
Computational Vision
U. Minn. Psy 5036
Daniel Kersten
Lecture 25: Perceptual integration, Cooperative Computation

Initialize

‡ Spell check off

Off@General::spell1D;

Outline

Last time
Object recognition
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‡ Use Bayesian framework to better understand how perceptual information gets put together. Look at 

examples of actualy calcuations.
‡ Modular vs. cooperative computation

For the most part, we've treated visual estimation as if it is done in distinct "modules", such as,  surface-color-from-
radiance (Land, 1959), shape-from-shading (Horn, 1975), optic flow (Hildreth, 1983) or structure-from-motion (Ullman, 
1979).

In contrast to the  modularity theories of vision, it is phenomenally apparent that visual information  is integrated 
to provide a strikingly singular description of the  visual environment.  By looking at how human perception puts inte-
grates scene attributes, we may get some idea of how vision modules in the brain interact, and what they represent.



Review of basic graph types in vision (from Lecture 6)
See: Kersten, D., & Yuille, A. (2003) and Kersten, Mamassian & Yuille (2004)

‡ Basic Bayes & vision modules

p@S ID =
p@I SD p@SD

p@ID

Usually, we will be thinking of the Y term as a random variable over the hypothesis space, and X as data. So for visual 
inference, Y = S (the scene), and X = I (the image data), and I = f(S).

We'd like to have:

p(S|I) is the posterior probability of the scene given the image

-- i.e. what you get when you condition the joint by the image data. The posterior is often what we'd like to base our 
decisions on, because as we discuss below,  picking the hypothesis S which maximizes the posterior (i.e. maximum a 
posteriori or MAP estimation) minimizes the average probability of error.

p(S) is the prior probability of the scene.

p(I|S) is the likelihood of the scene. Note this is a probability of I, but not of S.

We've seen that the idea of prior assumptions that constrain otherwise underconstrained vision problems is a theme that 
pervades much of visual perception. Where do the priors come from? Some may be built in early on or hardwired from 
birth, and others learned in adulthood. See: Adams, W. J., Graf, E. W., & Ernst, M. O. (2004). Experience can change the 
'light-from-above' prior. Nat Neurosci, 7(10), 1057-1058 for a recent example of learning the light from above prior for 
shape perception.
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‡ General Bayesian theory of low-level visual integration for separate “modules”

We've seen a number of applications of Basic Bayes, including the algorithms for shape from shading and optic flow.

In 1985, Poggio, Torre and Koch showed that solutions to many of computational problems of low vision could be formu-
lated in terms of maximum a posteriori estimates of scene attributes if the generative model could be described as a matrix 
multiplication, where the image I is matrix mapping of a scene vector S:

Then a solution corresponded to minimizing a cost function E, that simultaneously tries to minimize the cost due to 
reconstructing the image from the current hypothesis S, and a prior "smoothness" constraint on S. l is a (often free) 
parameter that determines the balance between the two terms. If there is reason to trust the data, then l is small; but if the 
data is unreliable, then more emphasis should be placed on the prior, thus l  should be bigger.

For example, S could correspond to representations of shape, stereo, edges, or motion field, and smoothness be modeled in 
terms of nth order derivatives, approximated by finite differences in matrix B.

The Bayesian interpretation comes from multivariate gaussian assumptions on the generative model:

25.PerceptualIntegration.nb 3



From Poggio, Torre & Koch, 1985

‡ Discounting: Emphasing one model cause of image data over another

This Bayes net describes the case where the joint distribution can be factored as:

pHs1, s2, IL = p(I|s1,s2)p(s1)p(s2)

Optimal inference for this task requires that we calculate the marginal posterior:

p(s1|I) µ∝ ŸS2 pHs1, s2 IL „ s2

Liu, Knill & Kersten (1995) describe an example with:  

I -> 2D x-y image measurements, s1-> 3D object shape, and s2-> view

Bloj et al. (1999) have an example estimating  s1-> surface chroma (saturation) with  s2-> illuminant direction.
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‡ Ideal observer for the "snap shot" model of visual recognition: Discounting views

Tjan et al. describe an application to object recognition in noise. Their idea was to measure how efficiently human 
observers recognize objects given view variation, and different types of image information. (See Tjan et al. (1995) Human 
efficiency for recognizing 3-D objects in luminance noise.Vision Research, 35, 3053-3069.)
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Eight views of four objects are shown above. Four different types of image information are shown below: shaded, large 
silhouette, line drawing, and small sillhouette. It had previously been shown that humans can name objects just as rapidly 
for line-drawing versions as for fully shaded versions of the same objects (Biederman & Ju, 1988). But it isn’t clear 
whether this may be due to high efficiency for line-drawings, i.e. that the visual system is in some sense “well-tuned” for 
line drawings. Let’s look specifically at how an ideal recognizer can be calculated that discounts views.
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Let X = the vector describing the image data. Let Oi represent object i, where i = 1 to N. Suppose that Oi is represented in 
memory by M "snap shots" of each object, call them views (or templates) Vij, where j = 1, M . Given image data X, the 
posterior probability of  Oi is computed by integrating out view, i.e. summing or “marginalizing” with respect to the M 
viewpoints.

p HOi XL = ‚
j=1

M

p IVij XM

= ‚
j=1

M p IX VijM p IVijM

p HXL

Given image data, Ideal observer chooses object category i that maximizes the posterior p HOi XL. Given that p(X) is 
constant for a given observation X, the optimal strategy is equivalent to choosing i that maximizes:

L HiL = ‚
j=1

M

p IX VijM p IVijM

Tjan et al. used i.i.d additive gaussian noise in their experiment (as we did for the signal-known-exactly detection ideal 
near the beginning of the course), so the precise expression for the likelihood is:

p IX VijM =
1

Js 2 p N
p
exp -

1

2 s2
°X - Vij¥2

where p is the number of pixels in the image. The sum can then be computed given a particular pattern of image intensities 
X. 
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Tjan et al.’s experimental results showed that size, spatial uncertainty and detection efficiency played large roles in 
accounting for human object recognition efficiency. 

Interestingly, highest recognition efficiencies (~7.8%) were found for small silhouettes of the objects, compared with 
(2.7%) fir line-drawings. (The small silhouettes were 0.7 deg, vs. 2.4 deg for the large silhouettes). Detection efficiencies, 
however, were about the same for both.

‡ Now more on Cue integration and "Explaining away"...

Cue integration: When a single model causes more than one 
measurement

‡ Weak fusion

Recall the generative graph for cue integration

Clark & Yuille, Landy & Maloney, Knill & Kersten, Schrater & Kersten.
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This Bayes net describes the factorization:

p(S,I1,I2) = p(I1|S)p(I2|S)p(S)

‡ Maximum a posteriori observer for cue integration: conditionally independent cues

We'll change notation, and let x1 and x2 be image measurements or cues. The simple Bayes net shown above describes the 
case where the two cues are conditionally independent. In other words, p(x1, x2 | s) = p(x1| s) p(x2 | s).

Let's consider the simple Gaussian case where xi = s + ni = m + ni. We'll show that optimal combined cue estimate is a 
weighted average of the cues. 

p(s|x1, x2)=p(x1, x2 | s) p(s) /p(x1, x2) µ∝ p(x1| s) p(x2 | s) = e-Ix1-sM2ë2s12e-Ix2-sM2ë2s22

PowerExpandBLogBE-Ix1-mM
2ëI2s1

2M E-Ix2-mM
2ëI2s2

2MFF

-
Hx1 - mL2

2 s1
2

-
Hx2 - mL2

2 s2
2

What value of the variable m = s gives the biggest posterior probability? We find the maximum by taking the derivative, 
and then finding the mean value of m that give us zero.

DB-
Hx1 - mL2

2 s1
2

-
Hx2 - mL2

2 s2
2

, mF

x1 - m

s1
2

+
x2 - m

s2
2
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SolveB
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1

si
2

, is called the reliability.

m Æ
r1 x1
r1 + r2

+
r2 x2
r1 + r2

mØ
r1 x1

r1 + r2
+

r2 x2
r1 + r2

In general, one can show that the combined estimate is the weighted sum of the separate estimates,
mcue1 and mcue2 of the scene variable s measured under

separate conditions. The weights wi are determined by the relative reliabilities :

mcombined
` = mcue1

` w1 + mcue2
` w2 = mcue1

` r1
r1 + r2

+ mcue2
` r2

r1 + r2
.

‡ An application to integrating cues from vision and haptics (touch)

When a person looks and feels an object, vision often dominates the integrated percept--e.g. the perceived size of an object 
is typically driven more strongly by vision than by touch.  Why is this? Ernst and Banks showed that the reliability of the 
visual and haptic information determines which cue dominates. They first measured the variances associated with visual 
and haptic estimation of object size. They used these measurements to construct a maximum-likelihood estimator that 
integrates both cues. They concluded that the nervous system combines visual and haptic information in a fashion that is 
similar to a maximum-likelihood ideal observer. Specifically, visual dominance occurs when the variance associated with 
visual estimation is lower than that associated with haptic estimate.

10 25.PerceptualIntegration.nb



See Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 
415:429-433.
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See Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 
415:429-433.

Perceptual explaining away: More that one model working 
cooperatively to “explain” the data

‡ Perception as puzzle solving

Rock, I. (1983). The Logic of Perception. Cambridge, Massachusetts: M.I.T. Press.

‡ Strong fusion

In their 1990 book Data Fusion for Sensory Information Processing, Clark & Yuille distinguished weak from strong 
fusion. Strong fusion uses more sophisticated generative knowledge for how the image data arises. At several times during 
this course, we seen examples of “perceptual explaining away”, where the visual system uses its knowledge of how 
several processes interact to produce a complex image. For example, the ambiguous translating diamond. How the motion 
information gets integrated can be understood in the context of “cue integration”, as was described in Weiss, Adelson & 
Simoncelli. However, the selection process for what information should be integrated can be influenced by “auxiliary 
cues” for other processes, such as occlusion, that explains away missing information, such as the vertices of the diamond 
below.

‡ Perceptual explaining away

Both causes S1 and S2 can be primary variables.
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The above Bayes net describes the factorization:

p(S1,S2,I) = p(I|S2,S2) p(S1)p(S2)

If we average over I, S1 and S2 are independent. However, knowledge of I makes S1 and S2 conditionally dependent. The 
two causes S1 and S2 can behave like competing hypotheses to explain the data I.

In general, “explaining away” is a phenomenon that occurs in probabilistic belief networks in which two (or more) vari-
ables influence a third variable whose value can be measured  (Pearl, 1988). Once measured, it provides evidence to infer 
the values of the influencing variables. 

Imagine two coins that can be flipped independently, and the results (heads or tails) have an influence on a third variable.  
For concreteness, assume the third variable’s value is 1 if both coins agree, and 0 if not (NOT-XOR). If we are ignorant of 
the value of the third variable, knowledge of one influencing variable doesn't help to guess the value of the other—the two 
coin variables are independent. (This is called marginal independence, “marginal” with respect to the third variable, I) 

But if the value of the third variable  is measured (suppose it is 1), the two coin variables become coupled, and they are 
said to be conditionally dependent. Now knowing that one coin is heads guarantees that the other one is too. 

The phrase “explaining away” arises because coupling of variables through shared evidence often arises in human reason-
ing, when the influences can be viewed as competing causes. 

Suppose we have a prior reason to believe that both coins are heads, but we believe the second coin is even more likely 
than the first to be heads. Now we make a measurement, and discover the evidence is 0. The evidence explains away the 
"competing hypothesis" that both coins are heads, and in particular that the first coin is heads, because the first coin must 
be tails if the second coin is heads.

Human reasoning is particularly good at these kinds of inferences. 

“Explaining away” is also a characteristic of perceptual inferences, for example when there are alternative perceptual 
groupings consistent with a set of identical or similar sets of local image features. 

Demonstrations of cooperative computation and explaining away in 
perception

In addition to  occlusion and the ambiguous translating diamond, many other perceptual phenomena that we've seen before 
can be interpreted as "explaining away". 

One of the challenges is to quantitatively test the extent to which human vision uses knowledge of the generative processes 
to solve the more complex “puzzles” of perception. 

One would like to know, for example, when and the extent to which human vision may use uncertainty in an auxiliary cue 
to change beliefs about the primary hypothesis of interest. Whether it does or not requires quantitative tests.

Recently, Battaglia has worked out the theory for Gaussian processes.  Battaglia PW (2010). Bayesian perceptual infer-
ence in linear Gaussian models, MIT Technical Report, MIT-CSAIL-TR-2010-046. http://hdl.handle.net/1721.1/58669
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Dependence of shape on perceived light source direction
Explaining away can be interpreted as cooperation through “module” competition. 

Dependence of shape on perceived light source direction

This can be illustrated with shape and illumination direction. There may be no auxiliary cue, but both types of variables 
interact to determine the shading pattern. 

It may be the case that p(shape,illumination direction) ~ p(shape) p(illumination direction). However, this doesn’t imply 
that the variables remaing independent given a specific image. They may become conditionally dependent given shading.

Conditional dependence means that: p(shape, illumination | shading)  can not be factored into separate terms,  p(shape | 
shading) p(illumination | shading).  This is because shape and illumination are tied via a functional relationship with image 
measurements: shading = f(shape, illumination).

If the internal belief that light source direction changes from left to right, then the most probably shape estimate changes 
from convex to concave (or vice versa, depending on the shading direction).

Brewster (1926), Gibson, Ramachandran, V. S. (1990), crater illusion and the single light source assumption

Adams, W. J., Graf, E. W., & Ernst, M. O. (2004). Experience can change the 'light-from-above' prior. Nat Neurosci, 
7(10), 1057-1058.

‡ Vertical light direction
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‡ Horizontal light direction

Review: Occlusion & motion: Lorenceau & Shiffrar, Sinha
Recall translating diamond used to illustrate the aperture problem.

When the diamond is seen as coherently translating, one often also interprets the vertices as being covered by rectangular 
occluders.

Frame 19Frame 1

~7
deg

A.  

B. Diamond moves  
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‡ Translating diamond with "occluding occluders"

Occlusion as explaining away:
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Lightness & surface geometry

‡ Mach card

‡ Lightness and shape

Recall the lightness demonstration that is similar to the Craik-O'Brien-Cornsweet effect, but difficult to explain with a 
simple filter mechanism (Knill, D. C., & Kersten, D. J., 1991). The idea is that the lightness of a pair of luminance gradi-
ents on the left of the figure below look different, whereas they look similar for the pair luminance gradients on the right. 
The reason seems to be due to the fact that the luminance gradients on the right are attributed to smooth changes in shape, 
rather than smooth changes in illumination.

http://vision.psych.umn.edu/www/kersten-lab/demos/lightness.html

These demonstrations suggest the existence of scene representations in our brains for shape, reflectance and light source 
direction. 
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Draw a diagram to illustrate the above illusion in terms of "explaining away"

‡ Dependence of lightness on spatial layout

In the 1970's, Alan Gilchrist was able to show that the lightness of a surface patch may be judged either dark-gray, or near-
white with only changes in perceived spatial layout (Gilchrist, A. L. (1977). How did he do this? What is going on? 
Interpret lightness as reflectance estimation.
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o The Room-in-a-Shoe-Box experiment

o Coplanar card experiment

The left and right inner gray disks in the above figure are the same intensity. In classic simultaneous contrast, the brighter 
annulus on the right makes the inner disk appear darker. 

Review: Color & shape

‡ Bloj, Kersten & Hurlbert

Demo

http://gandalf.psych.umn.edu/users/kersten/kersten-lab/Mutual_illumination/BlojKerstenHurlbertDemo99.pdf
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Interpretation

Interreflection as explaining away. Stereo can be used as an auxiliary cue to change the perceived shape from concave to 
convex.

20 25.PerceptualIntegration.nb



Review: Transparency and structure-from-motion

‡ Motion and transparency (Kersten et al., 1992)

Dependence of transparency on perceived depth

Kersten and Bülthoff

o orientation and transparency

o transparency and depth from motion--computer demo

http://gandalf.psych.umn.edu/users/kersten/kersten-lab/demos/transparency.html

Nakayama, Shimojo (1992)

o transparency and depth from stereo demos, neon color spreading

Material shininess and surface curvature
Bruce Hartung, showed that visual perception takes into account 3D shape (curvature) when inferring whether a surface is 
matte or shiny. This inference requires a prior assumption that the statistics of the pattern of illumination in a complex 
environment is approximately radially uniform. In other words, illumination sources rarely have high aspect ratios (e.g. 
long flourescent lights would be considered rare compared with other sources). Hartung, B., & Kersten, D. (2003). How 
does the percep- tion of shape interact with the perception of shiny ma- terial? [Abstract] Journal of Vision, 3(9), 59a, 
http://journalofvision.org/3/9/59/, doi:10.1167/3.9 .59.
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Application to image parsing, object recognition

‡ Incorporating higher-level knowledge--Image parsing and recognition using cooperative computation

The material in Lectures 24 and 25, described computer vision work showing how competing object class models could 
compete to “explain away” false positives, see: Tu Z, Zhu S-C (2002), Zhu and Tu (2000). For a review, see: Yuille and 
Kersten (2006). Such a mechanism, perhaps as argued involving analysis-by-synthesis mechanisms,  may be particularly 
important given occlusion and a high amount of clutter. 
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The material in Lectures 24 and 25, described computer vision work showing how competing object class models could 
compete to “explain away” false positives, see: Tu Z, Zhu S-C (2002), Zhu and Tu (2000). For a review, see: Yuille and 
Kersten (2006). Such a mechanism, perhaps as argued involving analysis-by-synthesis mechanisms,  may be particularly 
important given occlusion and a high amount of clutter. 

http://gandalf.psych.umn.edu/users/kersten/kersten-lab/courses/Psy5036W2008/Lectures/24.%20ObjectRecognitionClut-
ter/Lecture24TopDown.pdf
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