Initialize

- Spell check off

In[1]:= Off[General::spell1];
<< VectorFieldPlots`

In[3]:= SetOptions[ArrayPlot, ColorFunction -> "GrayTones", DataReversed -> True,
Frame -> False, AspectRatio -> Automatic, Mesh -> False,
PixelConstrained -> True, ImageSize -> Small];
SetOptions[ListPlot, ImageSize -> Small];
SetOptions[Plot, ImageSize -> Small];
SetOptions[DensityPlot, ImageSize -> Small, ColorFunction -> GrayLevel];
nbinfo = NotebookInformation[EvaluationNotebook[]];
dir =
 ("FileName" /. nbinfo /. FrontEnd`FileName[d_List, nam_, ___] :>
 ToFileName[d]);
Outline

Last time

- **Local measurements**
 Representing motion, Orientation in space-time
 - Fourier representation and sampling
 - Optic flow, the gradient constraint, aperture problem
 Neural systems solutions to the problem of motion measurement.
 - Space-time oriented receptive fields

- **Global integration**
 Sketched a Bayesian formulation--the integrating uncertain local measurements with the right priors can be used to model a variety of human motion results.

Today

Later, we'll pick up on motion again--namely structure from motion in the context of determining layout and computing heading

Today, surface material:
 - Surface properties, color, transparency, etc..
 - Reflectance & lightness constancy
 - Transparency
 - Cooperative computation
Introduction to material perception

Material & Texture modeling

General categories of the "stuff" we see: surfaces (opaque and transparent), particle clouds (e.g. smoke, mist,...), liquids, hair, fur,...

Connection with count vs. mass nouns.

Research in computer graphics has provided major progress in the characterization of real surfaces, but realism is still a challenge.

Uniform materials

Surfaces with material properties or attributes:

- reflectance ("paint" or pigment or albedo)
 - matte and shiny
 - mirrors
- transparency
 - multiplicative, additive
Physics-based generative modeling: Bidirectional reflectance distribution functions

The Bidirectional Reflectance Distribution Function (BRDF) describes directional dependence of the reflected light energy. The BRDF represents, for each incoming angle, the amount of light that is scattered in each outgoing angle.

For a given wavelength, it is the ratio of the reflected radiance in a particular direction to the incident irradiance:

\[\rho(\theta_i, \phi_i, \theta_e, \phi_e) = \frac{dL_e(\theta_e, \phi_e)}{dE_i(\theta_i, \phi_i)} \]

where \(E \) is the irradiance, that is the incident flux per unit area (w/m^2), and \(L \) is the reflected radiance, or the reflected flux per unit area per unit solid angle (w/m^2*sr^-1). The units of BRDF are inverse steradians. Respects the physics: Reciprocity, energy conservation.

We've assumed isotropy, i.e. the BRDF is the same for all directions at a point, and spatially uniform material.

For a Lambertian (perfectly diffuse) surface, for example, the BRDF is con-
stant. The Phong model described earlier can approximate only a subset of surfaces characterized by BRDFs.

![Figure from: http://graphics.stanford.EDU/~smr/brdf/bv/](image)

- **Ward reflection model:** For calculating an image from a description of the shape, the illumination, and the BRDF

The Ward model is a physically realizable cousin of the Phong model.

\[
L_e(\theta_e, \phi_e) = \int \int L_i(\theta_i, \phi_i) \rho(\theta_i, \phi_i, \theta_e, \phi_e) \cos \theta_i \sin \phi_i \, d\theta_i \, d\phi_i
\]

\[
\rho(\theta_i, \phi_i, \theta_e, \phi_e) = \frac{\rho_d}{\pi} + \rho_s \frac{e^{-\tan^2(\delta)/\alpha^2}}{4 \pi \alpha^2 \sqrt{\cos \theta_i \cos \theta_e}}
\]
\(\delta \) is the angle between the viewer and the vector defining the mirror reflection of the incident ray (i.e. where the angle of reflection equals the angle of incidence). \(\alpha \) can be thought of as a measure of "roughness", and \(\rho_d \) and \(\rho_s \) give the amounts of diffuse to reflected contributions.

- Other links

http://www.cs.princeton.edu/~smr/cs348c-97/surveypaper.html
http://www.ciks.nist.gov/appmain.htm
http://www.graphics.cornell.edu/research/measure/

For examples using BRDF measurements of human skin see:
http://www.graphics.cornell.edu/online/measurements/

Textured materials

Note: "texture" sometimes refers to low-level cues or statistics useful for inferring properties like slant and shape, but it is also used to refer to surface material properties that are useful to estimate because they represent view-invariant object properties. In other words, sometimes it refers to a cue (measurement to support an estimate) and other times to an estimate itself. Thus, sometimes "texture" refers to an image features, and other times to 3D surface properties.

In this lecture, we focus on texture as a material property.

Textures can be:

- regular ("herringbone pattern") or stochastic ("fur")
- "coherence" e.g. sand & gravel, vs. asphalt

Textures can be due to:
Textures can be: regular ("herringbone pattern") or stochastic ("fur") coherence e.g. sand & gravel, vs. asphalt.

Textures can be due to: reflectance/pigment variations or bump (small geometric) variations. Perceptually it isn't always easy to tell the difference, and may not matter depending on visual function.

(Note that image texture can also result from a completely uniform (shiny) material reflecting a textured environment)

Key ideas:
- spatial variations are small with respect to the global scale of the surface structure
- spatial homogeneity

- **Appearance-based measurements**

How can one characterize the generative model? Much more complicated because of small-, but not micro-scale surface non-uniformity.

- **Random synthesis and learning of stochastic textures...**

See Heeger and Bergen in Supplementary material, Zhu et al.,
Reflectance estimation & lightness

Introduction

The trichromacy theory of human color vision (Young, Maxwell, Helmholtz in the 19th century) states that three sensor types could explain the data on color matching has been highly successful. However, it can not explain some phenomena. Simultaneous and successive color contrast effects required an elaboration of trichromacy to opponent-color coding.

What about color constancy? Color constancy refers to the observation that the color (of an object) can remain relatively unchanged with both spatial and chromatic changes in illumination. Historically, much experiment and thought went into accounting for the phenomena of color appearance over the last century and a half. However, the problem of what color vision is actually for, received less attention.

Although people have made various conjectures about the function of color vision, the advent of computational vision helped to clarify and motivate research into color’s function. One idea is that it could aid in segmentation—the localization of boundaries in the absence of luminance contours. Another idea is that color could provide a surface attribute, relatively invariant over illumination variations useful for recognition. So just like shape is good for object recognition, so might surface color. This second explanation gives us a different slant on color constancy—because in order to have a reliable surface attribute, we must be able to compute it given variations in secondary variables. Surface color is not given to the eye directly because the color and spatial distribution of the illumination typically varies. If we computed the color of an object by simply registering its wavelength composition, the object would rarely appear the same as it was moved about the room, or from indoors to outdoors. To obtain some measure of color constancy, vision discounts illumination as a secondary variable.

If color constancy is a result of the neural system’s attempt to estimate a surface attribute, then what is that attribute, and how do we estimate it? Let’s first look at simplified versions of the problem—in particular, lightness constancy.

Functional vs. mechanistic explanations

- Overview of lightness effects

Recall the Land & McCann "Two squares and a happening", and the two-cylinders version of it.

http://web.mit.edu/persci/demos/Lightness/gaz-teaching/index.html
Simultaneous contrast

http://web.mit.edu/persci/demos/Lightness/gaz-teaching/flash/contrast-movie.swf

Features?
- local contrast
- fuzzy shadows
- X-junctions

Lightness & spatially uniform illumination

Simple constancy: simultaneous contrast mechanisms vs. functional algorithms

Local contrast

Spatially uniform illumination. \(L = RE \).

Lightness \(\rightarrow R \), where \(R \) is between 0 and 1.

Let \(L_1 \) and \(L_2 \) be the luminance of the small center disks, and \(R_1 \) and \(R_2 \) be their reflectances.

Relative reflectance and local contrast: \(\frac{L_1}{L_2} = \frac{(R_1E)/(R_2E)}{R_1/R_2} \)

Normalization or anchoring problem (see Gilchrist).

\(\text{Or } R_1 \sim \frac{L_1}{L_{\text{avg}}} \)
\(\text{Or } R_1 \sim \frac{L_1}{L_{\text{max}}} \)
10 to 1, or 30 to 1 constraint on reflectance.
Role of contrast and adaptation mechanisms--See Kraft and Brainard (1999).

Spatially varying illumination

- Recall Land & McCann's "Two squares and a happening" (Lecture 13)

The left half looks lighter than the right half.

But the intensity across a horizontal line tells a different story:

The two ramps are identical.
Craik-O'Brien-Cornsweet effects

\[
\text{size} = 256; \ y[x_] := \frac{1.}{\text{Abs}\left[\frac{x}{2}\right] + 6}; \ y[1] = \text{Table}[y[x], \{x, 0, \frac{\text{size}}{2} - 1\}];
\]
\[
y[12] = \text{Join}[-\text{Reverse}[y[1]], y[1] - 0.03]; \ \text{ListPlot}[y[1] + 0.5, \text{PlotRange} \rightarrow \{-1, 1\}, \text{Joined} \rightarrow \text{True}]
\]

Lightness algorithms in "flat land"

The Appendix provides some examples of historical approaches to computing lightness. Lecture 13 also had an example of an algorithm.
Lightness and visual cortex

See supplementary pdf notes on course web page.

The above animation isn't quite right to test localized V1 responses. Why not?
Reflectance estimation & indirect lighting

Two generative models

Indirect plus direct lighting (1 bounce, Funt & Drew, 1991)
Direct lighting only (0 bounce)

Bottom line: Human color matches consistent with built-in knowledge of the generative laws of reflection.

Perception of shiny materials

![Images of shiny materials](a) Uffizi
(b) White Noise
(c) Pink Noise

A major invariance problem.

Presence of edges and bright points important, rather than recognizable reflected objects.

Shiny or matte?

http://gandalf.psych.umn.edu/~kersten/kersten-lab/demos/MatteOrShiny.html

Appendices

- Simple constancy: Bayesian reflectance estimation of one isolated patch in flatland

This simple example shows how marginalization or integrating out secondary variables can constrain an otherwise unconstrained problem...even without hypothesizing explicit priors on reflectance or illumination distributions. (Freeman, 1994)

\[L = R \times El + \text{noise}. \]

Given \(L \), what is \(R \)? \(El \) is the secondary variable that we want to discount by marginalization.

Let the illumination range be \([0,10]\), and the reflectance range \([0,1]\). Then the luminance range is also \([0,10]\).

Let the luminance noise be Gaussian with a standard deviation less than 10\% of \(L \), say 1 for simplicity. Then the probability of an observation \(L \) given \(R \) and \(El \) is proportional to:

\[
\text{likeli}[L_,R_,El_] := \exp[-(1/2) \times (L-R*El)^2]/\sqrt{2\pi};
\]

\[
prior[R_] := \text{PDF[UniformDistribution[\{0, 1\}], R]};
\]
where we assume that the noise has a Gaussian distribution.

Here is a plot of the likelihood for a luminance value of 1:

```
Plot3D[prior[R] \[times] likeli[1, R, E1], {R, 0.1, 0.9}, {E1, 0.1, 10},
AxesLabel \to \{"R", "E", "\pi\"\}]
```

```
DensityPlot[likeli[1, R, E1], {R, 0.1, 0.9}, {E1, 0.1, 10}]
```
Marginalize over illumination, E_l to get the likelihood of R for a given value of L:

$$pr[L, R_] := \text{Evaluate} \left[\text{Integrate} \left[\text{prior}[R] \cdot \text{Exp}\left[-(L - R \cdot E_l)^2 \right], \{E_l, 0, 10\} \right] \right]$$

$$\text{Plot3D}\left[pr[L, R], \{L, 0, 10\}, \{R, 0.0, 1\}, \text{AxesLabel} \to \{"R", "L", "p"\}, \text{PlotRange} \to \{0, 10\} \right]$$

Here is the relative probability of R given $L = 0.75$

$$pt = \{r0 = R / \text{NMinimize}[-pr[0.75, R], R][[2]], 0 \}, \{r0, 10\} \};$$

$$\text{Plot}\left[pr[0.75, R], \{R, 0, 1\}, \text{PlotRange} \to \{0, 10\}, \text{Epilog} \to \{\text{Red, Thick, Line[pt]}\} \right]$$
Some notes on color illusions

- Munker-White illusion

http://web.mit.edu/persci/people/bart/DemoLinks.html

- Neon color spreading, etc.

From: http://neuro.caltech.edu/~carol/VanTuijl.html

http://www.michaelbach.de/ot/col_neon/

- Land, Horn and others

Given $L(x,y)=S(x,y)E(x,y)$, where L is the intensity/luminance data of the image (using an achromatic world), we attempt to estimate $S(x,y)$.

Rather than seeking a spatial filter explanation (e.g. do edge detection, and then fill in the region up to the edges with the color of the edges), consider the following functional explanation of this illusion:

The lightness value we assign is correlated with S, not with L. So how can we estimate S?

The idea is to assume that the image intensity changes (or changes in r, b, or g) are due to slowly varying illumination together with piece-wise constant reflectances. The slowly varying illumination needs to be filtered out. Land’s scheme was to use ratios:
We want to estimate

\[
\frac{L_1}{L_5} = \frac{L_1}{L_2} \cdot \frac{L_2}{L_3} \cdot \frac{L_3}{L_4} \cdot \frac{L_4}{L_5}
\]

\[
\frac{L_1}{L_5} = \frac{S_1 E_1}{S_2 E_2} \cdot \frac{S_2 E_2}{S_3 E_3} \cdot \frac{S_3 E_3}{S_4 E_4} \cdot \frac{S_4 E_4}{S_5 E_5}
\]

But we would like to discount small changes in L, so we can use the rule:

\[
\text{if } \left| 1 - \frac{L_i}{L_{i+1}} \right| < t
\]

\[
\text{then set } \frac{L_i}{L_{i+1}} = \frac{S_i E_i}{S_{i+1} E_{i+1}} = 1
\]

\[
1 \cdot 1 \cdot \frac{L_3}{L_4} \cdot 1 = 1 \cdot 1 \cdot \frac{S_3 E_3}{S_4 E_4} \cdot 1 \approx \frac{S_3}{S_4} = \frac{S_1}{S_5}
\]

and thus by using luminance ratios that are sufficiently large in the product, we obtain an estimate of the relative reflectance

\[
S_5 \approx S_1 \left(\frac{L_4}{L_1} \right)
\]

where the luminance ratio is measureable. We can obtain estimates for \(i = 1,2,3,4,6\). (See Appendix to see how Land extended this lightness algorithm model to color).

Horn's algorithm

Luminance \((L) = \text{reflectance} \,(S) \times \text{illumination} \,(E)\)

1) Take logs to turn the multiplication into addition:
1) \(C(x, y) = \log(L(x, y)) = \log(\text{SE}) = \log(S(x, y)) + \log(E(x, y)) = S' + E' \)

2) High-pass filter to amplify the edges

\[
\nabla^2 C(x, y) = \nabla^2 S' + \nabla^2 E' \quad \text{(or } \nabla^2 G * C) \]

3) Threshold all values below some finite threshold

\[
t(x, y) = T[\nabla^2 C] = T[\nabla^2 S' + \nabla^2 E'] = \nabla^2 S'(x, y)
\]

Using Poisson’s equation, solve for \(S'(x,y) \).

\[
S' = t * g
\]

\[
F[S'] = F[t]F[g]
\]

The mathematical complication is because the problem is two-dimensional. In one dimension, only beginning calculus is required to understand how to solve a simple differential equation—just integrate.

Both Horn’s method and Land’s have some problems:

1) Normalization (anchoring problem) is actually more complicated, because we have taken second derivatives, leaving an extra degree of freedom in the integration process.

2) Spatial scale and threshold

3) Restricted to flatland.

In fact most of the alternatives face the same problems. One could imagine various ways of filtering out the illumination, for example, using spatial frequency representations of the image—but this does not help.

Mathematica demonstration of a 1D lightness calculation in flatland

One explanation is that the visual system takes a spatial derivative of the intensity profile. Recall from calculus that the second derivative of a linear function is zero. So a second derivative should filter out the slowly changing linear ramp in the illusory image. We approximate the second derivative with a discrete kernel \((-1,2,-1)\). Let’s apply this to a line across the Craik-O’Brien illusion above.

The steps are: 1) take the second derivative of the image;

```
In[10]:=
filter = \{1, -2, 1\};
(*Take the second derivative at each location*)
fspicture = ListConvolve[filter, picture[[128]]];
```

2) threshold. To handle gradients that aren’t perfectly linear, we add a threshold function to set small values to zero before re-integrating:

```
In[12]:=
threshold[x_, \tau_] := If[Abs[x] > \tau, x, 0];
SetAttributes[threshold, Listable];
fspicture = threshold[fspicture, 0.0025];
```
3) re-integrate

```plaintext
In[14]:= ListPlot[fspicture, Joined -> True, PlotRange -> {-0.1`, 0.1`}];
integratefspicture = FoldList[Plus, fspicture[[1]], fspicture];
integratefspicture2 = FoldList[Plus, integratefspicture[[1]],
    integratefspicture];
ListPlot[integratefspicture2, Joined -> True, Axes -> False]
```

Out[14]=

Color constancy

Land's demonstrations

Beginning in the 1950's, Edwin Land has shown the sophistication of human color constancy in a number of striking demonstrations (Land, E.H., 1983). In one experiment, three lights (long, medium, and short wave lamps) illuminate a Mondrian consisting of a collection of patches of paper of various colors.

```
L (r)    
\[\text{interference filters}\]

M (g)    

S (b)    
```
We consider two phases, each characterized by a different global illumination of the whole Mondrian. In the first phase, we pick out two patches, a white (W) and a yellow (Y) one, on which to focus our attention. A radiometer is used to measure the amount of each of the three components radiating off the yellow patch. Now, in the second phase, we adjust the irradiance of each of the colored lights so that we get the same readings for the white patch as we had for the yellow patch in the first phase. And as a consequence, the spectral composition of the yellow patch changes too, because it is now receiving the same changed illumination as the white patch. Based on spectral composition, we might predict that the white patch of the first phase would be made to appear yellow in the second phase, but it doesn't. Color constancy is maintained, and the white patch appears white, and the yellow appears yellow. How can this be done?

Kraft and Brainard (1999) have measured color constancy under nearly natural viewing conditions. Their results rule out all three classic hypotheses: local adaptation, by adaptation to the spatial mean of the image, or by adaptation to the most intense image region. What more is needed to explain constancy beyond these simple visual mechanisms?

References

© 2000, 2004, 2006, 2008 Daniel Kersten, Computational Vision Lab, Department of Psychology, University of Minnesota. kersten.org