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Introduction to the problem of vision

Understanding visual perception is an important problem in Psychology
One of the great mysteries of psychology is how the human visual system determines what and where objects are just by 
looking. This is the problem of vision. The perception of what is out there in the world is accomplished continually, 
instantaneously and usually without conscious thought. The very effortlessness of perception disguises the underlying 
difficulty of the problem. Vision is important because it is one of the principle routes to our acquisition of knowledge, as 
well as guide to its utilization.

Understanding vision is an important aspect of brain science
The problem of vision has attracted researchers from many disciplines outside of psychology, including computer science, 
mathematics, physics, engineering, and neuroscience. Understanding vision is a key problem in brain science, and the life 
sciences  generally. Visual neuroscientists currently estimate that up to 50% of human visual cortex (your gray-matter) is 
closely involved in visual processing. The general structure of cortical layers and pattern of inter-connectivity is similar 
across the neocortex. Thus the hope that if we can understand visual computations in the cortex, this knowledge may 
generalize to other cognitive domains. With about 10 million retinal receptors, the human retina makes on the order of 10 
to 100 million measurements per second. These measurements are processed by about a billion plus cortical neurons. 
Vision is a complex process requiring mathematical modeling tools.

Vision is a challenging mathematical problem
The problem of vision is not only important from the point of view of understanding the brain, but it is also formally and 
mathematically complex. As such vision is an active area of research for computer scientists and mathematicians.



‡ Old Man Picture from Mumford (1995)

No known algorithm can locate, classify, or determine the shape, of the man in the picture. Or determine the 

material...skin, hair, cloth...
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‡ Why is it a hard problem? There are no locally recognizable features (the problem of local ambiguity)

‡ From images to actions, objects: Preview of the formal problem

Formally, we  want to understand how to get useful actions A, from image measurements I:

                                  I -> A

Think of I and A as multivalued descriptions (e.g. vectors) of image measurements and action parameters. To get from I to 
A, vision often requires information about objects, surfaces, and scenes and their relationships to the viewer.  Properties of 
objects and their relationships will be called scene attributes,  represented by a vector S. 

Consider the question: How can one estimate parameters of objects--their colors, shapes, materials, their relationship to 
other objects, to the viewer, to the viewer's hands, etc..--all from a glance? This is often referred to as the problem of  
image understanding, to emphasize that vision is a problem of perceptual inference. That is,  given an image which is just 
a description of the light intensities at each point in space, and time (e.g. video camera or the sensors at the back of your 
eye), how can one infer the properties of the scene that caused the image? 

In general, we'll represent the image by an array of intensities, I, varying in space and/or time. (More generally, I could be 
some derived image measurements, like the location and orientation of local edge segments). Actions A, such as grasping 
an object, or saying "that's a dog", require information about scene attributes S. Thus sometimes, we'll think of A as a 
function of S: A(S). But many times, we'll study problems in which A ~ S, i.e. in which an action parameter is the same as 
the scene property. 

Then the problem is:

 I -> S

An example is S = depth of an object from the viewer. 

The problem of computing scene parameters from images is an example of an inverse problem. It is called this, because 
the goal is to estimate causes from data--the image measurements. Computing image intensities from the causes is called 
the forward problem, and involves specifying a "generative model". 
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‡ The generative model

3D computer graphics is a good example of a forward problem involving generative models. Sometimes called of 
"forward optics" -- how to go from a description of the environment to the image:

                                        S -> I

In other words, a function that describes what "out there in the world" (object shape, lighting, etc.) causes the image 
intensities observed. 

The causal structure leading to the data (image) is well-defined, hence generative model.

The figure below shows how one might specify a set of "knobs" when synthesizing or generating an image using scene 
descriptions:

We'll spend some time learning both about methods for generative modeling of images, as well as techniques for solving 
vision problems by inverse inference.
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‡ Visual estimate as statistical inference

So to sum up so far, the formal problem of vision is to go from I to a scene description S or more generally, an action A. 
We'll put a prime on S,  i.e. S' to distinguish our estimate of a scene attribute from its actual value S.

                                       I -> S'

Distinguishing our estimate from the true value is important, because any estimator, including our own visual systems will 
make mistakes--we don't always see the correct depth. Further, we don't always see the same thing given the same image. 
Later we'll look at visual illusions that illustrate these points. We will see that the theory of statistical inference provides a 
natural framework to model under-constrained problems. 

Over a century ago, Hermann Helmholtz described perception as "unconscious inference". As we go on, we will justify 
and amplify on the Helmholtz definition of perception.

More on the problem of ambiguity for objects
Let's take a closer look to see reasons why vision can be challenging problem from a formal point of view.

‡ "Identity Crisis" in Season 4 of Star Trek TNG. 

A shadow with unknown origin...
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But the problem can be even more challenging. Not only can the same object can give rise to different images, but ifferent 
objects can give rise to the same image (panel b below).

‡ An example: a "mystery image"

The following section has a "mystery" image I, which is just a  2D list (matrix) of light intensity values. Let's make a plot 
that represents intensity as height:
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This is a plot of I as a function of position, (x,y).

Suppose our goal is to estimate depth at each position, i.e. obtain S'(x,y) from I.  One  idea  is to assume that I  is propor-
tional to depth, S at each location. Although naive, it isn't a terrible idea--there is a correlation between intensity and 
depth. Given this assumption,  we'd conclude that the high middle ridge is closer than the bottom ridge. But as we will see 
in a moment, the dominant middle ridge that we see here does not correspond to near depths. 

Consider another perceptual inference goal. What if we want to estimate the surface color (pigmentation or "paint") of the 
image? Let S'' be the surface color, where S'' is big for white surfaces, and low for black surfaces. Now it seems even 
more plausible that I would correlate very well with S''.  But how well?

Let's represent the mystery image in a form where your own visual system can judge:

‡ Intensity representation of same data in mystery image:

First, note that the high intensity areas of the teeth are poor predictors of "nearness" in depth. They seem to be better 
measures of "whiteness". But what about the highlight on the lower lip? This produces a bump in the surface height plot 
above, but this a highlight due to the glossiness of the lip, and the pigmentation of the actual lip surface is not any lighter 
than other areas of the lip.

Information about shape and pigment is ambiguous, and the two are confounded in the simple image intensity 
measurements.
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The problem of task
An important recurring them that will appear throughout this course is the importance of carefully characterizing the task 
of the person or "agent". Some kinds of scene or object information are more important to estimate the other kinds depend-
ing on the task of the agent. 

Here's example of two tasks Face identity vs. illumination direction. In the first task, given an image, decide whether it 
belongs to the George (s1) or Jim (s2). 

Alternatively, there could be another task: given the same image, decide whether it is illuminated from the left or right. 

The figure below illustrates the kinds of image variation that can result from different facial shapes (just two in this case),  
and different illumination conditions:

There are HUGE objective changes in the image going from left to right ("variability in illumination") that human percep-
tual judgments give very little weight to.

Where do we stand today?
Scientists, despite several decades of research have yet to produce  a machine that can solve the general recogni-

tion problem: identify objects in natural images from arbitrary viewpoints, illumination conditions and in arbitrary con-
texts. As pointed out above, a central mathematical problem is the multiplicity of possible scene or object configurations 
that could have caused a particular set of image measurements. Richard Feynman compared the problem of vision to 
deciding what jumped into a swimming pool just by measuring the bobbing water height as a function of time using a ruler 
in the corner of the pool. There are lots of ways of getting a pattern of water heights. Further, as with water height, image 
measurements are very indirectly related to useful scene information. An understanding of image formation and optics 
does not sufficiently constrain the number of possible scene descriptions, S that could have given rise to any one image, l. 
This is one of the defining characteristics of inverse problems in general--the data underconstrain the solution.

One of the major contributions of computer vision has been to define the mathematical problems of vision and to 
show that these can be quite difficult to solve. Historically, the problem of chess was considered a prototypical problem 
for Artificial Intelligence. Today we have machines that can beat most of us at chess. A lot of their power comes from 
high speed brute force search, likely quite different from the brain processes of the grand masters. Nevertheless, they can 
beat us, whereas there is no current system that can pick out the chess pieces from the box (because of variability over 
viewpoint, lighting, material, and style), and set them up on the board in the right places. 

In this course we will study how the visual system deals with variability, such as due to over illumination, view-
point and material. In addition to the problem that different illumination conditions (e.g. light source coming from above 
left or above right), and different viewpoints produce different images of the same object, vision has to cope with occlu-
sion of one piece by another. Like fonts, different chess sets have different styles. To some extent style variation can be 
modeled in terms of geometric variation. But chess piece styles can be determined by symbols having to do with the 
formation of concepts.
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To further sober (and challenge you), the remarkable limitation of our understanding of  visual inference is under-
scored by the fact that there are no machine systems that can solve the patently simple  problem of deciding  whether a 
surface has a light or dark pigment under general illumination. I.e., given a white or black chess piece in isolation, what 
color is it? The problem is that a black piece in bright light can have the same average intensity as a white piece in dim 
light. This is a problem that we will return to later in the context of human material and lightness perception.

On the positive side, there has been considerable theoretical and empirical progress in understand the problems of 
vision, how to solve them, and how the brain enables us to see with such remarkable competence. Hopefully this course 
will give you a useful and exciting introduction to the field.

Understanding vision requires combining approaches from psychology, 
neuroscience, and computation
Vision is a part of cognitive science -- an interdisciplinary effort to understand the nature of knowledge, its acquisition, 
storage and utilization. It is also part of Cognitive Neuroscience~the study of the relationship between brain and cognitive 
behavior. I'd like to spend some time motivating the importance of an interdisciplinary study of vision.

I think some motivation may be required here because of the nature of the course. In this course, we will study 
vision from a computational point of view.  The topics should be exciting because the course involves integrating knowl-
edge across disciplines. But it can be frustrating because although it involves some math and computation, it isn't like most 
quantitative disciplines that have a structured sequence, and you have to restore, revive, and learn new concepts to make 
the interdisciplinary picture come into focus.

The Computational Approach to Vision
What is Computational Vision? It is the study of how to compute useful scene information and action parameters from 
image measurements. And central to this course, it is in particular the study of how we as humans accomplish this computa-
tion. Thus, we will study human visual behavior to understand what information is and is not used for visual inference. 
And we will study neural systems because we would like to understand how the machinery of the eye and brain  enables 
actions and the inference of properties of scenes in the world from images.

What does it mean "to understand visual perception"?
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What does it mean "to understand visual perception"?
If we deeply understand human or biological vision, then we should be able to build or simulate a machine "which sees 
like we do". But what does this mean? There are several levels of abstraction that have to be considered, and the answer to 
this question requires  careful thought.  Robot vision, even if excellent, would not necessarily work the same way as 
human vision even at a very general level. For example, a vision system could rely  on the reception of natural image 
patterns, or  could actively send out signals to see how the environment modulates them. An example of the latter case 
would be to project alternating stripes of light and dark  on surfaces, and then use the systematic distortion of the stripes in 
the image which  to decode the shape. In fact, this latter principle is used (laser painted stripes) in commercial applications 
to measure shapes (e.g. Cyberware scans of the human face). But biological vision (in contrast to echo location) processes 
nature’s patterns without active modulation of its images.

The study of cognitive science, in particular vision as we've pointed out, is necessarily interdisciplinary involving 
behavioral, biological and mathematical approaches. Let’s take a closer look at the methods of three specific areas within 
each of these general approaches: Psychophysics, Neuroscience and Computer Science. We will gain some familiarity 
with all three of these disciplines in this course, but let us first have a preview of their respective contributions and see 
how they relate to different levels of analysis. 

Behavior and Psychophysics: Black-box approach to construct a model that "sees 
like we do" 

This approach has a major goal to  qualitatively and quantitatively describe visual behavior. Psychologists, 
ethologists and "behavioral" neuroscientists all study behavior...but as we will see, even physicists and mathematicians get 
in the act. Careful description is an essential first step in any science (e.g. Mendel, and genetics). 

The study of behavior can be of at least two types. 

First, we need to know and understand the visual functions of an organism. Human vision is used to identify 
objects, to read,to walk, to drive, to steady oneself, to reach and grasp, to throw, to plan, to judge beauty, and the list goes 
on. Different tasks require different kinds of image processing. 

This brings us to the second type of behavioral study, psychophysical analysis. Psychophysics measures the 
behavioral consequence of physical (or informational) variations in the image stimulus with a goal towards understanding 
underlying neural mechanisms. Examples are: the measurement of apparent brightness as a function of physical light 
intensity; just discriminable differences in light intensity; changes in sensitivity as a function of adaptation; changes in 
recognition performance as a function of viewpoint. Clever psychophysical experiments can reveal not only the diverse 
visual processing requirements, but also test hypotheses about alternative accounts of a given process.  Psychophysics 
goes beyond mere description and historically has made some striking predictions about the nature of the underlying 
biology. For example, the psychophysics of color matching in the 19th century anticipated three physiological cone 
receptor types and their relative spectral sensitivites as a function of wavelength. This so-called "trichromacy" theory of 
was not physiologically established at the cell level until the 1960’s. We will see later how psychophysics in the 1940’s 
showed that photoreceptors (rods) in the eye could transduce single photons into an electrical signal. Certain brightness 
illusions discovered in the 19th century suggested patterns of neural connectivity and spatial interaction (called "lateral 
inhibition") that were not put on a firm physiological and neural foundation until the 1950’s.
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inhibition") that were not put on a firm physiological and neural foundation until the 1950’s.

A psychophysical approach has clear limits in its ability to give an account of how we see. One reaches a point 
where too many theories of what is inside the box give the same input/output relation  in the psychophysical data.  For 
example, computing y as: y = x(x - 1) gives the same mathematical relationship as a different computation in which x is 
subtracted from its square :  y = x^2 |x.  The fact that different combinations of wavelengths of light appear the same 
could have many neural explanations. Researchers eventually "go inside the box", or a animal "model" of the box (like a 
frog, cat or monkey) to find out what was going on at a finer level of analysis. This brings us to the methods of neurosci-
ence, such as anatomical tracing, electrophysiologal recording from single neurons, and brain imaging.

Neuroscience: Going inside the box
What happened when physiologists and anatomists looked at the biological basis of the psychophysical descrip-

tions? Indeed, as discovered using microspectrophotometry in the 1960’s,  there are 3 distinct types of cone photoreceptors 
in the retina at the back of the eye. Electrophysiological recordings showed that their spectral sensitivities were remark-
ably similar, but not identical,  to those inferred from psychophysics. And yes, as was shown in the 1970's, photoreceptors 
can transduce single photons. And there are neural circuits (lateral inhibition) in the retina that behave like Ernst Mach 
predicted to account for certain brightness illusions. Later, we will see examples of more recent neural accounts of psy-
chophysical observations that go beyond retinal processing to other parts of the brain, accounts that are being tested using 
both electrophysiological and brain imaging techniques.

In the 1950's and 1960's there was a tremendous excitement that we could understand the brain's function and in 
particular visual perception in terms of single neurons....but neurobiologists had probably been particularly lucky...at least 
they were more fortunate than if the brain had been designed like a modern digital computer. In the 1970’s, it  became 
increasingly apparent that  understanding how biological systems detected light was only scratching the surface of the 
problem of vision. Computer vision was beginning to show that competent vision was truly a problem of sophisticated 
inference and estimation. The number of visual areas discovered in the cortex of the brain grew. 

Vision was becoming more complicated and harder than expected. 
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Computational Vision: The need for a new discipline to handle the complexities of 
perceptual inference
Imagine the following example. Sometime in the distant future, Martian scientists have acquired a Terran computer device 
that plays an ancient video game, say an Xbox with Halo 2. Now consider the various ways  these scientists might go 
about trying to understand this device. 

First, they could adopt technique adapted from a neuroscience, "anesthetize" the computer (i.e. just take away the 
screen, so there is no output), and begin using a volt meter or a logic probe  to figure out what the box is doing.  This is 
like doing neuroscience without psychology or psychophysics. The scientists might learn about logic gates, shift registers, 
and RAM, etc.. But, what are the chances of figuring out that the machine was even designed to play a game? Pretty slim.

But now give the scientists a working system complete with screen and the controls, but minus the logic probe. 
This is like doing behavioral science--psychophysics. With some careful experiments, they could begin to figure out the 
rules of the game. (Although, they might be left with questions forever unanswerable, like "why was this machine built in 
the first place"!). But if asked to "build a machine" that does the same thing, the Martian scientists might still have  a hard 
time. They might be able to build a copy that mimics the behavior of the game, but even if the scientists had a solid body 
of results using the logic probe and observing the functioning system as a whole with the screen on, there is still something 
missing. They would have missed the point that the essential structure of the game is not the hardware, nor the input-
output relations, but rather a highly complex computer program. They need an understanding of the intermediate level -- 
the software (firmware), the algorithms, and how that these are related to the hardware that supports it. 

In short, what is missing is an understanding of how the pieces fit together to solve a specific information process-
ing task-- a task that involves getting magic mushrooms, escaping turtles, smashing brick ceilings to get coins, jumping up 
flag poles, etc. Without this knowledge, they would be unable build new video games, like Halo 3. True understanding of 
vision should result in the generalization, e.g. the capability of building a machine that sees like us, but which may differ 
from the original in ways that we can understand.

This example illustrates the need for a computational approach to vision. Although this approach grew out of the 
early communications theory, cybernetic, and artificial intelligence studies of the late 1940's, 1950's and 1960's (e.g. 
Turing, von Neumann, Wiener, Shannon), one of the chief protagonists of this approach for the study of visual perception 
was the late David Marr from MIT in the early 1980’s.

The computational level involves understanding how image patterns are formed (generative models), and how 
scene inferences can be drawn from image patterns. To handle the complexity of natural patterns requires the tools of 
computer programming, and has been increasingly emphasized in recent years, the mathematics of statistical inference.

Levels of analysis
Computational vision also requires study at several levels of analysis or abstraction. Let's see what this means.

Although Marr made many specific contributions to understanding human vision, he is well-known for his elucidation of a  
computational approach as consisting of multiple levels of explanation for puzzles of perception.
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‡ Functional ("computational") Theory. What is the goal of a computation?

Why is it appropriate? What strategy can carry it out? Both psychology and theoretical analysis help to answer these 
questions. For example, the Necker cube (below) perceptually flips because the goal of the visual computation is to 
represent the 3D structure of the objects causing the 2D retinal image. But, there are two equally plausible 3D interpreta-
tions.

‡ Necker cube

‡ Representation and algorithm. How to represent input and output? How to get from input to output?

Psychology and computer program models help answer these questions. For example, mental rotation experiments done 
with human observers give clues as to how visual information is represented and processed. The time to decide whether a 
sample figure on the right is a rotated version of the one on the left or not, increases monotonically with the actual angle 
required to check the match (over a certain range and conditions). 

The right figure is an image of the same object as the one on the left, but is rotated by 30 degrees about the vertical axis:

In the next figure below, the right figure is rotated by 80 degrees:
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‡ Implementation or hardware. How to build it with actual components?

Pencil and paper, vacuum tubes, silicon chips, hydraulics, billiard balls, or neurons? Neurobiology and neural network 
computer simulation help. For example, after-images are a well-known perceptual phenomenon.The after-image of a flash 
from a camera is an effect of visual perception that has to do with how human vision implements transduction in the 
retina, and the receptors in particular. 

In future lectures we will see the relationships between human behavior (psychophysics), physiological mechanisms, and 
computational theory. Sometimes the computational theory comes first, but sometimes we will work backward from the 
experiment  or visual phenomenon to the theory:

o quantum limits to vision-- What are the theoretical limits to light discrimination? -> Computational theory of 
discrimination.

o lateral inhibition-- for detecting edges? or to reduce redundancy? -> Computational theory of neural image 
coding.

In the next lecture we will begin by studying one of the simplest of vision problems: How well can we detect and discrimi-
nate light intensity? What are the limits to this ability? What is the computational theory for brightness discrimination?
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Getting started with Mathematica

‡ You can read Mathematica files free with Mathematica Player. 

‡ Go to the Help menu in Mathematica. Go to Documentation Center, and from there to the "First Five 

Minutes with Mathematica"

‡ Go to the screencast:

http://www.wolfram.com/broadcast/screencasts/handsonstart/
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