Initialize

- Spell check off

```
In[152]:= Off[General::spell1];
<< VectorFieldPlots`
```

```
In[154]:= SetOptions[ArrayPlot, ColorFunction -> "GrayTones", DataReversed -> True,
Frame -> False, AspectRatio -> Automatic, Mesh -> False,
PixelConstrained -> True, ImageSize -> Small];
SetOptions[ListPlot, ImageSize -> Small];
SetOptions[Plot, ImageSize -> Small];
SetOptions[DensityPlot, ImageSize -> Small, ColorFunction -> GrayLevel];
nbinfo = NotebookInformation[NotebookInformation[]];

dir =
    ("FileName" /. nbinfo /. FrontEnd`FileName[d_List, nam_, ___] :=
        ToFileName[d]);
```

To make sure 3rd party add-in packages are present, you can use this to find the path name and set it:

```
In[15]:= SetDirectory[DirectoryName[Experimental`FileBrowse[False]]]
```

```
```
Outline

Last time

- Geometry, shape and depth: Representation issues & generative models
- Lambertian model & surface normal representations

Surface normal representation: Local, dense, metric, viewer-dependent coordinate system (e.g. slant from observer).

Today

- Inference of shape from shading--set in context of other cues to shape,
- Perception of shape from shading
- Formal ambiguities in the generative model, the bas-relief transform
- Task analysis: "Shape for X" problem

"Shape from X"

- What is shape?

 One mathematical definition: "Geometrical properties that are invariant over translation and scale".

 A computational vision definition: "Whatever is left over after discounting material, illumination and viewpoint variations in the images of an object"

 We will take a more general view here:

 "geometrical relationships within a surface that are useful for visual functions". Later we will return to the "discounting" issues.

There are a variety of cues to shape. In natural images, these cues typically co-vary. Later on we will talk about cue integration. In a psychophysics lab, they can be manipulated independently.
Texture
Later on we will talk in more detail about how to model and infer surface material properties. Texture is one property of surfaces that is particularly informative for shape and object identity. Texture by definition has some degree of regularity. Texture can be highly regular, or only regular in the statistical sense. For the moment, suppose a surface has a deterministic regular homogeneous pattern of "texture elements", where each texture element is the same 3D size, and they are distributed homogeneously.

■ Slant & texture
Define a function to place circular disks on a regular grid

\[
\text{checker}[x_, y_, \text{space}_, \text{radius}_]:= \text{If}[(\text{Mod}[x, \text{space}]^2 + \text{Mod}[y, \text{space}]^2 < \text{radius}^2)]
\]

In[17]:= checker[x_, y_, space_, radius_]:= If[(Mod[x,space]^2+Mod[y,space]^2<radius^2)]
In[19]:=

\begin{verbatim}
Plot3D[{1, GrayLevel[checker[x, y, 32, 12]]}, {x, 1, 255}, {y, 1, 255}, PlotPoints -> 128, Mesh -> False, Axes -> False, Boxed -> False]
\end{verbatim}

\textbf{Plot3D::legacycolfunc}: Use ColorFunction to specify coloring.

Out[19]=

\begin{verbatim}
\end{verbatim}
Try changing the orientation of the above texture

The generative assumptions above lead to regularities in the image that can be used to estimate surface slant--if the spatial scale of the texture is small in comparison to the surface curvature, so that the surface can be approximated locally by a plane.

Then, cues to surface slant:

1) spatial gradient of the density of texture elements: the image density increases with distance;

2) an individual element (such as a circular disk) gets smaller with distance, and its image height to width ratio gets smaller ("compressed") with increasing slant;

3) the ratio of the back width to the front width of an individual element gets smaller with slant (imagine a small square, linear perspective on small scale) (See Knill).

Tilt is the direction that the surface slants away most rapidly. Here the density and sizes of the elements change the most rapidly.

Shape & texture

```math
bump[x_, y_, R_] := If[x^2 + y^2 > R^2, 0, Sqrt[R^2 - x^2 - y^2]]

Plot3D[{bump[x - 128, y - 128, 95], GrayLevel[checker[x, y, 24, 8]]}, {x, 1, 255}, {y, 1, 255}]
```
Change the above bump so that it is wider than it is tall

Stereo disparity

- **Random dot stereograms**
 A simple planar surface in depth.

 http://demonstrations.wolfram.com/FloatingDiskStereogram/

 Cross your eyes so that you see three dots (rather than two) at the bottom. The above surface should appear like the one below, but viewed from above.

 But smooth shape from stereo can also be conveyed through disparity.

- **Random dot stereograms, "Magic eye" style**

```plaintext
(* The function below needs RDS.m
<<RDS.m, which no longer works with Mathematica 6.0.

RDSPlot[-Cos[Sqrt[x^2+(2 y)^2]], {x,-10,10}, {y, -5, 5}, AspectRatio -> 1,
Show[%]
*)
```
- Stereo + shading + surface contours

In[26]:= \[\text{pL=Plot3D}\left[\cos\left(\sqrt{x^2+y^2}\right), \{x,-10,10\}, \{y, -10, 10\}, \quad \text{AspectRatio} -> \text{Automatic}, \text{PlotPoints} -> \{25, 25\}, \text{ViewPoint} -> \{1.3, -2.4, 2.\}\right]\]
Motion

We'll look at structure & shape from motion in detail later. With some care, one can put up an animation in which any single frame shows no apparent structure, but when moving, the shape becomes clear. E.g. rotating "glass" cylinder with dots on it. Or, "biological motion".

In the following, we show shading, various kinds of contour information, and motion. Play the following pair as an animation:
Contours

- Surface contour (markings)

\[
\text{In[190]} := \text{Plot[\{Sin[x], Sin[x]+1, Sin[x]+2, Sin[x]+3, Sin[x]+4, Sin[x]+5\}, \{x, 0, 10\}, \text{Axes}->False, \text{ImageSize}->\text{Small}]}
\]

\[
\text{Out[190]} = \text{Surface contours (creases or orientation discontinuities)}
\]
Surface contours (creases or orientation discontinuities)

The lines mark surface orientation discontinuities.

In[38]:= << PolyhedronOperations`

In[189]:= Graphics3D[{Yellow, Opacity[.0],
 PolyhedronData["GreatDodecahedron", "Faces"], Boxed -> False,
 ImageSize -> Small}

Out[189]=

- **Bounding contours, (depth discontinuities), e.g. silhouette**

Orientation discontinuities can coincide with depth discontinuities.
...and smooth occluding contours

In this smooth shape, orientation of a unit normal vector changes smoothly at the depth discontinuities of the boundary.
Shading...

Shape from shading

Introduction

The ambiguity of shading has had a newsworthy impact for well over a century, beginning with the "canals of Mars". From 1877, these "canals" attracted world-wide attention when the Italian astronomer, Giovanni Virginio Schiaparelli reported about a hundred of them. The American astronomer Percival Lowell thought the markings were vegetation, several kilometres wide, bordering irrigation canals dug by intelligent life to carry water from the poles. However, most astronomers couldn't see the canals. Photography through the Earth's atmosphere offered no solution because the lines were near the limit of resolution of the human eye and the physical optics. The controversy was settled in 1969 when photographs were taken from several hundred kilometres above the surface of Mars by the Mariner 6 and 7 spacecraft. These showed many craters and other formations but no canals.

However, the phenomenon of seeing intriguing shapes from shading hadn't gone away even in the late 20th century. With the Viking orbiter of 1976, NASA photographs have more interesting pictures from Mars:

Are these shapes really there? If not, why do we see the particular shapes that we do?

The ambiguities

■ Overview

The following figure from William Freeman at MIT illustrates the basic light-direction/shape ambiguity problem of shape from shading:
One solution to resolve the ambiguity is to use a surface smoothness constraint (e.g. as a Bayesian prior). Another is to approximate the shading as linear. A third is to learn a shape estimator. These methods include adopting or learning prior constraints, "active vision" in which looks for new information to resolve ambiguity, and the combination of information from other modules (e.g. illumination direction estimator).

Marginalization over illumination direction also provides a means to reduce shading ambiguity (Freeman, 1994). The principle is analogous to the general viewpoint constraint, but now applied to another secondary variable, illumination:

Vision should pick the shape interpretation that is most robust to variations in illumination direction.

Recall that scene-from-image problems, from a formal perspective, can treated as an inverse problem. For shape from shading, we will follow a similar strategy. As we've noted before, the theoretical approach to inverse problems can be formalized in terms of Bayesian estimation.

Classic regularization approach to shape from shading (Ikeuchi and Horn, 1981)

Write down the generative model for image luminance L in terms of geometrical gradient space parameters p, q:

\[L_R = re \hat{N} \cdot \hat{E} \]

where r is the reflectance, and e the strength of illumination. N and E are as in the last lecture. E is a point light source (we'll assume e=1), and E's direction can be expressed in gradient space:
Taking the dot product, we have:

$$\hat{E} = \frac{(p_e, q_e, -1)}{\sqrt{p_e^2 + q_e^2 + 1}}$$

$$\hat{N} = \frac{(p, q, -1)}{\sqrt{p^2 + q^2 + 1}}$$

Taking the dot product, we have:

$$L_R(p, q) = \frac{r(pp_e + qq_e + 1)}{\sqrt{(p^2 + q^2 + 1)(p_e^2 + q_e^2 + 1)}}$$

Our data is $L(x,y)$. We require that $L(x,y) = L_R(p, q)$. One problem is that we do not know the reflectance r or the light source direction (p_e, q_e). (Note that in general, r is not going to be a constant, but rather some pattern of pigmentation, $r(x,y)$). Suppose we assume r and (p_e, q_e) are known and fixed constants, we still have many p's and q's which will satisfy $L - L_R = 0$, in fact two unknowns for every equation.

Isophotes (lines of constant luminance in the image) do not necessarily imply constant (p,q):

Shape from shading is said to be an under-constrained or "ill-posed" mathematical problem.

A solution to ambiguity (that we'll explore in detail later in optic flow motion field estimation) is to impose a smoothness constraint (a local constraint) and boundary conditions (global constraint). Smoothness constraints can be formulated as "Bayesian priors", but more on this later. Let's see how Ikeuchi and Horn got around the problem of ill-posedness.

Implementing a smoothness constraint.

The intuition is that many objects tend to be smooth. What does this mean in terms of how surface normals change across a surface? We would expect smooth surfaces to have small spatial derivatives. If we made a guess as to what the surface normals were, we could measure the degree of smoothness using first or second derivative magnitudes, and if too big, try to change the shape to make the surface smoother. The idea is to write an algorithm that searches for a surface that satisfies $L - L_R = 0$ AND has low spatial derivatives.

Let us follow the approach of Ikeuchi and Horn (1981), and enforce a surface smoothness assumption (or constraint) by requiring that the squared values of the Laplacians of p and q be small. The Laplacians are:
We then construct a local cost function function:

\[e(x, y) = (L(x, y) - L_R(p, q))^2 + \lambda((\nabla^2 p)^2 + (\nabla^2 q)^2). \]

We want \(e(x,y) \) to be small. This will be the case if \((p,q)\) is chosen so that the first term tends toward zero, and if the spatial derivatives are small (i.e. because we've chosen \(p,q\) to change slowly). But we want this local cost function to be small over the whole image.

So we construct a global cost "functional" by integrating over the whole image:

\[e[p(x,y), q(x,y)] = \iint (L(x, y) - L_R(p, q))^2 + \lambda((\nabla^2 p)^2 + (\nabla^2 q)^2) \, dx \, dy \]

The goal is to find \((p,q)\) at each point \((x,y)\) which makes the global error or cost, \(e[p,q]\) as small as small as possible. \(\lambda\) is a weighting function on the smoothness. For example, it should be big if we have reason to believe our data are noisy--i.e. we want to trust our prior smoothness constraint over the unreliable data.

The boundary values can also be used to constrain the solution, and may be necessary at times to produce a unique solution. They are also important to prevent smoothing over discontinuities. What are the boundary conditions?

The surface normal can be read directly off the image if the boundary contours are known. But we have a problem, at smooth occluding bounding contours, \(p_o\) and \(q_o\) (the spatial rates of change of the surface depth away from the viewpoint) are infinite. And if the bounding contours are not smooth, but sharp, the surface normal is not defined there.

One solution is to change coordinates to ones that don't blow up at boundaries. Stereographic coordinates have been suggested as a means to avoiding infinities at the boundaries (Ikeuchi and Horn, 1982).
Another representation that will avoid the boundary problem is slant and tilt introduced earlier (e.g, Mamassian and Kersten (1995)).

It can be shown that minimizing the above error function is equivalent to maximizing the posterior probability of the map of surface p(x)'s and q(x)'s conditional on L(x,y). Using Bayes, the generative model determines the likelihood, and the laplacians of the gradient parameters determine the smoothness prior.

Linear approximation to the Lambertian generative model for shading

The image formation constraint that we have used is non-linear. It is worth asking to what degree a linear approximation would be adequate-- a question which has been addressed by Knill and Kersten (1990) and by Pentland (1990).

Let's derive a linear approximation to:

\[
L_R(p,q) = \frac{r(pp_e + qq_e + 1)}{\sqrt{(p^2 + q^2 + 1)(p_e^2 + q_e^2 + 1)}}
\]

where we use the notation \(p \rightarrow p_n, q \rightarrow q_n\).

- **Taylor’s series**

 We can expand the image luminance in a Taylor series about \(\{p_n, q_n\} = (0,0)\). Recall that this is done by calculating successive derivatives at \(\{p_n, q_n\} = (0,0)\), and then substituting \(\{p_n, q_n\} \rightarrow (0,0)\). The first derivative with respect to \(p_n\) is:

 \[
 \text{Out}[92] = \frac{pe}{\sqrt{pe^2 + qe^2 + 1}}
 \]

 Note that this is the cosine of the slant of the light source (see previous lecture).

Mathematica's Series[] function puts the Taylor series together for us. Here is the expansion up to linear terms:

\[
\text{Out}[91] := \text{Lmodel[pn_,qn_,pe_,qe_] := ((pn,qn,-1)/Sqrt[pn^2+qn^2+1]).(pe,qe,-1)/Sqrt}
\]
In[93]:= `Series[Lmodel[pn,qn,pe,qe], {pn, 0, 1}, {qn, 0, 1}]`

Out[93]= \[
\frac{1}{\sqrt{\text{pe}^2 + \text{qe}^2 + 1}} + \frac{\text{qe} \cdot \text{qn}}{\sqrt{\text{pe}^2 + \text{qe}^2 + 1}} + O(qn^2) + \left(\frac{\text{pe}}{\sqrt{\text{pe}^2 + \text{qe}^2 + 1}} + O(qn^2)\right) \cdot \text{pn} + O(pn^2)
\]

You can improve the approximation by including quadratic terms: `Series[Lmodel[pn,qn,pe,qe], {pn, 0, 2}, {qn, 0, 2}]`.

Try it out on `bump[x_,y_]:= (1/4) (1-1/(1+Exp[-10 (Sqrt[x^2+y^2]-1)])`;

In[94]:= `bump[x_,y_]:= (1/4) (1-1/(1+Exp[-10 (Sqrt[x^2+y^2]-1)]));`
 `pn[x_,y_]:= Evaluate[D[bump[x,y],y]];`
 `qn[x_,y_]:= Evaluate[D[bump[x,y],x]];`

In[111]:= `Plot3D[bump[x,y], {x, -3, 3}, {y, -3, 3}, Mesh -> False, PlotRange -> {0,.5}, ImageSize -> Small, Axes -> False, Boxed -> False]`

Out[111]= ![Plot of bump function](image)

Light source:

In[97]:= `{pe,qe}={1,1};`

Lapprox[x_, y_] := \[
\frac{1}{\sqrt{1 + \text{pe}^2 + \text{qe}^2}} + \frac{\text{qe} \cdot \text{qn}[x, y]}{\sqrt{1 + \text{pe}^2 + \text{qe}^2}} + \frac{\text{pe} \cdot \text{pn}[x, y]}{\sqrt{1 + \text{pe}^2 + \text{qe}^2}};
\]

In[101]:= `Lapprox[x_,y_] := (1+qe*qn[x,y] + pe*pn[x,y])/Sqrt[1+pe^2 + qe^2]`;
DensityPlot[Lapprxom[x, y], {x, -3, 3}, {y, -3, 3}, Mesh -> False,
Frame -> False, PlotPoints -> 64, PlotRange -> {0, 1},
ColorFunction -> "GrayTones", ImageSize -> Small]

Out[104]=

How could you use the above linear generative model for "shading from shape" to devise a solution to
the inverse problem of "shape from shading"?

In the next lecture, we'll look at a simple algorithm for shape from shading that assumes the linear generative model.

Is shape from shading really ill-posed? Formal (exact) solution to the classic problem: lambertian, point light source

Given a Lambertian reflectance, and a point light from the camera, the shape from shading problem is well-posed and a
solution can be found (Dupuis and Oliensis, 1994). Oliensis showed that 1) this problem is generally well-posed, contrary
to previous belief---and that when the light comes from the camera direction a shaded image determines the depicted
surface uniquely; 2) that the image of a surface's occluding boundary (the edge where it rounds away from the viewer) is
not useful for determining the surface---again contrary to previous belief; 3) that for an arbitrary shaded image there is
generally no physical (differentiable) surface corresponding to it (nonexistence).

These are theoretical results--it is quite another matter to discover the built-in knowledge that the human visual system has
regarding shape from shading, for example the boundary information is quite important (see below).
Shape from shading on a "cloudy day"--diffuse lighting

Most theoretical work on shape from shading started assuming point light sources, but diffuse lighting is the more realistic case. The generative physical problem becomes complicated. Ray-tracing and radiosity methods provide forward generative models (eg. Greenberg, 1989; Foley et al., 1990). But the straightforward inverse problem is impractical--can't check out all the ray-tracing bounces!

For an elegant solution to the problem of shape-from-shading on a cloudy day, see: Langer, M. S. & Zucker, S. W. (1994)

Perception

Perception of shape from shading & lighting direction

Some studies seem to indicate that human observers are not very accurate at estimating the local orientation of surface normals. We have a bias towards the fronto-parallel plane.

We also seem to have difficulty in estimating the slant of a light source (Todd, J. T., & Mingolla, E., 1983; Mingolla, E., & Todd, J. T. 1986). We are better at the tilt.

One problem with our above shape from shading analysis is that we assumed light source direction is known.

In fact, human observers do seem to assume that the light source is from above. This can be seen in the age-old "crater illusion" in which we have vertical luminance gradients of intensity giving an impression of a convex object on the left, and a concavity on the right (Ramachandran, V. S., 1988). (See previous lecture and code below that makes a bump lit from above and one that is upside-down). Interestingly, there also seems to be a slight bias towards assuming the light source is coming from the left (Sun & Perona, 1998).
Illumination direction & shape ambiguity

- Don’t open cell unless curious--just uses code from last time to make a hemisphere for the shape-convexity ambiguity demo

- Lambertian hemisphere

```
In[130]:= 
bump[x_, y_] := If[x^2 + y^2 > 1, 0, Sqrt[1 - x^2 - y^2]];
g1 = Plot3D[bump[x, y], {x, -3, 3}, {y, -3, 3}, PlotPoints -> 64, 
  PlotRange -> {0, 2}, Mesh -> False, 
  Lighting -> {"Directional", RGBColor[1, 1, 1], 
  {5, 5, 4}, {5, 5, 0}}}, 
  ViewPoint -> {1, 2, 1}, AxesLabel -> "x", "y", "z"}, Ticks -> False, 
  AspectRatio -> 1, ImageSize -> Small, Boxed -> False]
```

```
Out[131]= 
```

- Calculate surface normals of surface

```
In[132]:= 
Clear[nx, ny]; little = 0.001; big = 1000;

nx[x_, y_] := Evaluate[D[bump[x, y], x]]; 
ny[x_, y_] := Evaluate[D[bump[x, y], y]]; 
nx[x_, y_] := big /; x^2 + y^2 == 1 
ny[x_, y_] := big /; x^2 + y^2 == 1 
nx[x_, y_] := 0. /; {x^2 + y^2 > 1} 
ny[x_, y_] := 0. /; x^2 + y^2 > 1
```

"nx[x_, y_]
"is
∂z
∂x,
"and
similarly
for
ny.
The
rate
of
change
of
depth
range
is
greatest
as
the
face
slopes
away
from
the
viewpoint."
nx[x,y] is $\frac{\partial z}{\partial x}$ and similarly for ny. The rate of change of depth range is greatest as the face slopes away from the viewpoint:

- Lambertian rendering: specification for normals, light, reflectance

- Unit surface normals

Normalize the surface normal vectors to unit length:

```
In[159]:= normface[x_, y_] := -(nx[x, y], ny[x, y], 1)/(Sqrt[nx[x, y]^2 + ny[x, y]^2 + 1]); VectorFieldPlot[{normface[x, y][[1]], normface[x, y][[2]]}, {x, -1.2, 1.2}, {y, -1.2, 1.2}, ImageSize -> Small]
```

```
Out[160]=
```

- Render bump surface

```
In[146]:= a[x_, y_] := 1;
s = {-10, 100, 10}; s = N[s / Sqrt[s.s]]; b1 = DensityPlot[a[x, y] * normface[x, y].s, {x, -1.2, 1.2}, {y, -1.2, 1.2}, Mesh -> False, PlotPoints -> 64, Frame -> False, PlotRange -> {-1, 1}, ColorFunction -> "GrayTones"];
s = {-10, -100, 10}; s = N[s / Sqrt[s.s]]; b2 = DensityPlot[a[x, y] * normface[x, y].s, {x, -1.2, 1.2}, {y, -1.2, 1.2}, Mesh -> False, PlotPoints -> 64, Frame -> False, PlotRange -> {-1, 1}, ColorFunction -> "GrayTones"];
```
Shading and contour interaction

A challenging problem for future research is understanding how shape-from-contour interacts with shape from shading. Contour can override shading information. Let's cut out sections of part of an apparent sphere:

```mathematica
s = {-10, 100, 10}; s = N[s/Sqrt[s . s]]; temp = Transpose[Table[normface[x, y].s, {x, -1.2, 1.2, 0.01}, {y, -1.2, 1.2, 0.01}]]; bl = ArrayPlot[temp, Mesh -> False, Frame -> False, PlotRange -> {-1, 1}]
```

..this patch is an apparent cylinder:
In[173]:= \[\text{s\text{=}\{-10,100,10\}; \text{s\text{=}N[s/Sqrt[s.s]];}}\]
\[\text{temp\text{=}Transpose[Table[If[(x<-1/4 || y<-1/4) || (x>3/5 || y>3/5),0,normface[x,y].s],\{x,-1.2,1.2,0.05\},\{y,-1.2,1.2,0.05\}];}}\]
\[\text{ArrayPlot[temp,Mesh\text{=}False,Frame\text{=}False,PlotRange\text{=}\{-1,1\}]}\]

Out[175]=

This patch is an apparent diamond:

In[176]:= \[\text{s\text{=}\{-10,100,10\}; \text{s\text{=}N[s/Sqrt[s.s]];}}\]
\[\text{temp\text{=}Transpose[Table[If[Abs[x]+Abs[y]>0.5,normface[x,y].s],\{x,-1.2,1.2,0.05\},\{y,-1.2,1.2,0.05\}];}}\]
\[\text{ArrayPlot[temp,Mesh\text{=}False,Frame\text{=}False,PlotRange\text{=}\{-1,1\}]}\]

Out[178]=

Somehow the visual system incorporates boundary conditions. This could be done either through low-level "propagation" analogous to the Ikeuchi & Horn algorithm, or it could be done by using the contour to "index" shape classes (polyhedra, cylinders, spheres, pills, chiclets, etc..) with which to infer the interior shape.

Demo

Another demo (due to David Knill) you can try to make yourself is generate a vertical sine-wave grating. Make the contours at the top and bottom have either 1) the same frequency as the grating or 2) twice the frequency.

One research problem is how do specularities affect the convex vs. concave perception in the above figures? It has been found that human observers can use the stereoscopic position of a specularity (which is in front of a concave surface, and behind a convex surface) to disambiguate the shape (Blake and Bülthoff, 1990; 1991).
Project idea

Here is a simple project idea. One would expect that the influence of contour on shape-from-shading would depend on whether the contour is "attached" to the shaded region or not. A simple way of manipulating this is to use stereo. For example, one could make the boundary of a sphere to appear either at the correct boundary (i.e. towards the back of the bulge), or in front of the bulge, as if it is a hole. Perceived shape should be affected. One might even be able to design a shading pattern that looks very different depending on what the boundary gets attached to. For a discussion of "intrinsic" vs. "extrinsic" contours, see: Nakayama, K., & Shimojo, S. (1992).

Suppose that the diamond boundary below appeared as a diamond-shaped whole. Would one still interpret the shading as a pill, or would the shape of the internal region now appear more spherical?

![ShapeFromX.nb](image)

- Psychophysics

There have been a number of studies of the kinds of psychophysical errors made in slant and tilt judgements with a shape-from-shading algorithm that assumes smoothness in slant and tilt and knows the boundary values (e.g. Mamassian and Kersten. 1995). Mamassian and Kersten investigated the perception of local surface orientation for a simple object with regions of elliptic (egg-shaped) and hyperbolic (saddle-shaped) points. The local surface orientation was measured by the slant and tilt of the tangent plane at different points of the surface under several different illumination conditions. They found an underestimation of the perceived slant, and a larger variance for the perceived tilt. They also found that subjects were better at estimating the surface orientation when the shape was locally egg-shaped rather than saddle-shaped or cylindrical. From converging evidence based on (i) the light direction most consistent with the observer's settings, (ii) a supplementary experiment where the object is displayed as a silhouette, and (iii) the computer simulations of the shape from shading algorithm, they concluded that the occluding contour was the dominant source of information used by the observers.

At this point, very little is known about the neurophysiology of shape from shading/contour, although there has been speculation about the role of V1 spatial filters (e.g. simple cells) in the local estimate of shape; see some early ideas by Lehky and Sejnowski (1988), and by Pentland (1982). Knill and Kersten showed that orthogonal oriented linear filters could be used to estimate surface normals for Lambertian surfaces; however, we have very little idea of how neural systems may represent parameters of shape. Even basic issues such as viewpoint dependent (via extrinsic geometry) vs. viewpoint dependent (via intrinsic geometry) representations are unclear.

- Neuroimaging

There has been an increase in interest in studying the neural basis of object and shape perception using fMRI. For example, see: Kourtzi and Kanwisher (2000) and Moore and Engel, 2001.)
How to integrate? Shape from X1 and X2 and X3

Later in the course, we will look at the problem if cue integration for depth and shape.

- How to pick? Shape from X1 or X2 or X3

How should a visual system decide what kind of shape cue it has (shading from lambertian material, shading from shiny material, shading due to texture), and thus what kind of algorithm to use? One approach is to run a set of experts in parallel and pick the solution from the one that seems to "know what it is doing". Another approach is to use robust algorithms that are not sensitive to the details of the cues.

Next time

Bayes formulation of shape from shading & bas-relief
Introduction to motion analysis

Appendices

```
Import[Experimental`FileBrowse[False]];`
```
References

© 2004, 2006 Daniel Kersten, Computational Vision Lab, Department of Psychology, University of Minnesota.

kersten.org