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‡ Initialize standard library files:

H<< "BarCharts`"; << "Histograms`"; << "PieCharts`"L ;
Off@General::"spell1"D;

Goals

Last time

‡ Ideal Observer Analysis: Essential idea
Ideal observer

Model the data (image) generation process

Define the inference task

Determine optimal performance

Compare human performance to the ideal

Ideal normalizes for information available

Explain discrepancies in terms of:

functional adaptation

mechanism



Psychophysical tasks & techniques (from the previous lecture)

The Receiver Operating Characteristic (ROC)
Although we can't directly measure the internal distributions of a human observer's decision variable, we've seen that we 
can measure hit and false alarm rates, and thus d'. 

But one can do more, and actually test to see if an observer's decisions are consistent with Gaussian distributions with 
equal variance. If the criterion is varied, we can obtain a set of n data points: 

{(hit rate 1, false alarm rate 1), (hit rate 2, false alarm rate 2), ..., (hit rate n, false alarm rate n)} 

all from one experimental condition (i.e. from one signal-to-noise ratio, call it dideal'). This is because as the hit rate varies, 
so does the false alarm rate (see the above figures showing how hit and false alarm rates relate to area under the signal and 
noise distributions.). One could compute the d' for each pair and they should all be equal for the ideal observer. Of course, 
we would have to make a large number of measurements for each one--but on average, they should all be equal. 

To get meaningful and equal d's for each pair of hit and false alarm rates assumes that the underlying relative 
separation of the signal and noise distributions remain unchanged and that the distributions are Gaussian, with equal 
standard deviation.  We might know this is true (or true to a good approximation) for the ideal, but we have no guarantee 
for the human observer. Is there a way to check? Suppose the signal and noise distributions look like:

If we plot the hit rate vs. false alarm rate data on a graph as the criterion xc varies, we get something that looks like:
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In[19]:= b = 15; d = 10; sigma = 4;
ndistd = NormalDistribution@d, sigmaD;
ndistb = NormalDistribution@b, sigmaD;
max = PDF@ndistb, bD;

Manipulate@
ndistb = NormalDistribution@b, sigmaD;
g1 = Plot@8PDF@ndistd, xD, PDF@ndistb, xD,

HUnitStep@x - cD * Max@PDF@ndistb, xD, PDF@ndistd, xDDL<,
8x, -5, 30<, AxesLabel Ø 8"x", "p"<, Filling Ø Axis,
PlotRange Ø 80, max + 0.025<,
Epilog Ø 8Text@"m=b", 8b, 0.11`<D, Text@"m=d", 8d, 0.11`<D<D;

g2 = Plot@81 - CDF@ndistd, xD, 1 - CDF@ndistb, xD,
HUnitStep@x - cD * H1 - CDF@ndistb, xDLL<, 8x, -5, 30<D;

g3 = ParametricPlot@881 - CDF@ndistd, xD, 1 - CDF@ndistb, xD<<,
8x, -100, 100<,
FrameLabel -> 88"Hits", ""<, 8"False Alarms", "ROC curve"<<,
PlotRange Ø 880, 1<, 80, 1<<, Frame Ø True, AspectRatio Ø 1,
Epilog Ø 8Point@81 - CDF@ndistd, cD, 1 - CDF@ndistb, cD<D<D;

GraphicsGrid@88g1, g2, g3<<D, 88b, 15<, d, 25<,
88c, b, "criterion"<, 0, 30<D

Out[22]=

b

16.28

criterion

One can show that the area under the ROC curve is equal to the proportion correct in a two-alternative forced-choice 
experiment (Green and Swets). 

Sometimes, sensitivity is operationally defined as this area. This provides a single summary number, even if the standard 
definition of d' is inappropriate, for example because the variances are not equal.

We return to our basic question: is there a way to spot whether our gaussian equal-variance assumptions are correct for 
human observers?

If we take the same data and plot it in terms of Z-scores we get something like:
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In fact, if the underlying distributions are Gaussian, the data should lie on a straight-line. If they both have equal variance, 
the slope of the line should be equal to one. This is because:

And if we solve for the criterion Xc, we obtain:

Z(hit rate) = σ n

σs

Z (false alarm rate ) − µs − µn
σ s

(I've switched notation here, where b = µs, and d = µn). The main point of this plot is to see if the data tend to fall on a 
straight line with slope of one. If a straight line, this would support the Gaussian assumption. A slope = 1 supports the 
assumption of equal variance Gaussian distributions.

In practice, there are several ways of obtaining an ROC curve in human psychophysical experiments. One can vary 
the criterion that an observer adopts by varying the proportion of times the signal is presented. As observers get used to the 
signal being presented, for example, 80% of the time, they become biased to assume the signal is present. One needs to 
block trials in groups of, say 400 trials per block, where the signal and noise priors are fixed for a given block.

One can also use a rating scale method in which the observer is asked to say how confident she/he was (e.g. 5 
definitely, 4 quite probable, 3 don't know for sure, 2, unlikely, 1 definitely not). Then we can bin the proportion of "5's" 
when the signal vs. noise was present to calculate hit and false alarm rates for that rating, do the same for the "4's", and so 
forth. The assumption is that an observer can maintain not just one stable criterion, but four---the observer has in effect 
divided up the decision variable (x) domain  into 5 regions. An advantage of the rating scale method is efficiency--
relatively few trials are required to get an ROC curve. Further, in some experiments, ratings seem psychologically natural 
to make. But if there is any "noise" in the decision criterion itself, e.g. due to memory drift, or whatever, this will act to 
decrease the estimate of d' in both yes/no and rating methods.
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to make. But if there is any "noise" in the decision criterion itself, e.g. due to memory drift, or whatever, this will act to 
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Applications of ROC to neural measures
The area under the ROC curve provides a useful measure of sensitivity even if the additive gaussian model isn't known to 
be correct. It can also be thought of as a measure of how much information about signal vs. no signal can be extracted 
from the data. ROC curves can be used characterize the sensitivity of single neurons, as well as gross overall  measures of 
activity such as comes from brain imaging data. 

In the figure below, the gray lines represent a behavioral response by a human observer--i.e. when the signal is high, the 
observer is indicating subjective "detection". The red lines represent a measured brain signal. How well does the brain 
signal predict what the observer is reporting? 

The 2AFC (two-alternative forced-choice) method
Usually rather than manipulating the criterion, we would rather do the experiment in such a way that it does not change. Is 
there a way to reduce the of a fluctuating criterion?problem of a fluctuating criterion?

‡ Relating performance (proportion correct) to signal-to-noise ratio, d'. 

In psychophysics, the most common way to minimize the problem of a varying criterion is to use a two-alternative forced-
choice procedure (2AFC). In a 2AFC task the observer is presented on each trial a pair of stimuli. One stimulus has the 
signal (e.g. high flash), and the other the noise (e.g. low flash). The order, however, is randomized. So if they are pre-
sented temporally, the signal or the noise might come first, but the observer doesn't know which from trial to trial. In the 
spatial version, the signal could be on the left of the computer screen with the noise on the right, or vice versa. One can 
show that for 2AFC:

(1)d' = - 2  z Hproportion correctL
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Exercise: Prove d' = - 2  z Hproportion correctL

‡ Calculating the Pattern Ideal's d' for a two-alternative forced-choice experiment from a z-score of the 

proportion correct. (see Homework Assignment #1)

For our 2AFC experiment, the observer gets two images to compare. One has the signal plus noise, and the other just 
noise. But the observer doesn't know which one is which.  This strategy will result in a single measureable number, the 
proportion correct, Pc. 

d' for a 2AFC task is given by the formula:

‡ Where as before, the Z-score can be calculated from the inverse of a standard mathematical function called 

Erf[] to get Z from a measured P.  

z[p_] := Sqrt[2] InverseErf[1 - 2 p];

where Z(*) is the z-score for Pc , the proportion correct. And then,

dprime[x_] := N[-Sqrt[2] z[x]]

Today
Review some probability and statistics

Pattern detection: The signal-known-exactly ideal

Demo of 2AFC for pattern detection in noise
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What does the eye see best?

Make the question precise by asking: 
For what patterns does the human visual system have the highest detection efficiencies relative to an ideal 

observer?

‡ Animals, or particularly dangerous ones?

‡ Faces, or a particular face?

‡ Or something simple, like a spot?

‡ Or something complex, like a "frozen" noise image?
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‡

Or something complex, like a "frozen" noise image?

‡ Or some pattern motivated by neurophysiology? E.g. the kinds of spatial patterns preferred by single 

neurons in the primary visual cortex  ...

Answering this question requires one to first devise a generative model that describes the variations in both the signal and 
the non-signal conditions. In general this is hard to do, but we can do it for simple cases such as when the signal image is 
constant, and the data is either "white gaussian noise" or the signal added to white gaussian noise.
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‡ Some intuition: Measures of pattern similarity

The fundamental problem of pattern recognition is deciding whether an input pattern x matches a stored representation s. 
This decision requires some measure of comparison between the input and the stored "template" s. 

Given two patterns represented by vectors x and s, how can we measure how close or similar they are? 

Some possibilities are: Abs[x-s], Cos[x,s], or Dot[x,s]. 

We will see below that the ideal strategy is to compute the cross - correlation decision variable for each image (i.e. the dot 
product between each image data vector, say x, and an exact template of the signal, s,  one is looking for), and pick the 
image which gives the larger cross - correlation.

Probability Overview
For terminology, a fairly comprehensive outline, and overview, see notebook: ProbabilityOverview.nb in the syllabus web 
page, and for a general introduction, Griffiths and Yuille (2008).

For the section below, we'll use the properties of independence. Here is a quick overview of what we need today.

‡ Expectation & variance

Analogous to center of mass:

Definition of expectation or average:

Average@XD = X
ê

= E@XD = S x@iD p@x@iDD ~ ‚
i=1

N

xi ê N

m = E@XD = ‡ x pHxL dx

Some rules:

E[X+Y]=E[X]+E[Y]

E[aX]=aE[X]

E[X+a]=a+E[X]

Definition of variance:

s2 = Var[X] = E[[X-m]^2] = ⁄j=1
N HHpHxH jLLL HxH jL - mLL2 = ⁄j=1

N Ix j - mM2 p j

Var@XD = ‡ Hx - mL2 pHxL dx ~ ‚
i=1

N

Hxi - m L2 ëN

Standard deviation:

s = Var@XD
Some rules:
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Some rules:

Var@XD = EAX2E - E@XD2
Var@aXD = a2 Var@XD

‡ Statistics for independent random variables

Independence means that knowledge of one event doesn't change the probability of another event. 

p(X)=p(X|Y)

p(X,Y)=p(X)p(Y)

If p(X,Y)=p(X)p(Y), then

E@X YD = E@XD E@YD HX and Y are uncorrelatedL

Var@X + YD = Var@XD + Var@YD Hfor uncorrelated random variables X and YL

Var@c XD = c2 Var@XD, where c is a constant

Ideal pattern detector for a signal which is exactly known ("SKE" ideal)
In this notebook we will study an ideal detector called the signal-known-exactly ideal (SKE).  This detector has a built-in 
template that matches the signal that it is looking for. The signal is embedded in "white gaussian noise".   "white" means 
the pixels are not correlated with each other--intuitively this means that you can't reliably predict what one  pixel's value is 
from any of the others. Assignment 1 simulates the behavior of this ideal. In the absence of any internal noise, this ideal 
detector behaves as one would expect a linear neuron to behave when a target signal pattern exactly matches its synaptic 
weight pattern. There are some neurons in the the primary cortex of the visual system called "simple cells". These cells can 
be modeled as ideal detectors for the patterns that match their receptive fields. In actual practice, neurons are not noise-
free, and not perfectly linear.

Calculating the Pattern Ideal's d' based on signal-to-noise ratio

‡ The signal + gaussian noise generative model

x = s + n,  where s is a vector of image intensities, e.g. corresponding to a face, snake, spot, ...or a gabor 
pattern

x = n,  where n is white gaussian noise
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‡ Overview

We are going to do two things:

1. Show that a simple decision variable for detecting a known fixed pattern in white gaussian noise is the dot product, or 
cross-correlation, of the observation image x with the known signal image s.

r = x•s , or alternatively written as

r = ⁄i=1
N xHiL sHiL

2. Show that d' is given by:

s and x are a vectors, i.e. lists, of the image intensities, and s is the standard deviation of the added gaussian noise.

‡ 1. Cross correlation produces an ideal decision variable: Proof

What is the optimal decision variable? Starting from the maximum a posteriori rule, we saw that basing decisions on the 
likelihood ratio is ideal, in the sense of minimizing the probability of error. So the likelihood ratio is a decision variable. 
But it isn't the only one, because any monotonic function is still optimal. So our goal is to pick a decision variable which is 
simple, intuitive, and easy to compute. But first, we need an expression for the likelihood ratio:

(2)
p Hx » signal plus noiseL
p Hx » noise onlyL

where x is the vector representing the image measurements actually observed

x = s + n, under signal plus gaussian noise condition

x = n, under gaussian noise only condition

First let's consider just one pixel of intensity x. Under the signal plus noise condition, the values of x fluctuate about the 
average signal intensity s with a Gaussian distribution (gp[ ]) with mean s and standard deviation s.

So under the signal plus noise condition, the likelihood p[x|s] is the gp[x-s; s]:
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In[23]:= gp[x_,s_,s_]:= (1/(s*Sqrt[2 Pi])) Exp[-(x-s)^2/(2 s^2)]

In[24]:= gp[x,s,s]

Out[24]=
‰
-
Hx-sL2
2s2

2 p s

Again, consider just one pixel of intensity x. Under the noise only condition, the values of x fluctuate about the average 
intensity corresponding to the mean of the noise, which we assume is zero. 

So under the  noise only condition, the likelihood p[x|n] is:

In[25]:= gp[x,0,s]

Out[25]=
‰
-

x2

2s2

2 p s

But we actually have a whole pattern of values of x, which make up an image vector x. So consider a pattern of image 
intensities represented now by a vector x = {x[1],x[2],...x[N]}. Let the mean values of each pixel under the signal plus 
noise condition be given by vector s = {s[1],s[2],...,s[N]}. The joint probability of an image observation x, under the signal 
hypothesis is:

In[26]:= Product[gp[x[i],s[i],s],{i,1,N}]

Out[26]= ‰
i=1

N ‰
-
HxHiL-sHiLL2
2s2

2 p s

This is because we are assuming independence. In general, whether we can assume independence depends on the problem. 
In our case, the samples are independent by definition--as "experimenters" we generate the noise as independent samples. 

Independence between pixels means we can multiply the individual probabilities to get the global joint image probability. 
(See above and ProbabilityOverview.nb)

The joint probability of an image observation x, under the noise only hypothesis is:
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In[27]:= Product[gp[x[i],0,s],{i,1,N}]

Out[27]= ‰
i=1

N ‰
-
xHiL2
2s2

2 p s

Now we have what we need for the likelihood ratio:

In[28]:= Product@gp@x@iD, s@iD, sD, 8i, 1, N<D ê Product@gp@x@iD, 0, sD, 8i, 1, N<D

Out[28]=

¤i=1
N ‰

-
HxHiL-sHiLL2
2s2

2 p s

¤i=1
N ‰

-
xHiL2
2s2

2 p s

So at this point, we could just stop and write a program to use this product to make ideal decisions. E.g. if the product is 
bigger than 1, choose the signal hypothesis, and if less than 1 choose the noise hypothesis. 

But we can get a much simpler rule with a little more work. 

This is because any monotonic function, f() of the likelihood ratio would give the same performance (i.e. choose signal if 
f(likelihood ratio)>f(1), and noise otherwise), let's try one--the natural logarithm will turn the product into a sum:

In[37]:= LogB¤i=1
N gp@x@iD, s@iD, sD
¤i=1
N gp@x@iD, 0, sD

F

Out[37]= log
¤i=1

N ‰
-
HxHiL-sHiLL2
2s2

2 p s

¤i=1
N ‰

-
xHiL2
2s2

2 p s

which is equal to:

(3)Log ‰
i=1

N ‰
-
HxHiL-sHiLL2-xHiL2

2s2

2 p s

which is monotonic with:
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(4)LogB‰
i=1

N

‰
2 xHiL sHiL
2s2 F

which simplifies to

(5)I1 ë s2M ‚
i=1

N

xHiL sHiL

which is monotonic with:

Sum[x[i] s[i],{i,1,N}]

‚
i=1

N

sHiL xHiL

(6)r = ‚
i=1

N

xHiL sHiL

In other words, we've proven that the dot product, r, (or cross-correlation or matched filter) provides a decision variable 
which is optimal--in the sense that if we use the rule, the probability of error will be least. Now, let's calculate d'.

‡ 2. Derive formula for d'

By definition

d'=(m2 - m1)/s

m2 - m1

s

where u2 is the mean of the decision variable, r ,under the signal hypothesis (i.e. "switch set to send signal"), and u1 is the 
mean under the noise-only hypothesis (i.e. switch set to not send signal). (For our light discrimination example, m2 = b, 
and  m1 =d)

To get d', we need formulas for the means and standard deviation for the decision variable, r under the two hypotheses, 
"signal plus noise" vs. "noise" only.

First, suppose the switch is set for signal trials. What is the average and standard deviation of r? I.e. m2  and s?

(7)

m2 = Average@rD =

AverageB‚
i=1

N

xHiL sHiLF = ‚
i=1

N

Average@xHiLD sHiL = ‚
i=1

N

sHiL sHiL = ‚
i=1

N

sHiL2

(8)m2 = ‚
i=1

N

sHiL2

(Because x(i)=s(i)+n(i), Average[x(i)]=s(i).)
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(Because x(i)=s(i)+n(i), Average[x(i)]=s(i).)

And the variance is:

(9)Var ‚
i=1

N

xHiL sHiL = ‚
i=1

N

sHiL2 Var@xHiLD = s2 ‚
i=1

N

sHiL2

(We've used to rules from above: Var[Y + Z] = Var[Y] + Var[Z], but one is a constant, so because Var[constant + n]=-
Var[n].

And, recall that Var[c Y] = c^2 Var[Y])

Second, suppose the switch is set for noise only trials. The average of the dot product is:

(10)

m1 = Average@rD =

AverageB‚
i=1

N

xHiL sHiLF = ‚
i=1

N

Average@xHiLD sHiL = ‚
i=1

N

0 sHiL = 0

The variance is the same as for the signal case:

(11)Var ‚
i=1

N

xHiL sHiL = ‚
i=1

N

sHiL2 Var@xHiLD = s2 ‚
i=1

N

sHiL2

So d' is:

In[41]:= Sum[s[i]^2, {i, 1, N}]/Sqrt[(s^2 Sum[s[i]^2,{i,1,N}])]

Out[41]=
⁄i=1
N sHiL2

s2⁄i=1
N sHiL2

In[42]:= FullSimplify[Sum[s[i]^2, {i, 1, N}]/Sqrt[(s^2 Sum[s[i]^2,{i,1,N}])],s>0]

Out[42]=
⁄i=1
N sHiL2

s

Or:

(12)d ' =
⁄i=1
N sHiL2

s
=

s.s

s
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Calculating the Pattern Ideal's d' for a two-alternative forced-choice experiment from a 
z-score of the proportion correct.
Recall that we had an expression for d' for a yes/no experiment in which we measured hit and false alarm rates. 

We've seen the expression for d' for a 2AFC experiment  earlier lecture, but let's review it.

For a 2AFC experiment, the observer gets two images to compare. One has the signal plus noise, and the other just noise. 
But the observer doesn't know which one is which. An ideal strategy is to compute the cross-correlation decision variable 
for each image, and pick the image which gives the larger cross-correlation. This strategy will result in a single number, 
the proportion correct, Pc. 

d' for a 2AFC task is given by the formula:

You can use the inverse of a standard mathematical function called Erf[] to get Z from a measured P. 

In[43]:= z[p_] := Sqrt[2] InverseErf[1 - 2 p];

where Z(*) is the z-score for Pc , the proportion correct. 

In[44]:= dprime[x_] := N[-Sqrt[2] z[x]]
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Next time

High-level vision as Bayesian decision theory

‡ Introduction to higher-level perceptual decisions as inference

‡ Bayesian decision theory

‡ Various types of inference Tasks: synthesis, inference (detection, classification, estimation), learning

Exercises

Exercise: Calculate the information capacity of the eye
Consider an m x n pixel image patch. Is there a quantum limit to the number of light levels that can be represented in a 
resolution cell? (The size of a resolution cell is determined by the modulation transfer function of the optical device under 
consideration, which in this case would be the eye. We look later at how to estimate the spatial resolution of an imaging 
system). 

m

n resolution cell
capable of encoding

L levels

Let SN be the maximum number of photons that land in a resolution cell. One can't discriminate this level from any other 
with an infinitely small degree of precision. Requiring a sensitivity of d', determines the next dimmest light level:

SN-1 = SN - d ' SN

This effectively quantizes the dynamic range of a resolution cell. Write a small iterative program to count the number of 
levels down to S1 = zero. Say the number of levels is L, or LogsL = l  bits.  Of course, one has to decide a priori what is a 

suitable discrimination level. But once done, the information capacity can be estimated by lmn bits.

Generating gabor patch signals in additive noise
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Generating gabor patch signals in additive noise
So what can you do with this particular ideal observer analysis? Take a look at:

Burgess, A. E., Wagner, R. F., Jennings, R. J., & Barlow, H. B. (1981). Efficiency of human visual signal discrimination. 
Science, 214, 93-94.

vs.

The signal + gaussian noise generative model
x = s + n,  where s is a vector of image intensities corresponding to a gabor pattern

x = n,  where n is white gaussian noise

Gabor patterns as signals

‡ Basis set: Cartesian representation of Gabor functions:

ndist=NormalDistribution[0,1];

cgabor[x_,y_, fx_, fy_,sx_,sy_] := 
Exp[-((x/sx)^2 +  (y/sy)^2)] Cos[2 Pi(fx x + fy y)];
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‡ Various  frequencies , vertical orientations,  and  fixed width

vtheta = Table[0, {i1,4}];
vf = {2,4};
hf = {0.0,0.0,0.0};
xwidth = {0.15,4};
ywidth = {4,4};
npoints = 128;
signalcontrast=0.15;
noisecontrast=0.2;

lr = -1; ur = 1; step = Hur - lrL ê Hnpoints - 1L;
signal =

Table@signalcontrast cgabor@y, x, vf@@1DD, hf@@1DD, xwidth@@1DD,
ywidth@@1DDD, 8x, lr, ur, step<, 8y, lr, ur, step<D;

noise = noisecontrast Table@Random@ndistD, 8npoints<, 8npoints<D;

‡ Signal, noise, signal + noise

sig = ArrayPlot@signal, Mesh Ø False, Frame Ø False, PlotRange Ø 8-1, 1<,
ColorFunction Ø "GrayTones"D;

noi = ListDensityPlot@noise, Mesh Ø False, Frame Ø False,
PlotRange Ø 8-1, 1<, ColorFunction Ø "GrayTones"D;

spn = ListDensityPlot@signal + noise, Mesh Ø False, Frame Ø False,
PlotRange Ø 8-1, 1<, ColorFunction Ø "GrayTones"D;

GraphicsRow@8sig, noi, spn<D
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