v,-2,2}, ViewPoint->{1.3, -2.4, 2},
PlotRange->{{-3,3},{-3,3},{-3,1}}, Axes->True,Boxed->True,ImageSize->Small]

Out[68]=

By eye, we can see roughly where the minima sit--there are two minima where z(u,v) = -1, i.e. at {Pi/4, -Pi/4} and {-Pi/4, 
Pi/4}. But what if z is a surface z = f(x1, x2, x3,...,xn), that is embedded in a much higher dimensional space of n dimen-
sions. How then can we find the minimum when we can't just look at a plot and guess? Gradient descent is a method that 
will work in the 2D case, but can also be applied to much higher dimension like finding the optic flow (u's and v's) that 
minimze the above error function e.

‡ Gradient field of the cost function

We've seen the gradient of a function used in two earlier contexts. First, we briefly noted that the gradient of an image 
produces a vector field where the vectors point in the direction of maximum intensity change (i.e. tend to be perpendicular 
to edges). Second we noted that the gradient of a depth function provided a surface normal representation that collectively 
provide a description of shape. Now we are going to use the gradient from vector calculus in a third way. Because the 
gradient points in the direction of maximum change, if we take the gradient of our cost function e= z(x,y)

In[69]:=
gradZ[u_,v_] := Evaluate[{D[z[u,v],u],D[z[u,v],v]}];

we get,

In[70]:=
gradZ[u,v]

Out[70]=
82 Cos@2 uD Sin@2 vD, 2 Cos@2 vD Sin@2 uD<

If we put a minus sign in front, the gradient vector points in the direction of greatest decrease, i.e. points in the direction 
we want to go to minimize a cost function.

Let's visualize the cost landscape by combining VectorPlot[ ] and ContourPlot[]:

In[71]:=
gvf = VectorPlot[-gradZ[u,v],{u,-2,2}, {v,-2,2},ColorFunction->Hue[0.99]];

This shows a set of vectors each of which always point towards the direction of local steepest descent on the surface. 

Note that the arrows represent the vector field for the gradient of the cost function, not the optic flow field. The optic flow 
field in this case has only two dimensions (rather than the hundreds or thousands) would correspond to the two axes of the 
plot.
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This shows a set of vectors each of which always point towards the direction of local steepest descent on the surface. 

Note that the arrows represent the vector field for the gradient of the cost function, not the optic flow field. The optic flow 
field in this case has only two dimensions (rather than the hundreds or thousands) would correspond to the two axes of the 
plot.

In[72]:=
gc = ContourPlot@z@u, vD, 8u, -2, 2<, 8v, -2, 2<D;
Show@gc, gvf, ImageSize Ø SmallD

Out[73]=

So each vector says which direction to take a step if you are descending. And its length tells you how high a step could be. 

If you want to go up the landscape, just go in the direction given by  gradZ[u,v], and you do gradient ascent. The negative 
just turns the arrows around to put in the opposite direction specifying gradient descent.

‡ Gradient descent

The idea behind gradient descent is this. Suppose you are  plopped down randomly somewhere on a smooth cost function 
landscape. If you begin to take steps in the direction given by the negative gradient, you will go down...and this is better 
than wondering around aimlessly. If there is a low spot, then you can check that you are at a minimum, because the 
gradient there is zero. Gradient descent isn't perfect. If your steps are too big, you could step right over the minimum. You 
could end up in different minima depending on your starting position. Further, the minimum you end up in could be a local 
rather than global minimum. Sometimes this is OK, but it isn't the best for optic flow estimation where we normally want 
to find the position on the cost landscape (i.e. the optic flow) that minimizes the overall error or cost the best--i.e. the 
global minimum of the cost function.

Let r = {u,v} be a location on the cost function landscape. We are going to start off at r0 = {u0,v0}, then calculate the u 
and v directions of the step to take, {Du,Dv} = gradZ[r[[1]],r[[2]]], scale this step size by dt (= a), and then set the update 
equation:

newr = r - dt gradZ[r]

Note that this is  discretized form of the equation:
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where -“e = -gradZ.

‡ Mathematica demonstration of gradient descent

Let's define the update equation in Mathematica: 

In[89]:=
u0 = Random[Real,2]-1; v0 = Random[Real,2]-1;
dt = 0.1;
newr[r_] := r - dt*gradZ[r[[1]],r[[2]]];

To do the iteration, we use the built-in function NestList[] . NestList[f, expr, n] gives a list of the results of applying 
f to expr 0 through n times.

In[92]:=
result = NestList[newr,{u0,v0},200];

gresults = ListPlot[result,
Joined->False,AxesOrigin->{0,0},
PlotRange->{{-2,2},{-2,2}},FrameLabel->{"u","v"},
Frame->True, AspectRatio->1,RotateLabel->False,PlotLabel->"State Space",
Ticks->None, PlotStyle->{RGBColor[1,0,0], PointSize[0.015]}];
Show[gc, gvf,gresults,ImageSize->Small]

Out[95]=

What happens if you start at r0 = {0,0}?

For any kind of iterative solution method, we should ask whether the method converges, and if so, whether it converges to 
the smallest error. A bumpy cost function surface could easily lead our descent into a local minimum--and usually we are 
interested in the global minimum.  

It can be shown that the above energy function for optic flow is convex with a single minimum (unlike our toy 2-dimen-
sional example which has more than one local minimum), and thus gradient descent should provide a unique estimate of 
the optic flow. This algorithm works fairly well, especially if motion flow at a contour boundary is available to addition-
ally constrain the interior values. One problem, is that without this external constraint, the estimates smooth over disconti-
nuities. A second problem is that a good solution may require many iterations--and is therefore too slow. A lot of research 
has gone into devising efficient optimization methods, and in actual practice, you would probably want to find some 
expertise in numerical methods.
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Gradient descent solution for optic flow
Let's see how to apply gradient descent to the optic flow problem. One reason that derivatives are chosen for the smooth-
ness constraint is that there exist standard mathematical tools to solve these minimization problems. (See p. 284 in Horn's 
Robot Vision book for a discussion of the calculus of variations--some mathematics that has been used in many areas of 
mathematical physics ranging from classical mechanics (least action), to optics (least time), to quantum mechanics.)

Suppose we discretize the flow field into two n x n pixel maps (uik, vik), and estimate the error or cost function at 
each pair of pixel sites. Now compute the gradient of the error function:

We make an initial guess (perhaps at random) for the initial flow field:

Then iterate according to the following rule:

over all points, (i,k). That is, at each iteration, we move the values of the flow field, (uik, vik), in the opposite direction of 
the gradient of the error function. That is, we always take steps down the error function surface. That way, we eventually, 
we come to a minimum.  a has to be chosen small enough that we don't hop over minima, but big enough to not take 
forever to find the minimum. 

Human motion perception: area-based vs. contour-based models
Are the representation, constraints, and algorithm that we've assumed above a good model of human motion 

perception? 

The gradient descent aspect of the algorithm is almost certainly wrong. It just takes too long. However, there are algo-
rithms that respect the contraints, but avoid the need for gradient descent.

But there are other reasons why the answer seems to be "no". The representation of the input is probably wrong. 
Human observers sometimes give more weight to contour movement than to intensity flow. Human perception of the 
sequence illustrated below differs from "area-based" models of optic flow such as the above Horn and Schunck algorithm. 
The two curves below would give a maximum correlation at zero--hence zero predicted velocity. Human observers see the 
contour move from left to right--because the contours are stronger features than the gray-levels. However we will see in 
Adelson's missing fundamental illusion (next lecture) that the story is not as simple as a mere "tracking of edges" --and we 
will return to spatial frequency channels to account for the human visual system's motion measurements.
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Hildreth's contour model
Dense on a contour, sparse elsewhere.

Some sort of smoothness constraint seems to be important, but it could operate on the contours, rather than intensities. 
Further, the smoothness constraint has to be generalized (see Yuille, A., & Grzywacz, N., 1988 for a  discussion of 
smoothness constraints).  In a beautifully written Ph.D. thesis, Ellen Hildreth suggested a  contour-based scheme that is  
consistent with a number of observations from human perception. Her error term was: 

where v (s) is the velocity at position s of the contour. We want to estimate v(s), but the only data available is the magni-
tude of the component of v(s) perpendicular to the contour, call it vn(s). So if possible, we want to choose v so that v•n = 
vn(s), as shown in the figure:

To make the problem well-posed, smoothness is imposed by requiring that a measure of the magnitude of the rate of 
change of the contour velocity along the contour,  e.g. ¶∂v ê¶∂s 2 be small. 

Although not strictly necessary from a mathematical point of view, both the area based method of Horn and 
Schunck, and Hildreth's contour method specified some kind of iterative method for solution. How appropriate is the 
gradient descent algorithm from a biological point of view? 

Gradient descent as well as other methods can be implemented in biologically plausible neural network algo-
rithms--both linear, and non-linear (e.g. Cohen, M. A., & Grossberg, S. (1983). Absolute Stability of Global Pattern 
Formation and Parallel Memory Storage by Competitive Neural Networks. IEEE Transactions SMC-13, , 815-826.; 
Hopfield, J. J. (1984). Neurons with graded response have  collective computational properties like those of two-state  
neurons. Proceedings National Academy of Science, USA, 81, 3088-3092.).  However, it seems unlikely that biological 
systems would use a method that could require many iterations--neural elements just aren't fast enough. By the time the 
flow is computed, we would have been either devoured by the jaguar, or more likely in our society, hit by one on the 
freeway.

For certain minimization problems, one can show that a feedforward one-shot solution exists. For example, this is 
straightforward for error functions that are quadratic. where a linear matrix operation can solve the problem in a single 
shot.
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For certain minimization problems, one can show that a feedforward one-shot solution exists. For example, this is 
straightforward for error functions that are quadratic. where a linear matrix operation can solve the problem in a single 
shot.

Next time
We have studied some of the computational problems of motion measurement. In the next lecture, we will look at  

how a Bayesian formulation with the right priors can be used to model a variety of human motion direction perception 
results. And we will look at neural systems solutions to the problem of motion measurement.

Neither the area-based nor the contour-based algorithms we've seen can account for the range of human motion phenom-
ena or psychophysical data that we now have. We will look at a recent Bayesian model that uses the area-based gradient 
constraint, combines it with a particular set of prior assumptions to compute a somewhat dense optic flow field that 
accounts for a wide range of human motion data.

Appendices

Searching for spatial correlations in two frames
In[104]:=

argmax2@x_D := Flatten@Position@x, Max@xDDD;
H*coords of max in matrix*L
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In[112]:=
size = 32; x0 = 4; y0 = 4; pw = 24; xoffset = 3;
A1 = Table@Random@D, 8size<, 8size<D; A2 = A1;
H*A2=Table@Random@D,8size<,8size<D;*L
A2@@Range@y0, y0 + pwD, Range@x0, x0 + pwDDD =

A1@@Range@y0, y0 + pwD, Range@x0 - xoffset, x0 + pw - xoffsetDDD;

ga1 = ArrayPlot@A1, Mesh Ø FalseD;
ga2 = ArrayPlot@A2, Mesh Ø FalseD;
ListAnimate@8ga1, ga2<D

Out[117]=

In[110]:=
argmax2@ListCorrelate@A1, A1, 8size ê 2, size ê 2<DD

Out[110]=
816, 16<

In[111]:=
argmax2@ListCorrelate@A1, A2, 8size ê 2, size ê 2<DD

Out[111]=
816, 19<

How does correlation work if the patch is small? 

Try having dynamic noise in the background, by uncommenting (*A2=Table[Random[],{size},{size}];*). 
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